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Exploiting local stability we show what neuronal characteristics are essential toensure that coherent oscillations are asymptotically stable in a spatially homoge-neous network of spiking neurons. Under standard conditions, a necessary and in thelimit of a large number of interacting neighbors also su�cient condition is that thepostsynaptic potential is increasing in time as the neurons �re. If the postsynapticpotential is decreasing, oscillations are bound to be unstable. This is a kind of lockingtheorem and boils down to a subtle interplay of axonal delays, postsynaptic poten-tials, and refractory behavior. The theorem also allows for mixtures of excitatoryand inhibitory interactions. On the basis of the locking theorem we present a simplegeometric method to verify existence and local stability of a coherent oscillation.
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1 IntroductionCoherence may be de�ned as being `united in relationship', for most vertebrate neuronsmeaning a temporal relationship in that they �re in unison. As such it is another wayof saying that neurons get locked. Once the proposal appeared that coherent oscillationsmay exist in biological neural systems (Eckhorn et al. 1988; Gray and Singer 1989; Grayet al. 1989; Engel et al. 1991a,b; Eckhorn et al. 1993, Gray 1994), locking phenomenaattracted a considerable amount of interest and spurred quite a few people to explain ordisprove the very existence of coherent oscillatory activity. Di�erent authors have useddi�ering models which vary in several aspects as do the assumptions and the results.Some models show perfect locking, others partial locking, or no locking at all. Some useexcitatory interactions, some exploit inhibitory ones, and others utilize a mixture. In thispaper, we present a unifying framework which allows one to derive exact conditions for theexistence and stability of coherent solutions in a network of spiking neurons and to isolatethe neuronal characteristiscs which are essential to them. The result is surprisingly simple:Perfect locking is possible only if �ring occurs while the contribution evoked by incomingpulses, i.e., the postsynaptic potentials, is increasing. A more precise formulation is givenin the next section where we show how a subtle interplay of axonal delays, postsynapticpotentials, and refractory behavior can lead to coherence. This result can be applied toexcitatory or inhibitory couplings or homogeneous mixtures thereof and solves the oftenposed question whether excitation or inhibition is `more suitable' to support collectiveoscillations (van Vreeswijk et al. 1994; Lytton and Seijnowski 1991). In fact, for spikingneurons this kind of collective behavior seems to be generic. Furthermore, we present apurely geometric method to verify whether a coherent oscillation can exist and, if so,3



whether it is stable. In view of the truly extensive and diverse literature, we think aunifying framework meets an urgent need.In the present work, we concentrate on analytic results for model networks of spikingneurons (Mirollo and Strogatz 1990; Kuramoto 1991; Gerstner and van Hemmen 1992,1993; Gerstner et al. 1993; Abbott and van Vreeswijk 1993; Bauer and Pawelzik 1993;Tsodyks et al. 1993; Treves 1993; Usher et al. 1993; van Vreeswijk et al. 1994; Gerstner1995; Ernst et al. 1995; Hansel et al. 1995). We mostly focus on large networks eventhough our technique can also be applied to small sets of neurons such as central patterngenerators; cf. (Skinner et al. 1994). We neither consider phase models (Abbott 1990;Schuster and Wagner 1990a; Sompolinsky et al 1990; Niebur et al 1991; Golomb et al.1992) nor analyze simulation studies (Buhmann 1989; Bush and Douglas 1991; Lytton andSejnowski 1991; Schuster and Wagner 1990b; K�onig and Schillen 1991; Schillen and K�onig1991; von der Malsburg and Buhmann 1992; Engel et al. 1992; Deppisch et al. 1993;Nischwitz and Gl�under 1995; Ritz et al. 1994). Furthermore, we do not comment on thedebate concerning the interpretation and potential relevance of coherent states since thereare already many papers arguing the issue (Eckhorn et al. 1988; Gray et al. 1989; Engelet al. 1991a; Schuster and Wagner 1990b; Koenig and Schillen 1991; von der Malsburgand Buhmann 1992; Ritz et al. 1994); cf. in particular (von der Malsburg 1981; von derMalsburg and Schneider 1986; Singer 1994).In order to prove our locking result, we will use the framework of the spike responsemodel (Gerstner 1991; Gerstner and van Hemmen 1992, 1993; Gerstner 1996). In thismodel, the e�ects of spike emission and spike reception are described by two responsekernels, viz., � to represent the refractory behavior and " to take into account the responseof a neuron once a spike has arrived at a synapse on its dendritic tree. If a presynaptic4



neuron j �res at a time tfj , a response will be evoked at the soma of a postsynaptic neuroni which we describe by Jij "(t� tfj ). The synaptic weight Jij is a measure of the amplitudeof the response. Similarly, if the neuron i �res at a time tfi , the repolarization after thepulse usually causes a sharp drop of the membrane potential. This e�ect is summarized byan additive contribution �(t� tfi ) � 0 to the membrane potential. Typical examples of "and � can be found in Fig. 1, a & b, whereas a more elaborate structure is shown in Fig. 1c & d. A neuron model is said to have a standard dynamics if d�=ds � 0 for all s > 0.This includes integrate-and-�re, fast spiking, and adaptive neurons, but excludes intrinsicbursters; cf. Connors and Gutnick (1990) for a classi�cation of neuronal �ring patterns.A neuron model with �(s) = "(s) = 0 for s � 2T will be called a model with short-termmemory.For the sake of simplicity we will assume throughout what follows that the delay �ijbetween neuron j and neuron i depends neither on i nor on j. Hence �ij = � and thedelay can be incorporated in the function ". The total membrane potential at the soma ofneuron i can then be writtenhi(t) =Xf �(t� tfi ) +Xj JijXf "(t� tfj ) : (1)Due to causality, we have �(s) = 0 for s < 0 and "(s) = 0 for s < �; cf. Fig. 1, a{c.A neuron �res once its membrane potential h(t) reaches a threshold # from below. Thiscondition de�nes the �ring times tfi and is at the basis of our formalism. For the momentwe do not include noise so as to simplify the ensuing arguments even further.Before turning to the proof of our locking theorem in x 4, we illustrate its potentialitiesby presenting a purely geometric method to construct and verify the stability of a coher-ent oscillation in x 2. We indicate the relation between the present setup and the usual5



