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We evolved spiking circuits for vision-based navigation on a wheeled robot in a randomly textured 
environment. We investigated two different fitness functions of which one is more explicit in rewarding 
target behaviour: navigating the arena. The first experiments were done with proximity sensors, the rest 
with vision. From comparison of the evolved individuals we conclude that more explicit rewarding may 
result in better behaviour. In earlier work by Floreano & Mattiussi [4], vision experiments were aided by 
pre-processing visual data, feeding contrast data into the spiking circuit. We show that using a filter 
simplifies the task, but that efficient and robust strategies can be evolved by using raw vision data as 
input, indicating that spiking circuits are even more powerful in real-world tasks than already assumed.  
 
 
Evolutionary robotics is a relatively new field in the artificial 
intelligence research area. Even so, the results that have been 
achieved so far are all very promising [17,20,22]. The research 
done in this field follows a bottom-up approach of 
biologically inspired techniques, of which artificial evolution 
and neural networks are examples. Nolfi and Floreano [17] 
pioneered the field and their experiments, in which they 
evolved neural networks to control real robots, are still 
regarded as benchmark references. Most of their experiments 
were conducted on a Khepera robot [16]; a small, versatile 
and robust robot that we’ve also used in our experiments. 

In previous work [10], we have shown that spiking neural 
networks are well able to solve temporal tasks by evolving 
networks for certain time series. Furthermore, results of 
evolutionary experiments with spiking networks [4,5,12,22] 
indicate that these circuits are well suited as real-time robot 
controllers. The networks in these experiments were only 
provided with vision-data as input to control the robot. 

The experiments we present in this paper have been 
largely based on those done by Floreano and Mattiussi [4] 
with a vision-sensor equipped Khepera. However, we varied 
many of the experimental settings such as fitness function, 
vision pre-processing filter and network size. Besides, we 
explored the performance of different fitness functions with 
two sensor modalities: proximity and vision. The task the 
Khepera was asked to do was the same for all experiments: 
navigate around the environment as fast as possible without 
colliding with objects or walls, driving straight ahead as 
much as possible. 

We will first introduce the important concepts artificial 
evolution and spiking neural networks, after which we will 
proceed with the implementation of these in our software 
and the set-up we used for our experiments. We will then 
present our results, analyse the evolved behaviours and 
conclude with a discussion. 

Artificial evolution 
Genetic algorithms [8] are widely used for optimisation and 
search problems, in particular when the parameter-space to 
explore is extremely large. When applied to general search 
problems, large sets of possible solutions are recursively 
evaluated and ‘reproduced’ to form new generations of 
possible solutions. This process is inspired on evolution as 
found in biology: natural selection favours individuals that 
are ‘better’ suited for survival as these have a higher chance 
to reproduce. Slowly but sturdy, in terms of generations, this 
process steers the population towards a better adaptation to 
the environment. And although crossover and mutation may 
introduce bad combinations or mutations occasionally, on 
the long run these processes guarantee genetic diversity and 
introduce new combinations and mutations that can make 
individuals perform better. 

This concept is exactly the same for artificial evolution: at 
the start of an experiment we use a randomly initialised 
population of a certain number of individuals. Each 
individual is then evaluated on some task for which 
performance (‘fitness’) can be measured. Individuals that 
perform better have a higher chance to be selected for 
reproduction; the process in which two parents are combined 
and crossover and mutation is applied. Each new generation 
should then be a little bit better, but as crossover and 
mutation are random, we should only look at performance 
differences on the long run. 

When we apply artificial evolution on robots, it is called 
evolutionary robotics. A very important aspect in this case is 
that we are dealing with real robots in real environments, 
which is completely different from simulations [17]. We now 
can be a little more specific about what individuals are: in 
evolutionary robotics, each individual has a genome that 
encodes a robot controller. A robot controller can be 
described as ‘something that uses sensor data to control a 
robot’.  
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The genome that encodes the robot controller can be 
anything: one could use a single bit-string of fixed length, 
though it is also possible to model more complicated 
genomes consisting of i.e. multiple chromosomes of variable 
length and build from larger a alphabet like {A, C, G, T}. 
Such a genome is in fact the genotype of an individual. In 
order to evaluate the fitness of an individual we have to map 
this to its corresponding phenotype: the robot controller. As 
mentioned above, such a robot controller could be anything 
that accepts input and provides output; only controllers that 
show sane behaviour will acquire good scores though. 
Neural networks are often used as robot controllers, as they 
are very versatile and it’s fairly easy to encode network 
parameters as topology and synaptic weights in the genome. 

