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We evolved spiking circuits for vision-based navigation on a wheeled robot in a randomly textured
environment. We investigated two different fitness functions of which one is more explicit in rewarding
target behaviour: navigating the arena. The first experiments were done with proximity sensors, the rest
with vision. From comparison of the evolved individuals we conclude that more explicit rewarding may
result in better behaviour. In earlier work by Floreano & Mattiussi [4], vision experiments were aided by

pre-processing visual data, feeding contrast data into the spiking circuit. We show that using a filter
simplifies the task, but that efficient and robust strategies can be evolved by using raw vision data as
input, indicating that spiking circuits are even more powerful in real-world tasks than already assumed.

Evolutionary robotics is a relatively new field in the artificial
intelligence research area. Even so, the results that have been
achieved so far are all very promising [17,20,22]. The research
done in this field follows a bottom-up approach of
biologically inspired techniques, of which artificial evolution
and neural networks are examples. Nolfi and Floreano [17]
pioneered the field and their experiments, in which they
evolved neural networks to control real robots, are still
regarded as benchmark references. Most of their experiments
were conducted on a Khepera robot [16]; a small, versatile
and robust robot that we’ve also used in our experiments.

In previous work [10], we have shown that spiking neural
networks are well able to solve temporal tasks by evolving
networks for certain time series. Furthermore, results of
evolutionary experiments with spiking networks [4,5,12,22]
indicate that these circuits are well suited as real-time robot
controllers. The networks in these experiments were only
provided with vision-data as input to control the robot.

The experiments we present in this paper have been
largely based on those done by Floreano and Mattiussi [4]
with a vision-sensor equipped Khepera. However, we varied
many of the experimental settings such as fitness function,
vision pre-processing filter and network size. Besides, we
explored the performance of different fitness functions with
two sensor modalities: proximity and vision. The task the
Khepera was asked to do was the same for all experiments:
navigate around the environment as fast as possible without
colliding with objects or walls, driving straight ahead as
much as possible.

We will first introduce the important concepts artificial
evolution and spiking neural networks, after which we will
proceed with the implementation of these in our software
and the set-up we used for our experiments. We will then
present our results, analyse the evolved behaviours and
conclude with a discussion.

Artificial evolution

Genetic algorithms [8] are widely used for optimisation and
search problems, in particular when the parameter-space to
explore is extremely large. When applied to general search
problems, large sets of possible solutions are recursively
evaluated and ‘reproduced” to form new generations of
possible solutions. This process is inspired on evolution as
found in biology: natural selection favours individuals that
are ‘better’ suited for survival as these have a higher chance
to reproduce. Slowly but sturdy, in terms of generations, this
process steers the population towards a better adaptation to
the environment. And although crossover and mutation may
introduce bad combinations or mutations occasionally, on
the long run these processes guarantee genetic diversity and
introduce new combinations and mutations that can make
individuals perform better.

This concept is exactly the same for artificial evolution: at
the start of an experiment we use a randomly initialised
population of a certain number of individuals. Each
individual is then evaluated on some task for which
performance (‘fitness’) can be measured. Individuals that
perform better have a higher chance to be selected for
reproduction; the process in which two parents are combined
and crossover and mutation is applied. Each new generation
should then be a little bit better, but as crossover and
mutation are random, we should only look at performance
differences on the long run.

When we apply artificial evolution on robots, it is called
evolutionary robotics. A very important aspect in this case is
that we are dealing with real robots in real environments,
which is completely different from simulations [17]. We now
can be a little more specific about what individuals are: in
evolutionary robotics, each individual has a genome that
encodes a robot controller. A robot controller can be
described as ‘something that uses sensor data to control a
robot’.



The genome that encodes the robot controller can be
anything: one could use a single bit-string of fixed length,
though it is also possible to model more complicated
genomes consisting of i.e. multiple chromosomes of variable
length and build from larger a alphabet like {A, C, G, T}.
Such a genome is in fact the genotype of an individual. In
order to evaluate the fitness of an individual we have to map
this to its corresponding phenotype: the robot controller. As
mentioned above, such a robot controller could be anything
that accepts input and provides output; only controllers that
show sane behaviour will acquire good scores though.
Neural networks are often used as robot controllers, as they
are very versatile and it's fairly easy to encode network
parameters as topology and synaptic weights in the genome.