integrate-and-�re models in x 3. With respect to locking, it hardly makes any di�erencewhether one uses excitatory or inhibitory couplings. As we will show in x 2, the geometricmethod makes such a statement obvious. In x 5 we return to this at a �rst sight surprisingfact and summarize our �ndings.2 Geometric MethodIn x 4 we will prove a locking theorem which is instrumental to understanding neuronalcoherence. In the present section we take it as the starting point of a purely geometricmethod that allows one to construct and directly verify the stability of a coherent oscilla-tion. Here is a theorem that relates neuronal characteristics to asymptotic stability, i.e.,when perturbations of a limit state decay to zero. Most of the time we will simply saythat something is `stable', meaning that it is `asymptotically stable'. Precise conditionsand extensions will be spelled out in the next section.Locking theorem: In a spatially homogeneous network of spiking neurons with standarddynamics a necessary and in the limit of a large number n of presynaptic neurons (n!1)also su�cient condition for a coherent oscillation to be asymptotically stable is that �ringoccurs when the postsynaptic potential arising from all previous spikes is increasing in time.Let us now turn to Fig. 2. The horizontal axis is the time axis and the vertical axisdisplays the response of a `typical' neuron. The network under consideration has excitatoryinteractions only. Each neuron has short-term memory and receives input from n� 1 otherneurons through synaptic weights J0=n; the normalization by 1=n is just convenient. We6



suppose that all neurons �re at time t = 0. Each neuron then feels its refractory �eld�. The action potentials have disappeared into the axons but after a delay of � ms theyreappear at the dendritic trees and induce a response at the soma which is described bythe function ". If the postsynaptic potential at the soma reaches the threshold # of theneuron, so that (J0=n)n� "(s) + �(s) = # or, equivalently, J0 "(s) = #� �(s), then all theneurons will �re again. This leads to a simple graphical solution for T . As is evident fromthe plot, in �ring again a neuron still feels its refractory �eld. If the delay � is too short,the point of intersection of "(s) and # � �(s) is in the descending part of " and no stableoscillation can arise. If, however, � is a bit longer, then the point of intersection of thetwo curves is in the ascending part of " and a coherent oscillation is stable. So once weknow the locking theorem, existence and stability can indeed be veri�ed geometrically.The inhibitory case of Fig. 3 does not provide any additional di�culty. It is plain that,to get a response from this purely inhibitory system, we need a stimulus I0 > 0. Again wesuppose that all (possibly selected) neurons �re at time t = 0. Of course each neuron feelsits refractory �eld �. The action potentials disappear into the axons but after a delay of �ms they reappear at the dendritic trees and induce a response at the soma via the function"inh, which is now negative. The neurons will �re again, provided J0"inh(s)+ I0 = #��(s).For small �'s or short-lived inhibitory potentials, the neuron still notices its refractory pastand the point of intersection is in the ascending part of "inh, as is shown in Fig. 3a. If thedelay lasts long enough, then � plays no role any more { cf. Fig. 3b { and we are left withthe condition I0 + J0 "inh(s) = # and, hence, stability. In the presence of mere inhibitionthe oscillation is stable for a wide range of delays �, { in contrast to the excitatory casewhere the stability depends critically on �. Systems which have both excitatory andinhibitory interactions are in general more interesting from a neurobiological point of view7



and will be treated in x 5. Though it is a simple matter to play around with delays andparameters, we will not pursue this issue here and turn instead to the mathematics of ourlocking argument. Before delving into the details of the proof, whose geometric essence canbe found in Fig. 4, we quickly indicate the relation between the usual integrate-and-�remodels and the `spike response model' as it is employed in the present paper.3 Relation to Integrate-and-Fire ModelsIn integrate-and-�re models, �ring leads to an immediate reset of the membrane potential.We denote the membrane potential of an integrate-and-�re neuron by ~h(t) and its thresholdby ~#. Firing occurs, if ~h(t) = ~#. This de�nes a �ring time tfi and the reset requirement islim�!0 ~h(tfi + �) = 0 : (2)Between two �rings, the change of the membrane potential is given by the equation of asimple RC circuit charged by a current I0 + Ii(t),ddt~hi = �~hi� + I0 + Ii(t) : (3)I0 is a constant external current which is identical for all neurons. The time-dependentcontribution is due to the input from other neurons,Ii(t) =Xj Jij�(t� tfj ) : (4)As before, Jij is the synaptic weight representing the input amplitude. The function �(s)is the typical input current caused by a presynaptic spike. Choices of the function �include �(s) = �(s) where � is the Dirac � function, �(s) = �(s ��) where � is a delay,�(s) = s�10 �(s)�(s0 � s) for a short square pulse where �(s) is the Heaviside unit step8