For the tasks investigated in evolutionary robotics it is 
often hard (if not impossible) to design a robot controller by 
hand, the correlations to be made are simply too complex: 
spatial-temporal information is often very important and 
robot controllers (like spiking neural networks) that can 
process these have many internal dynamics. Often no 
appropriate training methods exist for the controller 
architecture of choice, making artificial evolution a good 
alternative: evolution is able to explore a large search space 
and can combine partial solutions to form (more) complete 
solutions. 

Most learning methods that are available for neural 
networks are supervised: back-propagation [18], spiking 
backprop [2] and RTRL [21] are only a few well-known 
examples (for different types of networks). In robotics, it is 
seldom possible to use supervised learning, as this requires a 
target output for each possible input. For most tasks that we 
want our robots to do though, we only have an informal 
description of the target behaviour. When supervised 
learning is not an option, unsupervised training remains a 
possibility. Hebbian learning [1] is such a method, but as it is 
primarily useful for clustering tasks, it is not specifically 
what we want either. 

That we only have an informal description of the target 
behaviour is no problem for artificial evolution: the only 
thing we need is a fitness function, a function that measures 
the performance of an individual. Even though a good fitness 
function is not always easy to find, it’s not impossible. When 
we want to evolve robot controllers that are able to drive a 
wheeled robot ahead, for example, we could sum all positive 
actual wheel speeds to determine the fitness of an individual. 

It is probably unnecessary to mention that there are many 
parameters that can be chosen for artificial evolution. The 
parameters we used are mostly the same as in the 
experiments by Floreano and Mattiussi [4]. The population 
consists of 60 individuals and the first generation is 
randomly generated. Each individual has a single bitstring 
that encodes a spiking neural network (the encoding will be 
discussed later) that can be tested on the real robot; each 
individual is tested for 2 epochs of 30 seconds each. 

When fitness values for all individuals in a population 
have been measured, reproduction can be done. There are 
several ways for doing this, we have used truncation 
selection: take only the best 15 individuals of each generation 
and dispose of the rest. These 15 individuals are reproduced, 
which means that they are coupled in parent pairs on which 
the genetic ‘operators’ are applied: crossover and mutation. 
We used basic single-point crossover, cutting the parent 
DNA strings at the same (randomly determined) point and 

switching the ends (crossover is applied on each parental 
pair with a chance of 10%). The mutation operator toggles 
every single bit of the genome with a certain chance (5%). For 
improved evolutionary stability, elitism was used in 
reproduction: by always retaining the best individual 
(without modification of the genome) we ensured that our 
search always kept the current best solution. 
 
Spiking neural networks 
Classic models of artificial neural networks are inspired on 
biological neurons, but mimic their behaviour in a very 
simplified manner. Real neurons show very complex 
dynamics in their signalling behaviour. The resulting signals, 
or spikes, will eventually bring their message after having 
been processed by various complex mechanisms. For a long 
time it has been taken as a safe assumption that these 
individual signals carry no information, that just the average 
activity of a neuron is of importance to describe its activity.  

As a result, traditional neuron models do not employ 
individual pulses, but have output signals that typically lie 
between 0 and 1. These can be seen as the normalized firing 
frequencies of the neuron. This type of signal is called rate 
coding, where a higher rate of firing correlates with a higher 
output signal. Pulse coding does not use such averaging 
mechanisms, but use individually timed spikes.  

Recent discoveries in the field of neurology have shown 
that neurons in the cortex perform analogue computations at 
incredible speeds. Thorpe et al. [19] demonstrated that 
humans analyse and classify visual input (i.e. facial 
recognition) in under 100ms. As it takes at least 10 synaptic 
steps from the retina to the temporal lobe, this leaves about 
10ms of processing-time per neuron. Such a time-window is 
much too small to obtain a reliable activity-average for rate 
coding (see also fig. 2) [19,13]. This does not mean that rate 
coding is never used, though for calculations where speed is 
an issue pulse coding schemes are favoured [14].  