For the tasks investigated in evolutionary robotics it is
often hard (if not impossible) to design a robot controller by
hand, the correlations to be made are simply too complex:
spatial-temporal information is often very important and
robot controllers (like spiking neural networks) that can
process these have many internal dynamics. Often no
appropriate training methods exist for the controller
architecture of choice, making artificial evolution a good
alternative: evolution is able to explore a large search space
and can combine partial solutions to form (more) complete
solutions.

Most learning methods that are available for neural
networks are supervised: back-propagation [18], spiking
backprop [2] and RTRL [21] are only a few well-known
examples (for different types of networks). In robotics, it is
seldom possible to use supervised learning, as this requires a
target output for each possible input. For most tasks that we
want our robots to do though, we only have an informal
description of the target behaviour. When supervised
learning is not an option, unsupervised training remains a
possibility. Hebbian learning [1] is such a method, but as it is
primarily useful for clustering tasks, it is not specifically
what we want either.

That we only have an informal description of the target
behaviour is no problem for artificial evolution: the only
thing we need is a fitness function, a function that measures
the performance of an individual. Even though a good fitness
function is not always easy to find, it's not impossible. When
we want to evolve robot controllers that are able to drive a
wheeled robot ahead, for example, we could sum all positive
actual wheel speeds to determine the fitness of an individual.

It is probably unnecessary to mention that there are many
parameters that can be chosen for artificial evolution. The
parameters we used are mostly the same as in the
experiments by Floreano and Mattiussi [4]. The population
consists of 60 individuals and the first generation is
randomly generated. Each individual has a single bitstring
that encodes a spiking neural network (the encoding will be
discussed later) that can be tested on the real robot; each
individual is tested for 2 epochs of 30 seconds each.

When fitness values for all individuals in a population
have been measured, reproduction can be done. There are
several ways for doing this, we have used truncation
selection: take only the best 15 individuals of each generation
and dispose of the rest. These 15 individuals are reproduced,
which means that they are coupled in parent pairs on which
the genetic ‘operators’ are applied: crossover and mutation.
We used basic single-point crossover, cutting the parent
DNA strings at the same (randomly determined) point and

b. i
|
||
rmembrans I
voltage 11
v
1/ |
O feeeee S
4 |
// : |
/ | \
/ I \ —
: "\\____././ time
¢ "  sap
EPSP
V™ _gm
/ \.R___EI_'(I lJ )
fime
. tjn L
. IPSP

Figure 1. (a) Schematic drawing of a neuron. (b) Incoming
postsynaptic potentials alter the membrane voltage so it crosses

threshold value ; the neuron spikes and goes into a refractory state.
(c) Typical forms of excitatory and inhibitory postsynaptic potentials
over time. [7]

switching the ends (crossover is applied on each parental
pair with a chance of 10%). The mutation operator toggles
every single bit of the genome with a certain chance (5%). For
improved evolutionary stability, elitism was wused in
reproduction: by always retaining the best individual
(without modification of the genome) we ensured that our
search always kept the current best solution.

Spiking neural networks

Classic models of artificial neural networks are inspired on
biological neurons, but mimic their behaviour in a very
simplified manner. Real neurons show very complex
dynamics in their signalling behaviour. The resulting signals,
or spikes, will eventually bring their message after having
been processed by various complex mechanisms. For a long
time it has been taken as a safe assumption that these
individual signals carry no information, that just the average
activity of a neuron is of importance to describe its activity.

As a result, traditional neuron models do not employ
individual pulses, but have output signals that typically lie
between 0 and 1. These can be seen as the normalized firing
frequencies of the neuron. This type of signal is called rate
coding, where a higher rate of firing correlates with a higher
output signal. Pulse coding does not use such averaging
mechanisms, but use individually timed spikes.