function, or �(s) = (s=� 2) exp(�s=� ) for a more realistic description of the synaptic inputcurrent, that also obeys the pleasant normalization R10 �(s)ds = 1. We note that the resetcondition is equivalent to an output current pulse 
(s) = �~# �(s). Since (3) is a lineardi�erential equation, it can be integrated and yields~hi(t) =Xf �(t� tfi ) +Xj JijXf "(t� tfj ) + I0 [1� exp(� t� )] (5)with (a prime always denoting a derivative)�(t) = �~# exp(� t� )) �0(t) > 0 (6)and "(t) = Z t0 ds�(s) exp(�t� s� ) : (7)The last term in (5) was adjusted so that the initial value of ~hi is ~hi(0) = 0. We note thatfor t � � the initial condition does not play any role and the last term approaches theconstant value I0. If we de�ne hi(t) = ~hi(t) � I0 and # = ~# � I0, we are back at Eq. (1).We would like to emphasize that the model (1) is more general than the integrate-and-�remodel (3) in that we can use arbitrary response kernels " and �. A typical example ofthese response kernels has been presented in Fig. 1.4 LockingIn the following subsections, we study a coherent state of a spatially homogeneous networkof N neurons labeled by 1 � i � N and construct this network state self-consistently insuch a way that the period T follows directly. We �rst handle the existence and thenturn to the stability of a coherent oscillation. The word `coherent' should be constantlyborne in mind as it plays a key role in both the existence and the stability proof. Once9



a homogeneous system of spiking neurons with short-term memory behaves coherently itcannot but oscillate. As such, oscillations are not a deep network property but simply aconsequence of the connectivity and the spike dynamics of neurons. In the present context,spatial homogeneity means that all neurons are of the same type, i.e., have identical " and� kernels, and have the same `gross' synaptic input, viz., Pj Jij = J0 for all 1 � i � N .4.1 Existence of Coherent SolutionsIn a coherent state, all neurons of the network �re synchronously and with the sameperiod T . For the sake of convenience we adjust the origin t = 0 so that regular �ringoccurs at `T with integer `. Let us assume that neurons have �red regularly in the pastt � 0. More precisely, we assume that synchronous �ring has occurred at t = `T with` = 0; �1; �2; : : :. For 0 < t < T the membrane potential of neuron i is then given byhi(t) = 1X̀=0 �(`T + t) +Xj Jij 1X̀=0 "(`T + t) : (8)The next coherent �ring should occur at time t = T . This means that hi(t) reaches thethreshold # at time t = T and, hence, yields a self-consistency requirement for T ,# = hi(T ) = 1X̀=1 24�(`T ) +Xj Jij "(`T )35 : (9)More precisely, T = infft > 0jhi(t) = #g. Since we have hi(t) < # for t < T , themembrane potential hi(t) reaches # from below and, thus h0i(T ) > 0. Usually, the term` = 1 dominates the sum in (9) and we end up with the simple equationXj Jij "(T ) � J0 "(T ) = #� �(T ) ; (10)which allows a straightforward graphical interpretation; cf. Figs. 2 and 3. Note that adelay � has been incorporated in ". An oscillatory solution exists, if the two functions10



J0 "(s) and # � �(s) cross at some point s0. If there are several crossing points, the �rstone (smallest s0) gives the oscillation period T = s0.For neurons with short-term memory, i.e., with with �(s) = "(s) = 0 for s � 2T ,Eq. (10) is exact. For a general neuron model with adaptation, however, memory lastslonger and we have to use (9) instead of (10).4.2 Asymptotic Stability of Coherent SolutionsSo far we have concentrated on the existence of coherent solutions. In the following wewill check whether the solutions are stable with respect to small perturbations. That is,we perform a linear stability analysis. To be speci�c, we consider a perturbation of theneuronal �ring pattern as it occurred in the past t � 0. In the unperturbed situation, allneurons would have �red synchronously up to t = 0 but now they do at times f`T+�i(`); ` =0;�1;�2 : : : and 1 � i � Ng. We assume j�i(`)j � T since we perform a linear stabilityanalysis. For t > 0, the membrane potential is no longer given by (8) but byhi(t) = X̀�0 24�(t� `T � �i(`)) +Xj Jij "(t� `T � �j(`))35 : (11)At time t = T the actual �ring is, in general, either slightly earlier or later and neuroni �res at T + �i(1) instead of T . The time shift �i(1) can be found from the thresholdcondition hi(T + �i(1)) = #, given the past. We use Eq. (11), linearize with respect to allthe �i(`) in sight, and take advantage of the unperturbed threshold condition (9). In orderto simplify the ensuing notation we introduce the abbreviations� 0̀ = ddt�(t)jt=`T ; "0̀ = ddt"(t)jt=`T : (12)11



After a bit of algebra we then �nd�i(1) = P`�1[� 0̀ �i(�`+ 1) + "0̀ Pj Jij �j(�`+ 1)]P`�1(� 0̀ + "0̀ Pj Jij) � IFi(�) : (13)Here IF is a linear map from the past � onto the present, i.e., f�i(1); 1 � i � Ng � �(1).Doing linear perturbation theory we simply iterate IF. Proving asymptotic stability of acoherent oscillation means showing that limk!1 IFk(�) = 0 for an arbitrary but �xed �.We will verify in a minute whether � can be truly arbitrary.Equation (13) is a key result of our stability analysis. Before proceeding we consider aspecial solution: �i(�`) = � for all i and `. It is an easy task to verify that �i(1) = � as well.That is to say, a uniform shift in time cannot be corrected. This is not too surprising sincea system of integrate-and-�re or Hodgkin-Huxley or whatever neurons that is describedby a system of ordinary di�erential equations is unable to correct a uniform shift in timeeither. Mathematically, our perturbations � therefore have to exclude a uniform timeshift. Physically, the class of perturbations induced by internal `noise' or some additionalstochastic input is much more restricted. Time shifts seem to be random. More precisely,we expect them to be independent, identically distributed random variables with meanzero and �nite variance. If n with n � 1 denotes the number of neighbors j of neuron i,then n�1Pj �j(�`) � 0, whatever ` � 0 and whatever the neuron i and its surroundingswhich we consider. In passing we note that n is typically of the order of thousand or morein a vertebrate brain. Random perturbations occur all the time but the ones stemmingfrom the past should not blow up in the future, but decay. That is why we have to iterateIF for a �xed argument � and show that the result approaches zero.The condition IFk ! 0 as k !1 means that the matrix IF should have all its eigenval-ues in the open unit disc f�; j�j < 1g. The above eigenvector (1; 1; : : : ; 1) with eigenvalue12