 
 

Figure 1. (a) Schematic drawing of a neuron. (b) Incoming
postsynaptic potentials alter the membrane voltage so it crosses
threshold value ϑ; the neuron spikes and goes into a refractory state.
(c) Typical forms of excitatory and inhibitory postsynaptic potentials
over time. [7] 
 



 3

Real neurons send out individual signals: short and 
sudden increases in voltage. Due to their nature and form 
(see fig. 1a) these signals are commonly referred to as ‘spikes’ 
or ‘pulses’. These electrochemical action potentials travel 
from the soma down its dendrites to the synapses. These 
chemicals cannot cross the synaptic gap, but they induce the 
release of neuro-transmitters that can cross and by doing so a 
post-synaptic action potential (see fig. 1c) is formed. While 
spikes are identical in form, the strength of post-synaptic 
potentials is influenced by many variables, like the amount of 
released neuro-transmitters and the synapse’s capability to 
replenish these. Therefore a synapse is no simple signal-
conversion device, but a highly complex signal pre-
processor. This pre-processing and its many variables make 
development and learning possible in neural networks. The 
term ‘synaptic plasticity’ is much preferred above ‘learning’, 
as it better describes what is at hand: long- and short-term 
changes in how synapses process signals [1,13,19]. 

Single spikes do not carry any information, it is their exact 
timing and placement amongst other spikes that matters. 
These signals are delayed during their journey through 
axons, synapses and dendrites and as their effect decays over 
time they provide the neuron a form of inherent notion of 
time and memory. This property is unique to neurons that 
employ pulse coding. It provides the network the capability 
to incorporate spatial-temporal information from sensory 
input directly into communication and computation [19,20]. 
Examples include the multiplexing of frequency, direction 
and amplitude of sound [5], as can be seen in barn owls.  

A number of different models have been proposed that 
employ exact spike timing information in neural 
computation.  Most of these fall in the class of integrate-and-
fire neurons, a well-chosen name that describes exactly what 
these neurons do: integrate incoming signals and fire when a 
threshold is crossed. We’ve used the spike-response model 
that is based on the very realistic and complex Hodgkin-
Huxley [5,7] model. It does not describe the exact chemical-
concentrations in the neuron, but remains an abstraction of 
the neuron’s dynamic state, making the spike-response 
model conceptually easy, computationally fast and 
biologically realistic.  

As we’ve seen, all action potentials are basically of the 
same form. In other words, as their form does not carry any 
information, we can characterise them by the single property 

that does carry information: the firing-time ti(f). The lower 
index i indicates the neuron, the upper index f the number of 
the spike. All the spikes a neuron has generated over time 
can then be captured by 

},...,{ )()1( n
i ttF =  (1.1) 

To describe the membrane potential of a neuron i we 
commonly use the variable ui. Once the neuron’s membrane 
potential goes over threshold value ϑ, the neuron will spike. 
This new spike will then be added to Fi, defining this set as 

} 0| { >′∧== (t)u(t)utF iii ϑ  (1.2) 

Once a neuron generates an action potential, its membrane 
potential suddenly increases very sharply, soon followed by 
a long lasting drop: the negative after-potential (see fig. 1b). 
The sharp rise above the threshold value ensures that the 
neuron cannot generate a new spike and is called absolute 
refractoriness. The following long-lasting decrease in 
membrane potential, called the negative spike after-potential, 
decreases the chances for the neuron to fire again. We can 
model this absolute and negative refractoriness with kernel 
η: 
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The duration of the absolute refractoriness is set by δabs, 
during which large constant K ensures that the membrane 
potential is vastly above the threshold value. Constant n0 
scales the duration of the negative after-potential. Now that 
we can describe what happens to a neuron once it fires, we 
need to be able to describe the effect on the membrane 
potential of postsynaptic potentials. 
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In equation 1.5, we can use ∆ij to define transmission 
delays (axons and dendrites are relatively fast, synapses 
slow) and 0<τs<τm are time constants defining the duration of 
the effect of the postsynaptic potential. The synaptic efficacy 
or synaptic weight, effectively resulting in the strength of the 
post-synaptic potential, is captured by variable wij.. 

We are nearly done, having all the means to describe a full 
spiking neural network, though one very important feature is 
lacking: how to handle information from the outside, 
information not encoded in spikes. Sensory information 
gathered by a robot is usually depicted in discrete integer 
values, with which we’ll have to influence the membrane-
potential directly. We use a task-specific function hext(t) to 
transform these values to relevant membrane-potential 
influences.  
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With this addition neurons can become excited by outside 
influences, effectively transforming analogue input values 
into the signal the network can process: a spike. We can now 
describe the current excitation of a neuron by 

h(t))t(t(t)u
i

(f)
i Ft

(f)
iii +−= ∑

∈

η  
(1.7) 

 
 

Figure 2. A 4 second recording of the neural activity recording from
30 neurons of the visual cortex of a monkey. Each vertical bar
indicates a spike.  The human brain can recognize a face within
150ms [19], which correlates to less than 3mm in this diagram;
dramatic changes in firing frequency occur in this time span, neurons
have to rely on information carried by solitary spikes. [11,20] 
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where the refractory state, effects of incoming postsynaptic 
potentials and external events are combined. Once combined 
with equation 1.3 it forms the spike-response model, a 
powerful yet easy to implement model for using exact spike-
timing information in computation of neural networks. 
  
Evolving spiking circuits on a robot 
In order to use the spike response model for our experiments, 
some simplifications to the standard model were made in 
order to avoid overly large genomes and limit the amount of 
computation needed. Our derivation of the model is mainly 
based on the model described by Floreano and Mattiussi [4]. 
The software we used is i [12], an application that has been 
designed in collaboration with ASL2 for evolutionary 
robotics with neural networks. 

A first important note is that time has been made discrete: 
continuous time is assumed in the spiking response model, 
but discrete time steps were introduced to make 
implementation easier. Neurons are updated each time step, 
but input and output are respectively set and read only at 
specified intervals (more details below). 

A spike is assumed to last one time step, after which one 
time step of absolute refractoriness holds. After this, the 
refractory kernel is computed for each neuron using a 
simplified version of equation 1.3 

)s((s)
mτ

η −−= exp  (2.1) 

where s is the number of time steps since the last spike 
time of this particular neuron, as we take into account only 
the refractory kernel of the last spike for each neuron. The 
formula for postsynaptic contributions of incoming spikes 
(1.5) remains the same, although only incoming spikes of the 
last 20 time steps are taken into account. 

We will now describe the architecture of the networks and 
the handling of in- and output, as both of these are 
unconstrained in the general model. We distinguish receptor 
neurons and interneurons: receptor neurons are used for 
feeding input (sensor data) into the network and only have 
outgoing synaptic connections; interneurons may have both 
incoming and outgoing synaptic connections and thus can be 
fully interconnected and recurrent. The number of receptor 
neurons is provided beforehand by the task; the number of 
interneurons is at least the number of required output values, 
as one interneuron is used for each output. We added one 
additional (bias) receptor neuron with a constant input of 1 
to all networks to ensure basic network activity. 

In our experiments, all neurons (receptor and 
interneurons) in the network are updated each time step, but 
a certain number of these updates together form a 
sensorimotor cycle. For the experiments described in this 
paper, the number of updates per cycle was fixed to 20. At 

the first update of a cycle, new input values (in the range 
[0,1]) are fed into the receptor neurons. At each update, each 
receptor neuron stochastically determines its hext(t), based on 
the current input:  

)(inputflip(t)hext =  (2.2) 

where flip() returns 1 with probability equal to its 
argument, 0 otherwise. As a membrane potential of 1 crosses 
the threshold, this would normally gives a spike (please note 
that receptor neurons also have a refractory period; the 
maximum fire rate for all neurons is 0.5). 

It is clear that rate coding is used for encoding the input; 
the same coding method is used to determine the output of 
the network. For each interneuron that is used for output, all 
spikes during the last n updates of a cycle are counted and 
divided by the maximum number of spikes that could have 
occurred, giving a value properly scaled between 0 and 1. 
The number of updates at the end of each cycle that 
contribute to the output value is always the same in our 
experiments: the spikes in the 20 last neuron updates of a 
cycle determined the output value (as the number of updates 
per cycle is also 20, this means each update is used for output 
calculation). 

Now that we know how one network cycle is done, 
coupling the network with the sensors and motors is not very 
complicated: at the start of a sensory-motor cycle, the sensors 
are read and the returned values are used as input for the 
network. At the end of the cycle, the output given by the 
network is used to set the motor speeds of the robot. This is 
done in a push-pull way: two outputs are used to determine 
one motor speed, subtracting one output from the other to 
get a value in the range [-1, 1]. Each cycle has a fixed length 
of 100ms, therefore sensors are read and motor speeds are set 
10 times a second and one lifetime of 30 seconds consists of 
300 cycles. 

Although we used evolution to search for network 
parameters as much as possible, we chose some parameters 
fixed to avoid overly large genomes and being unable to 
evolve anything useful from such a huge parameter-space. 
Let us first discuss the fixed parameters before proceeding 
with the genotype-phenotype mapping. The threshold ϑ was 
set to 0.5, which means that only a few recent incoming 
spikes may evoke a spike. The synapse and neuron time 
constants, τs and τm, were set to 10 and 4, respectively; the 
synaptic delay was set to 2 network updates, synaptic 
strength is fixed to 1. 