1 contradicts this condition. We, therefore, have to require that it be the only one, i.e., 1is nondegenerate (simple), its eigenvector is to be excluded, and all the other eigenvaluesof IF are less than one in absolute value. In passing we note that, in mathematical terms,plain instead of asymptotic stability, i.e., when perturbations do not blow up but need notdecay, is much cheaper: we only have to require that j�j � 1 and need not worry aboutany further condition.In order to interpret (13), we assume a network where each neuron receives input fromn neighbors1 (n � 1) through homogeneous couplings Jij = J(i � j) where i and j arevectors on a 2-dimensional lattice and J(i) is absolutely summable, i.e., Pi jJ(i)j < 1.There is no harm in assumingPj Jij = J0, whatever i. The expression (13) is now rewrittenh0 � �i(1) = X̀�0 �`+1�i(�`) + J0 kX̀�0 "0̀+1 � h�(�`)i (14)where h0, the denominator of (13), is the derivative of h in (8) taken at time T . It isbound to be positive as the membrane potential approaches the threshold from below.Furthermore, we have introduced the mean shift J0h�(�`)i = Pj Jij�j(�`) with j rangingthrough the set of n neighbors of i.Let us assume that the mean shift h�(�`)i vanishes for all ` � 0. If the number ofneighbors n is large and perturbations are random, then h�(�`)i � 0 is a quite naturalassumption. It is a simple consequence of the strong law of large numbers (Lamperti1966; Breimann 1968). Given that h�(�`)i vanishes for all `, h�(1)i vanishes as well, adirect mathematical consequence of (14). Vanishing mean time shifts characterize a classof perturbations and, thus, lead to necessary conditions for a coherent oscillation to bestable. If the above argument applies, which seems fair, then these conditions are also1One can think of the set of `neighbors' as a local ensemble but one need not. In the present context,it simply means the collection of presynaptic neurons.13



su�cient.For the moment we simply set h�(�`)i = 0 and obtain from (14)�i(1) = P`�0 � 0̀+1 �i(�`)P`�0(� 0̀+1 + J0 "0̀+1) : (15)This becomes truly simple for models with short-term memory where "(s) = �(s) = 0 fors � 2T so that the contributions "0̀ and � 0̀ can be neglected for ` beyond 1 and (15) reducesto �i(1) = �01�01 + J0 "01 �i(0) : (16)This is what we have used to obtain the geometric construction of x 2. Equation (16) tellsus two things. First, if J0 "01 > 0, then the fraction on the right is less than one and aperturbation is bound to decrease after each spike. On the other hand, once J0 "01 < 0 isnot too large in absolute value, a perturbation has to increase in time and the oscillationis unstable. The denominator in (16) is h0, that is, the derivative of (8) evaluated attime T . Since T as given by (9) determines the �ring time and, on �ring, the membranepotential approaches the threshold # from below , h0 is always positive. So we end up witha dichotomy: the oscillation is stable if J0 "01 > 0 and unstable for J0 "01 < 0. Three �nalremarks concerning (16) are in order.First, J0 "01 > 0 means that �ring occurs while the postsynaptic potential is increasing .Second, if the neuron has forgotten its past before the next �ring so that �1 vanishes, thenit is bound to reappear `in phase' and the oscillation is asymptotically stable. Finally, asimple geometric illustration of the stability proof can be found in Fig. 4.What happens, if we relax the condition of short-term memory? Neurons with a stan-dard dynamics such as integrate-and-�re units have �(s)0 � 0 for all s; cf. Fig. 1a. As14



shown in the Appendix, stability then leads to the requirementX̀�0 J0 "0̀+1 > 0 : (17)In other words, also in the general case asymptotic stability of the locked state requiresthat the total synaptic input be increasing at the moment when the neurons �re. Thisproves the necessary condition mentioned in the locking theorem. In general, one or severalterms in the sum (17) may be negative as long as the sum of all terms is positive. In fact,under the side condition of vanishing mean time shift (n!1), the condition (17) is alsosu�cient to guarantee asymptotic stability.The reader may wonder whether one can do without the side condition of vanishingmean shifts completely. The answer is in the a�rmative, if we impose an additionalconstraint. We assume a standard dynamics and, in addition, require Jij "0̀+1 � 0 for all ` �1. In other words, we have a network of inhibitory neurons whose postsynaptic potentialsdecay monotonically or excitatory neurons whose potentials increase monotonically. Thenthe general stability matrix IF as described by (20) in the Appendix is a stochastic one. Thatis, its entries are nonnegative and all row sums equal 1. The eigenvalues are in absolutevalue less than or equal to one, it is indecomposable because of its special form (20), theeigenvalue � = 1 is nondegenerate, the corresponding eigenvector (1; 1; : : : ; 1) is to beexcluded, and there is no way to reduce IF to `cyclic form' so that all the other eigenvaluesare in the open unit disc f�; j�j < 1g (Horn and Johnson 1985, Gantmacher 1959). Wedecompose the initial vector � with respect to the eigenvectors of IF (Jordan decomposition)and iterate. Since there is no eigenvalue with j�j = 1 present in the decomposition, all the�k converge to zero as k ! 1. So we are done. This applies in particular to a system ofleaky integrate-and-�re neurons with purely inhibitory interactions.15