We now arrive at the genotype-phenotype encoding. The 
genome, a binary string, consists of a certain number of 
blocks, each block encoding one spiking interneuron. The 
first bit of each block encodes whether the interneuron is 
excitatory or inhibitory: a spike coming from an excitatory 
synapse adds to the membrane potential, the opposite for 
inhibitory connections. The remaining bits of each block 
encode the existence (i.e., whether there is a synaptic 
connection or not) of incoming synapses from all receptors 
and interneurons. 

An important parameter in the experiments we haven’t 
discussed yet is the fitness function, which very much 
depends on the task to be evolved. We will now describe the 
experimental setup used, the tasks and the fitness functions. 
 
Experimental setup 
We already mentioned before that we used the Khepera 
robot for our experiments. The Khepera is a robot with two 
wheels that can be controlled separately, making it very easy 
to manoeuvre the robot. A standard Khepera is equipped 
with wheel encoders that can read the actual wheel speeds 
and infrared sensors that give proximity readings. For the 

 
 

Figure 3. Proximity experiments: explicit and implicit fitness
functions. o = average fitness of whole population; + = fitness of best
individuals. 
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vision experiments, we used the so-called kevopic turret, a 
generic I/O add-on for the Khepera, in combination with a 
TSL3301 camera. This camera gives an 8-bit greyscale image 
of 102 pixels with a 150° field of view; 16 equally spaced 
pixels are selected from this linear image. 

Proximity – The objective of the first series of experiments 
was to evolve spiking controllers that show simple 
Braitenberg behaviour [3] using only proximity readings as 
network input. The behaviour we intend the robot to show is 
that of some of the simplest vehicles Valentino Braitenberg 
[3] described: drive straight ahead unless a sensor senses 
something nearby. With proximity sensors this means that 
the robot has to drive straight ahead until a wall is 
encountered and the Khepera should steer away. Each of the 
8 IR proximity sensors was used to feed input into one of the 
8 receptor neurons of the networks, 4 interneurons were used 
to determine the wheel speeds of the two wheels in push-pull 
mode (as described above). The environment was a wooden 
arena with white walls and floor of 50 x 60 cm. 

Vision – The second series of experiments were conducted 
with the Khepera equipped with the kevopic turret and 
TSL3301 camera. We used the same arena as in the proximity 
experiments, but added randomly spaced vertical black and 
white stripes to the walls and made sure lighting conditions 
were always the same. The 16 vision greyscale values were 
used to determine the input for 16 receptor neurons, but this 
sensor data was presented in different ways: in the first 
experiments, a Laplace filter was applied to the raw vision 
data and the resulting contrast values were used as network 
inputs. In later experiments, no filter was used and the raw 8-
bit vision values were fed into the network directly after 
scaling into the range [0,1]. As before, 4 interneurons were 
used to determine the wheel speeds in push-pull mode. In 
these experiments, the objective was to evolve controllers 
able to show the same behaviour as in the proximity 
experiments: using only vision, the Khepera was asked to 
navigate around the arena with black and white striped 
arena as fast as possible without hitting the wall. 

In almost all experiments, only the 4 interneurons used to 
determine wheel speeds were used, but additional 
interneurons were added in a few exceptions (which will be 
mentioned later). At the start of each epoch of an individual, 
a pre-programmed Braitenberg behaviour (based on infrared 
proximity-sensor data) was executed for one second to start 
with a more or less random starting position. 

We mentioned that we used two different fitness functions 
for the experiments, which we called implicit and explicit 
versions of more or less the same function; essential is that 
both are functions of the measured actual speeds of the robot 
wheels. Both fitness functions have the same general form: 

T
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Fitness f(t) is computed at the end of each sensorimotor 
cycle t, summed for all cycles and divided by the total 
number of cycles T (of one life time). The implicit version of 
f(t) we used is: 
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where sl and sr are the actual wheel speeds of the left and 
right wheel, respectively, normalised in the interval [-1, 1]. 
This function rewards an individual only when none of the 
wheels is moving backward and is equal to the function used 
by Floreano & Mattiussi [4]. The more explicit version: 
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This fitness function is divided into three terms: the first 
term rewards all wheel movement and is meant to encourage 
all motion; the second term gives a penalty when the robot 
rotates, as we want individuals moving straight ahead; the 
last term rewards all forward motion, as we prefer 
individuals moving forwards. This function is more explicit, 
because it gives more ‘hints’ as to what the robot should do.  
The implicit function only says to drive forward, this 
function is more explicit by rewarding moving forward and 
penalising rotation, hopefully making the fitness landscape 
smoother and therefore making it easier for evolution to find 
good solutions.  
 
Results 
We ran quite a few experiments (running continually day 
and night) in order to try different experimental settings and 
to see whether we could repeatedly obtain the same results. 
Due to time limitations, we weren’t able to repeat all 
experiments more than once, and therefore we are unable to 
use average fitness values in the results of each experiment. 
We picked a number of experiments that gave realistic 

Experiment SNN Fitness Behaviour    
 #inter Gen12 Solutions? # generations Straight & turn? Wall-following? 
Proximity       
Implicit 0 0.56 / 0.76 1) Few 12 No No 
Explicit 0 0.62 / 0.83 Many 12 Yes No 
Vision       
Implicit, Laplace 0 1.02 / 1.76 1) Some 20 Yes (not perfect) Yes 
Explicit, Laplace 0 0.57 / 0.83 Many 12 Yes Yes 
Explicit, no filter 4 0.51 / 0.84 Some 18 Yes No 
Explicit, no filter 2 0.50 / 0.53 Some 25 No Yes 
Explicit, no filter 0 0.50 / 0.52 Some 60 Yes Yes 

Table 1. Overview of all results. Properties of each experiment are given (proximity or vision; implicit or explicit fitness function; Laplace filter 
or no filter, raw vision), also the number of additional interneurons added to the spiking neural networks (SNN: #inter). Under Fitness, the 
fitness values of the 12th generation of each experiment is shown (average of whole population / fitness of best individual). Under Behaviour, we 
find how well the resulting individuals perform: whether good solutions have been found (Solutions?), the number of generations necessary to 
obtain good solutions (# generations) and which strategies have been found by evolution (Straight & turn? and Wall-following?). 1) Please note 
that these values cannot be compared with the values given by the explicit fitness function. 
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results and of which we are sure that we would achieve 
something similar if done again. 

Some of the experiments had to be discarded because of 
erroneous results, an example is an evolutionary run where 
the fitness values were higher than the theoretical maximum 
quite often; although the communication with the Khepera is 
fairly robust, communication went wrong during a few runs, 
resulting in these illegal fitness values (i.e., incorrect actual 
motor speeds were received by the software). 

The results of the selected experiments are summarised in 
Table 1. The series of proximity experiments consist of two 
experiments of 15 generations, though we repeated both 
experiments and found identical results in the repeats. All 
settings except for the fitness function were equal, which 
clearly shows in the fitness graphs (fig. 3): in case of the 
explicit function, the values start at 0.5 because individuals 
that do (almost) nothing don’t get a penalty for rotation and 
all values are between 0 and 1, while the implicit function 
starts at 0 and gives values between 0 and 2. (Of course, these 
could also be scaled to the range [0, 1], but it would remain 
impossible to compare.) This doesn’t tell us much more than 
that comparing absolute values is useless though; comparing 
evolutionary results is much more interesting. Looking at the 
graphs, we see that the fitness values change more or less the 
same over the generations: the maximum fitness first 
increases fast, but remains pretty stable after that, while the 
average fitness increases slowly but steady. 

The two graphs displayed in figure 3 are typical for all 
achieved results: the maximum fitness sometimes increases 
with large steps, but can remain the same for a long while as 
well and can even drop sometimes, the average fitness 
always increases slowly. When fitness values change like 
this, one can be quite sure that the task is evolvable; at least 
evolution is able to find individuals with higher fitness 
values. Naturally, this doesn’t guarantee the target 
behaviour, as designing a good fitness function remains a 
difficult issue. 

The vision experiments were allowed to run for at least 20 
generations, but the more complex experiments (without 
Laplace filter) were allowed a longer running time to see 
whether this could improve results. Fitness values of the 12th 
generation of each experiment are given in Table 1 and can 
be compared: it is clear that using a Laplace filter helps 
individuals a lot, as the maximum fitness of the 12th 
generation without input filter and without additional 
interneurons is only 0.52, not at all like the 0.83 when the 
Laplace filter is used! On the other hand, adding 

interneurons makes it easier to find good solutions, as the 
12th generation of the experiment without Laplace and with 4 
extra interneurons has a maximum fitness of 0.84, which we 
may consider the same. 