4.3 Nasty CounterexampleWhat happens, if the mean time shifts do not vanish? We study a simple though somewhatacademic example that serves to clarify the question: What is the response, if all neuronshave the same time shift �(�`) which, however, is di�erent for di�erent `? That is, weassume that all neurons are synchronous but slightly aperiodic, and study whether thenetwork returns to a periodic state. The network's past clearly contradicts the requirementof vanishing mean time shift. Taking advantage of (14) we geth0 � �(1) = X̀�0 �`+1 �(�`) + J0 X̀�0 "0̀+1 �(�`) (18)The corresponding matrix IF { cf. the Appendix { now has the entries IF0` = (� 0̀+1 +J0 "0̀+1)=(P`�0 � 0̀+1 + J0 "0̀+1) for 0 � ` � `max � 1 in the �rst row and IF�� = ��;�+1 for� � 1. Because all row sums equal 1, there is an eigenvalue �1 = 1 corresponding tothe eigenvector (1; 1; 1; : : :), a uniform time shift. We ask whether all other eigenvaluesare less than 1 in absolute value. First we study a special case. Let us assume that� 0̀+1 + J0 "0̀+1 � 0 for all ` � 0. We then arrive at a stochastic matrix and can repeat thearguments of the previous paragraph so as to conclude that all the other eigenvalues arein absolute value less than unity. Thus the neurons relax to the T -periodic state.In general, the situation is more complicated since � 0̀ +J0"0̀ can be negative for some `.Take for instance `max = 2. Then the eigenvalues are 1 (always present) and �IF01. Thus,stability requires �1 < IF01 < 1. We have the boundary condition IF00+IF01 = 1. If IF01 isoutside the interval [�1; 1], then the neurons can remain coherent but escape from the T -periodic state. The state that evolves out of such an instability can be a collective burstingwith the intervals between the coherent spiking of the neurons varying systematically; e.g.,a limit cycle of period T1 + T2 where the collective interspike intervals alternate between16



T1 and T2; cf. the Appendix, non-vanishing mean time shifts. In contrast to the intrinsicburster of Fig. 1d, this would be a network e�ect. The example shows, however, that thecondition of the locking theorem is necessary but need not be su�cient as soon as the sidecondition of vanishing mean time shift is to be dropped { for instance, because n is toosmall. Then additional requirements may, but need not, apply.Stepping back for an overview, we want to isolate what requirements guarantee that(17) is both a necessary and a su�cient condition for a coherent excitation to be stablein a spatially homogeneous network of spiking neurons. There are two conditions. First,we have to restrict the network structure and require full or, at least, high connectivity.In this case, any perturbation can be separated into a uniform time shift of all neuronsand a set of single-neuron time shifts with vanishing mean. We have argued that both avanishing mean and the absence of uniform time shifts are quite natural for system-inherentperturbations of a biological network where the number of neighbors n is large. The more sosince coherent oscillations in the brain will last for only a �nite amount of time. Second,to eliminate the { we admit, rather academic { possibility that di�erent uniform timeshifts �(`) lead to an `exploding' coherent oscillation, we would have to require short-termmemory with "(s) = �(s) = 0 for s � 2T , say. Additional, especially experimental, workis needed to explore whether this requirement is really necessary or just academic.Our results also hold in randomly diluted systems and can be extended so as to includevariations of the parameters such as the delays (Gerstner et al. 1993). A similar analysiscan be used to study semi-collective oscillations where the neurons spontaneously dividethemselves into two (or more) groups of synchronous units (Gerstner and van Hemmen1993, Gerstner 1995). 17



5 Discussion and SummaryIt is time to harvest some corollaries. Before doing so we discuss the essentials of ourapproach. We �nish the paper with a summary.5.1 DiscussionWhat is the gist of what we have done? We have seen that (axonal) delays in the millisecondrange are quite important. The mathematics of standard stability theory for systems withdelays is very intricate (Hale 1977), not to say nasty, and the upshot, an entire functionwith in�nitely many zeros which all have to be located and proven to possess a negative realpart, is hardly accessible to immediate analysis, if any. We have therefore proposed a morebiophysical approach that tackles the time evolution of a perturbation, viz., a collection oftime shifts, directly.In x 2 we have shown that coherent oscillations can exist in a system with purely exci-tatory interactions provided the delays are long enough, i.e., exceed a lower bound. On theother hand, in networks with purely inhibitory interactions coherent oscillations are alwaysstable, provided the delay is less than some upper bound. Most neurobiologically relevantsystems, however, consist of a mixture of both excitatory and inhibitory interactions. Herewe consider two models which are, in a sense, each other's opposite. First, the inhibitoryinteraction is assumed to be short-range and, hence, is to be associated with short delays.On the other hand, the excitatory interaction is long-range and, thus, equipped with longdelays. As is exempli�ed by Fig. 5, here too a collective oscillation is stable. A compan-ion model is the one with short-range excitation and long-range inhibition. One easilyveri�es that a similar construction shows that this setup also allows for stable coherent18