It is therefore interesting to compare the trajectories of the 
maximum fitness of the experiments where raw vision data 
was used (fig. 4). With 4 additional interneurons, the 
maximum fitness increases pretty fast and evolution doesn’t 
seem to have problems finding solutions that achieve high 
fitness values. Every time we remove two of these 
interneurons though, evolution needs more time to find 
solutions that have a higher fitness: more than 50 generations 
are required when no additional interneurons are added and 
thus only the 4 interneurons that are used for output are 
available. It is remarkable though that solutions are found 
whatsoever: we shouldn’t forget that raw vision is used as 
input, that only 20 network updates a cycle are done and that 
only 4 interneurons are in the network! The important 
question is of course whether the solutions found in this case 
show a behaviour that is comparable with that of the 
traditional experiment (with Laplace filter). 

In order to be able to compare the behaviours resulting 
from the various evolutionary runs, we now arrive at a very 
important part: the analysis of the behaviour of evolved 
individuals. 
 
Behavioural analysis 
Let us first introduce some of the typical behaviours that we 
have observed while watching the evolved individuals. 
Naturally, evolution does not provide only satisfying results: 
in almost every generation, individuals exist that do nothing, 
rotate on the spot or drive ahead as fast as possible without 
reacting on anything (such as a wall or even a collision). We 
will forget about these and focus on the good behaviours that 
we obtained, which can generally be divided into four 
categories (see fig. 5). 

A first simple – but efficient – strategy that we observed is 
what we called ‘Big turn, small turn’: the robot turns either 
clockwise or counter-clockwise all the time and all it does is 
rotate (almost) on the spot when a wall is detected. This 
behaviour isn’t entirely what we intended, as we wanted the 
robot to move straight ahead as much as possible. 

A second strategy is to drive straight ahead until a wall is 
detected and the robot turns around about 180° immediately. 
This is very much like the third strategy, where the robot also 
drives straight ahead but doesn’t turn around fully, it only 
turns away from the wall. 

 
 

Figure 4.  Vision experiments without input filter. Drawn is the
fitness value of the best individual of each generation for three
different evolutionary runs: + = 4 extra interneurons; * = 2 extra
interneurons; o = no extra interneurons. 

 
 

Figure 5. Four typical evolved behaviours. Approximations.
Distance before turning from the wall differs with vision:  bad
individuals bump, good individuals hold a distance of between 5 and
10cm. (a) Big turn, small turn. (b) Drive straight, turn around. (c)
Drive straight, turn away. (d) Wall-following. 
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The fourth and last strategy is very different from the 
previous ones, as it always actively uses the walls: it stays 
near the wall and follows it. Whereas the other strategies 
don’t care where the wall is (they just get away from it when 
necessary), individuals using this strategy even actively seem 
to ‘search’ for the wall and stay near it as soon as it is found. 
The resulting behaviour is that the robot drives nearby all 
walls of the arena, not getting too far away from them but 
certainly not actively avoiding collision. 

Now we know the behaviours we can expect, let’s focus on 
the experiments. Table 1 displays for each experiment how 
many good strategies were evolved, how many generations 
were needed for this and whether the second/third (straight 
& turn) and fourth (wall-following) strategies were found. 

When we take a look at the proximity experiments, we 
immediately see that although both fitness functions seemed 
to perform well accordingly to the fitness graphs, the 
resulting behaviours the give rise to vary. In case of the 
implicit fitness function, only a few well-behaving indivi-
duals were evolved and individuals seem to be rewarded for 
the wrong thing: many individuals simply drive straight 
ahead until they collide. As the starting position is often 
turned away from the wall, this gives a relatively high fitness 
value. The explicit fitness function resulted in much better 
individuals; certainly seen over the whole 12th generation this 
function did a significantly better job when we look only at 
behaviour. Many individuals are able to drive straight ahead 
and turn away just before (in some cases when against) the 
wall. As the sensivity and range of the proximity sensors 
isn’t large, it’s rather difficult to obtain better results: the 
sensors cannot detect the wall until the robot is only a few 
centimetres away from it. We haven’t observed any wall-
following individuals, which may be due to the short range 
of the proximity sensors: this makes it difficult to actively use 
the walls to stay close to them without colliding. 