excitations. It is fair to summarize these results by saying that stability is determined bya subtle interplay between axonal delays, postsynaptic potentials, and refractory behavior.Gerstner et al. (1993) and Ritz et al. (1994) have extensively studied a system withmedium- or long-range excitatory interactions and a strictly local inhibition so as to repre-sent a local but �nite-range inhibitory interaction in a simpli�ed way. `Strictly local' meansthat each neuron has a self-inhibitory loop with delay �. The analytical and computa-tional advantages are evident but one may wonder whether this setup can be integratedinto the present formalism. The answer is in the a�rmative as one sees most easily bynoticing that a self-inhibitory loop is nothing but a kind of refractory behavior and thuscan be incorporated in �.5.2 Integrate-and-Fire Neurons RevisitedFinally, it may be worthwhile to discuss a subtler, though truly academic, case that hasexcitatory couplings with zero delay and postsynaptic potentials with a very short risetime. Most of the integrate-and-�re models studied so far belong to this class (Mirollo andStrogatz 1990; Abbott and van Vreeswijk 1993, Tsodyks et al. 1993; Treves 1993; Usher etal. 1993). Because interactions are now instantaneous, neurons receive an EPSP as soonas one of the presynaptic neurons �res. In particular, a neuron which is late as comparedto a collective oscillation experiences an extra contribution to its membrane potential (11)of the form Pj Jij"(t). In other words, we have to include the ` = +1 term in (11). If westart linearizing the shifts �0j we have to take care of an extra term "0(0).More precisely, let us assume that lims!0+ d"(s)=ds� 0. Admittedly, this is somewhatacademic but illustrates the underlying locking principle quite nicely. The function "(s)is not di�erentiable at s = 0 since "(0) = 0 for s < 0 so lims!0� d"(s)=ds = 0. Hence a19



straightforward linearization at s = 0 is not possible. Nevertheless, we can derive analyticalresults, if we work out the case of positive (�0i > 0) and negative shifts (�0i < 0) separately.Let us focus on the situation where a single neuron i is too early (�0i < 0) and all otherneurons are �ring too late by a small amount �0 > 0 so that h�0i i = 0. In this case, wecan use equation (16) with (formally) "0 < 0. Thus, j�1i j > j�0i j and the shift increases.On the other hand, a neuron which is late by an amount �0i > 0 will experience an inputdue to not only the �rings of previous cycles but also to the spikes of the very same cycle.Thus, we have to include a contribution / lims!0 dds"(s) � 0. This gives a large positivecontribution and results in a new e�ective "0� 0. Thus a neuron which is late with respectto a collective oscillation receives a strong locking signal and is immediately pulled backinto synchronous �ring. A neuron, however, which �res too early will �re even earlierduring the next cycle; cf. Fig. 6. In principle it may happen that after several cycles theneuron is early by nearly a full period. In this case we can consider it as being late ascompared to the previous cycle and, thus, it will be pulled into the collective oscillation.In the long run it may therefore happen that a collective oscillation rebuilds itself eventhough it is locally unstable. Since our mathemtical argument is a local one and the aboveconsiderations are global, we cannot predict whether this actually happens.Mirollo and Strogatz (1990) have shown that, for some models with delayless inter-actions, a collective oscillation is indeed the only solution. A di�erent form of a globalargument has been put forward by (Herz and Hop�eld, 1995; Hop�eld and Herz 1995) whoanalyze a system of non-leaky integrate-and-�re neurons with excitatory nearest-neighborcouplings Jij � 0 and indicate a Lyapunov function under the conditions Pj Jij = J andPi Jij = J . Their `ingoing' condition Pj Jij = J , whatever i, is directly understood oncewe invoke the geometric method so as to construct the solution self-consistently. As we20



have seen, local stability with four nearest neighbors is easily obtained but it is hard toprove global stability. It is exactly here that a Lyapunov function pays o�. It can be shownthat for their nonleaky system with excitatory interaction a whole family of solutions existincluding the fully coherent state, partially synchronized states, and asynchronous �ring(Herz and Hop�eld 1995).5.3 SummaryIn summary, being very conservative and, thus, dropping all side conditions we have proventhat a collective oscillation in a fully connected network of spiking neurons with standarddynamics and short-term memory [�(s) = 0 for s � 2T ; say, beyond 40 ms] is an asymp-totically stable solution, if �ring occurs while the response due to the input from otherneurons, i.e., the postsynaptic potential, is increasing. More generally, if neuronal memorylasts longer and/or if the neurons receive input from n < N presynaptic neurons, thenan increasing postsynaptic potential is necessary but need not be su�cient for coherentspiking. The condition is the more stringent the larger the number n of interacting neigh-bors. In fact, we have argued that in a spatially homogeneous network with n of the orderof thousand or more stability is guaranteed under the single condition of an increasingpostsynaptic potential as the neurons �re.As a consequence of our locking theorem, one can analyze existence and stability ofa coherent oscillation through a purely geometric method as sketched in x 2. Stabilityholds for purely inhibitory interactions with practically arbitrary delays less than a largeupper bound � < �inhmax and for purely excitatory input with delays exceeding a positivelower bound � > �excmin, which depends on the network parameters. Delayless excitatoryinteractions are locally unstable and all neurons which �re too early will drift away from21



the collective oscillation. We have also studied the case with both short-range inhibitoryand long-range excitatory interaction { or the other way around { and found that coherentoscillations are abundantly present. This observation is also supported by a stability anal-ysis of incoherent �ring states. It can be shown that incoherent states are almost alwaysunstable and low-amplitude oscillations can form spontaneously (Abbott and van Vreeswijk1993; Gerstner and van Hemmen 1993; Gerstner 1995). In other words, oscillations in anetwork of spiking neurons seem to be be omnipresent and one has to explain why theyare not found that abundantly in Nature. That, maybe, is an interesting problem which,so far, has not been faced.Acknowledgments: It is a great pleasure to Leo van Hemmen to thank Jack Cowan andthe Department of Mathematics at the University of Chicago for the hospitality extendedto him during his stay there, when the present paper was conceived. We thank Carl vanVreeswijk (Jerusalem) for a careful reading of the manuscript and his constructive criticismthat greatly improved it.
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AppendixIn this appendix we exhibit the full mathematical structure associated with the stabilitymatrix IF as de�ned in (13). The Appendix consists of two parts. First, we discuss thegeneral mathematical framework, then we perform the stability analysis for Eq. (15).General FormalismBecause of spatial homogeneity, there was no harm in assuming Pj Jij = J0, whatever i.We de�ne h0 to be the denominator of (13), denote by J the matrix (Jij) and by 1I the unitmatrix, and rewrite (13)�(1) = h0�1 X̀�0[� 0̀+11I + "0̀+1 J]�(�`) � X̀�0A(`+ 1) �(�`) : (19)During the next time step, �i(1) also belongs to the past. So we are working in the Hilbertspace H which is a direct sum of IRN with the usual inner product, labeled by ` runningfrom 0 to `max � 1. Both � 0̀ and �0̀ vanish for ` beyond `max, the minimal one that doesthis job. In H we de�ne IF by a matrix whose elements are operators. Its �rst row stemsfrom (19), whose left-hand side is now called �(0), and the other rows follow from theobservation that, after one period, the present has been shifted into the past, and so on.That is to say, (IF�)(�1) = �(0), (IF�)(�2) = �(�1), : : : so that row � is of the form��;�+11I. Thus we obtain the matrix0BBBBBBBBBBBBBBB@ A(1) A(2) A(3) � � � A(`max� 1) A(`max)1I 0 0 � � � 0 00 1I 0 � � � 0 0: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :0 0 0 � � � 1I 0 1CCCCCCCCCCCCCCCA : (20)23



Proving asymptotic stability of a coherent oscillation means showing that limk!1 IFk(�) =0 for �xed �. It is the matrix (20) which has to be iterated.Stability for Vanishing Mean Time ShiftsHere we study Eq. (15). The summations on the right-hand side have 0 � ` � `max � 1.The mean time shifts vanishing, the problem becomes local, restricted to i, its dimensionis reduced by 1=N as compared to (20) to `max, and we are left with a matrix whose �rstrow has the entries IF0` = A(` + 1) = � 0̀+1=(P` � 0̀+1 + J0P` "0̀+1), the other entries beingIF�� = ��;�+1 once � � 1, and 0 � `; �; � � `max�1. That is, the dimension of the problemequals `max. We have to estimate the eigenvalues of IF. In the case of short-term memorywe are left with a 1�1 matrix, i.e., the fraction in (16). In the case of a standard dynamics,all the � 0̀ are non-negative. Furthermore,P` � 0̀+1+J0P` "0̀+1 � h0(T ) > 0 tells us that thethreshold in (9) is reached from below. Hence all the entries of IF are nonnegative. Thatis to say, IF is a `positive' matrix.Positive matrices have remarkable properties (Horn and Johnson 1985; Gantmacher1959) . We list a few of them. They have a natural order: A � 0 if and only if Aij � 0for all entries of the matrix A, and A � B if and only if A � B � 0. Let �(A) denotethe maximal j�j of the eigenvalues � of the matrix A. By good reason �(A) is called thespectral radius. For A � B one has �(A) � �(B). Adopting for vectors x the conventionx > 0 once xi > 0 for all i, one can show that Ax = �x with A � 0 and x > 0 implies� = �(A). Moreover, if Am > 0 for some m (i.e., A is irreducible), then this eigenvalue isnondegenerate (simple) by a classical theorem of Perron and Frobenius, x > 0 and, for the(non-cyclic) matrix under consideration, it is the only eigenvalue � with j�j = �(A). Theother eigenvalues are smaller in absolute value. As long as all the row sums are � 1, so24



are all the j�j (by the Gersgorin circle theorem (Bellman 1970) , say). We now return toour problem.The sum P`A(`) equals 1 if and only if J0 P` "0̀+1 = 0. Then IF is a stochastic matrixand its eigenvector x = (1; 1; 1; : : :) > 0 belongs to the eigenvalue �(IF) = 1. In passingwe note that the characteristic polynomial of IF equals�`max � `maxX̀=1 A(`)�`max�` = 0 ;so that � = 1 is evidently an eigenvalue. Let ~IF be a matrix with J0 P` "0̀+1 < 0 or,equivalently, P`A(`) > 1. We now allow the A(`) � 0 to increase from their old valuesbelonging to IF to their new ones associated to ~IF. That is, we decrease some of the "`+1and in so doing increase some of the A(`). We would like to stress that we can alwaysarrange the transformation to ~IF this way.Let us start with A(`0) and write IF(�) = IF + �X where X has a single 1 in the �rstrow at ` = `0 and zeroes everywhere else. By increasing � through � = 0 we push theeigenvalue corresponding to �(IF) = 1 through 1 at a positive rate since by perturbationtheory (Kato 1966) for � � 0 �(IF(�)) = �(IF) + � (y;Xx) : (21)Here y = IF?y is the eigenvector of the Hermitean adjoint matrix IF? belonging to theeigenvalue �(IF?) = 1; this matrix is also positive. The inner product (y;Xx) = y0x`0 isstrictly positive since y > 0 is, either by direct computation or from general considerations.Thus for � > 0 we �nd �(IF(�)) > 1 whereas for � < 0 we obtain �( ~IF) < 1 as a consequenceof A � B implying �(A) � �(B). Increasing the entries A(`) one after the other we arriveat the full matrix ~IF with �( ~IF) > 1. The corresponding eigenvector is not the uniform shift(1; 1; : : : ; 1) and, therefore, cannot be excluded. This �nishes the proof that J0 P` "0̀+1 > 025