When we compare the results of the vision experiments 
with the two fitness functions (with Laplace filter), we see 
that although good individuals were evolved in both cases, 
the explicit function performed better again. Less generations 
were needed and more behaviours were found; less 
individuals that do ‘big turn, small turn’, more that do 
‘straight & turn’ or ‘wall-following’. Since so many well-
behaving individuals are found when using a Laplace filter 
and the explicit function, the task seems rather easy and very 
simple input processing strategies (like ‘turn whenever there 
is contrast, straight ahead otherwise’) may be sufficient to 
accomplish the task at hand. 

Using raw vision data as input for the spiking circuits 
seems a more challenging task for evolution though, and 
when we look at the behavioural results it looks like this is 
true. Where evolution needed no additional interneurons to 
evolve many good individuals in 12 generations when a 
Laplace filter was applied, already 18 generations were 
needed to evolve good individuals when no input filter was 
used and 4 interneurons were added. 

When we reduced the number of additional interneurons, 
the number of generations required to achieve high fitness 
values increased fast. But when high fitness values were 
obtained, well-behaving individuals were also found! And 
this happened also when we added 2 or even no inter-
neurons. Not as many good individuals were found as with 
Laplace filter and explicit fitness function, there were some 
nevertheless. In the run with 2 additional interneurons, no 
good ‘straight & turn’ individuals were found and the same 
for no additional interneurons and ‘wall-following’, but we 
think that this is because the task is harder and a bit more 
luck is needed to find a task; we could probably fill the ‘gaps’ 
by doing a few more runs. 

Discussion 
In this paper we have shown that circuits of spiking neurons 
are well suited for evolving neural controllers for vision-
based navigation. We’ve extended the preliminary work 
done by Floreano and Mattiussi and have found results in 
agreement of theirs. More importantly, we found that these 
networks of spiking neurons are capable of more than 
solving the basic vision task they describe: even without the 
help of a Laplace (contrast) filter and with significantly less 
neurons artificial evolution finds behaviourally very fit 
individuals that solve the task of navigating an environment 
with walls randomly sized black and white stripes. 

From our results we can conclude that this task is very 
simple if the network is provided with pre-processed vision 
data such as contrast-values: as early as generation 12 in each 
and evolutionary run, individuals are found that show very 
good behaviour. (We have even noticed good individuals in 
the first generations of some of our experiments, which we 
consider exceptions based on luck.) Without such a filter we 
see that the task becomes quite a tad more complex, as the 
behaviour shown in the 12th generation is far less well 
developed. However, if we allow evolution more time we see 
that individuals are found that show excellent behaviour, 
even if we severely limit the number of interneurons. 

Due to constrains on both time and robots we have not 
been able to repeat our experiments as often as we would’ve 
liked. We have seen that by using a more explicit fitness 
function we can more effectively steer evolution towards 
desired behaviour. This was illustrated by our experiments 
in which the robot was asked to navigate just by infrared 
proximity information and even more so in the various 
vision experiments. By using explicit fitness functions one 
can punish undesired behaviour that could otherwise be well 
rewarded, i.e. circling at high speed with large radius at high 
speed. 

The genetic encoding used in this experiment decreases 
the search space of evolution dramatically; each individual 
has to be tested on a real robot, larger genomes could 
possibly take many more generations before target behaviour 
is found. However, better results might be acquired by 
allowing single synapses, instead of all from one neuron, to 
be excitatory or inhibitory. Single neurons can then single-
handedly differentiate the behaviour of others by operating 
as feature detectors. For harder tasks, it may be a necessity to 
evolve even more network parameters that were fixed now. 

Future work will include the usage of online learning 
methods. Spike-timing dependent synaptic plasticity (STDP) 
is a form of competitive Hebbian learning that uses the exact 
spike timing information [1]. Neurological experiments show 
that long-term synaptic strengthening occurs when pre-
synaptic action potentials arrive shortly before a postsynaptic 
spike and weakening when it arrives late. This mechanism 
leads to stable distributions of long-term potentation and 
depression, making postsynaptic neurons sensitive to the 
timing of incoming action potentials. This sensitivity leads to 
competition among the presynaptic neurons, resulting in 
shorter latencies, spike synchronization and faster informa-
tion propagation through the network [1]. It is our opinion 
that this might lead to better, more differentiated behaviour 
at possibly lower network resolutions.  

Spiking neural networks are computationally powerful 
[7,15,19] and very promising in regard to real-world tasks in 
which temporal information plays an important role, which 
we have shown by evolving circuits that can navigate a robot 
using raw vision only. We conclude with the remark that 
although a lot of progress has been made on the theory 
behind spiking neural networks, more effort is required to 
gain knowledge and experience on how to apply these 
networks effectively in real applications like robotics.  
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