is necessary and su�cient so as to guarantee that a coherent oscillation is asymptoticallystable under perturbations with vanishing mean time shift.Stability for Non-Vanishing Mean Time ShiftsWe now study a situation where all neurons have a common, nonzero, time shift �(`). Theevolution of the time shift is given by (18) which reduces in the case `max = 2 to0BB@ �(1)�(0)1CCA = 0BB@ F00 F011 0 1CCA 0BB@ �(0)�(�1)1CCA (22)with eigenvalues �0 = 1 and �1 = �F01. The eigenvector to �1 is (�F01; 1).Let us assume F01 > 1 and consider a perturbation along the eigenvector correspondingto the eigenvalue �1. Speci�cally, we take �(�1) = � (that is, the second last �ring hasbeen delayed by a small amount �) and �(0) = �F01 � (that is, the last �ring was too earlyby F01 �). An application of (22) yields that the next �ring is too late by �(1) = F 201 �, thefollowing �ring is again too early by �(2) = �F 301 �, and so on. It follows that, for F01 > 1,the system evolves towards a bursting state where long and short intervals alternate. ForF01 < �1, the delay increases monotonically as time proceeds. The present argument isa linear stability analysis and holds in the neighborhood of the oscillatory state only. Itcannot predict the new limit state which the system approaches.
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Figure captions:Figure 1. Typical response kernels. (a) Refractory kernel �. The spike generated at timetfi is indicated by the arrow. After the spike, there is a period of hyperpolarization whichdecays over 20ms. (b) Response kernel ". The graph with s = t�tfj exhibits the typical timecourse of an excitatory postsynaptic potential which is evoked with a delay � = 2ms after apresynaptic spike of neuron j at time t = tfj (arrow). The response has been taken at neuroni. For s > �, we have plotted the function "(s) = exp[�(s��)=�m]f1�exp[�(s��)=�syn]grepresenting a postsynaptic potential for excitatory synaptic input with synaptic timeconstant �syn = 4 ms and membrane time constant �m = 10 ms. (c) A more elaboraterefractory kernel (with four di�erent time constants referring to four di�erent ion channels)gives rise to intrinsic bursting (d), which is a direct consequence of the subsequent hyper-and depolarization exhibited by �. In (d), a neuron with threshold # = 0:1 receives aconstant input current. The membrane voltage has been given in arbitrary units.Figure 2. Geometric Method: Excitatory couplings. All active neurons have �red at t =0. The next spike occurs, if J0"(t) (solid line) crosses the decreasing threshold # � �(t)(dashed). We have sketched two situations, viz. short (�1) and long delay (�2 > �1).The coherent oscillation is stable for excitatory couplings with relatively long delays butnot for short delays; stable and unstable have been denoted by (s) and (u), respectively.Figure 3. Geometric Method: Weak (a) and strong (b) inhibitory couplings. All neuronshave �red at t = 0. The next spike occurs, if I0 + J0"(t) (solid line) crosses the decreasinge�ective threshold # � �(t) (dashed line). In the case of strong and long-lasting inhibi-32



tion, refractoriness has disappeared and, thus, � already vanishes before the next spike isgenerated. The coherent oscillation is stable in both (a) and (b).Figure 4. Geometric illustration of the locking argument. All neurons have �red at t = 0except for a single neuron which is late by an amount �0 > 0. It �res again, if I0 + J0"(t)(solid line) crosses the decreasing e�ective threshold #� �(t� �0) (dashed). The neuron isnow late by an amount �1 < �0 as long as the dashed lines cross the rising part of ". Thisone `sees' explicitly by comparing the projection �1, indicated by an arrow, with �0; bothappear in the lower left-hand corner. If the dashed lines have intersections with the fallingpart of the response function ", then �1 > �0 and the coherent oscillation is bound to beunstable.Figure 5. Geometric Method: Combination of excitatory and inhibitory couplings. Allneurons have �red at t = 0. The next spike occurs, once I0 + J0"(t) (solid line) crossesthe decreasing e�ective threshold #��(t) (dashed line). We assume short-range inhibition(short delay) and long-range excitation (long delay). The excitatory and inhibitory contri-butions are indicated by dotted lines. The sum of both yields the postsynaptic potentialJ0"(t). The oscillation with period T is stable (s) since �0 = 0. A similar constructionapplies to the case of excitation with short delay and inhibition with long delay.Figure 6. Excitation with zero delay. (a) In a coherent oscillation, neurons would �re witha period T given by the intersection of the decreasing e�ective threshold # � � (dashed)and the excitation J0". The whole pattern is repeated with period T . (b) If one of theneurons �res too early at time t = T + �0 with �0 < 0 or too late, if �0 > 0, the decreasing33



threshold is shifted to the left or to the right, respectively (dotted lines). A shift to the leftis increased after another period, a shift to the right is decreased. Thus, a neuron whichhas �red too late will be pulled back into the collective oscillation (short bar to the rightof 2T ) whereas a neuron which has �red too early drifts away (long bar to the left of 2T ).
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