Recent discoveries in the field of neurology have shown
that neurons in the cortex perform analogue computations at
incredible speeds. Thorpe et al. [19] demonstrated that
humans analyse and classify visual input (i.e. facial
recognition) in under 100ms. As it takes at least 10 synaptic
steps from the retina to the temporal lobe, this leaves about
10ms of processing-time per neuron. Such a time-window is
much too small to obtain a reliable activity-average for rate
coding (see also fig. 2) [19,13]. This does not mean that rate
coding is never used, though for calculations where speed is
an issue pulse coding schemes are favoured [14].
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Figure 2. A 4 second recording of the neural activity recording from
30 neurons of the visual cortex of a monkey. Each vertical bar
indicates a spike. The human brain can recognize a face within
150ms [19], which correlates to less than 3mm in this diagram;
dramatic changes in firing frequency occur in this time span, neurons
have to rely on information carried by solitary spikes. [11,20]

Real neurons send out individual signals: short and
sudden increases in voltage. Due to their nature and form
(see fig. 1a) these signals are commonly referred to as ‘spikes’
or ‘pulses’. These electrochemical action potentials travel
from the soma down its dendrites to the synapses. These
chemicals cannot cross the synaptic gap, but they induce the
release of neuro-transmitters that can cross and by doing so a
post-synaptic action potential (see fig. 1c) is formed. While
spikes are identical in form, the strength of post-synaptic
potentials is influenced by many variables, like the amount of
released neuro-transmitters and the synapse’s capability to
replenish these. Therefore a synapse is no simple signal-
conversion device, but a highly complex signal pre-
processor. This pre-processing and its many variables make
development and learning possible in neural networks. The
term ‘synaptic plasticity’ is much preferred above ‘learning’,
as it better describes what is at hand: long- and short-term
changes in how synapses process signals [1,13,19].

Single spikes do not carry any information, it is their exact
timing and placement amongst other spikes that matters.
These signals are delayed during their journey through
axons, synapses and dendrites and as their effect decays over
time they provide the neuron a form of inherent notion of
time and memory. This property is unique to neurons that
employ pulse coding. It provides the network the capability
to incorporate spatial-temporal information from sensory
input directly into communication and computation [19,20].
Examples include the multiplexing of frequency, direction
and amplitude of sound [5], as can be seen in barn owls.

A number of different models have been proposed that
employ exact spike timing information in neural
computation. Most of these fall in the class of integrate-and-
fire neurons, a well-chosen name that describes exactly what
these neurons do: integrate incoming signals and fire when a
threshold is crossed. We've used the spike-response model
that is based on the very realistic and complex Hodgkin-
Huxley [5,7] model. It does not describe the exact chemical-
concentrations in the neuron, but remains an abstraction of
the neuron’s dynamic state, making the spike-response
model conceptually easy, computationally fast and
biologically realistic.

As we've seen, all action potentials are basically of the
same form. In other words, as their form does not carry any
information, we can characterise them by the single property

that does carry information: the firing-time ti. The lower
index 7 indicates the neuron, the upper index f the number of
the spike. All the spikes a neuron has generated over time
can then be captured by

F ="t} (1.1)

To describe the membrane potential of a neuron i we
commonly use the variable u;. Once the neuron’s membrane
potential goes over threshold value 9, the neuron will spike.
This new spike will then be added to F;, defining this set as

F={tu()=8nu)>0} (12)

Once a neuron generates an action potential, its membrane
potential suddenly increases very sharply, soon followed by
a long lasting drop: the negative after-potential (see fig. 1b).
The sharp rise above the threshold value ensures that the
neuron cannot generate a new spike and is called absolute
refractoriness. The following long-lasting decrease in
membrane potential, called the negative spike after-potential,
decreases the chances for the neuron to fire again. We can
model this absolute and negative refractoriness with kernel
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The duration of the absolute refractoriness is set by &b,
during which large constant K ensures that the membrane
potential is vastly above the threshold value. Constant n,
scales the duration of the negative after-potential. Now that
we can describe what happens to a neuron once it fires, we
need to be able to describe the effect on the membrane
potential of postsynaptic potentials.

&,(5)= {exp(— d ;Aij j - exp(— d ;Aij HH(S -N) (15)

In equation 1.5, we can use Ai to define transmission
delays (axons and dendrites are relatively fast, synapses
slow) and 0<ts<tm are time constants defining the duration of
the effect of the postsynaptic potential. The synaptic efficacy
or synaptic weight, effectively resulting in the strength of the
post-synaptic potential, is captured by variable wj;.

We are nearly done, having all the means to describe a full
spiking neural network, though one very important feature is
lacking: how to handle information from the outside,
information not encoded in spikes. Sensory information
gathered by a robot is usually depicted in discrete integer
values, with which we’ll have to influence the membrane-
potential directly. We use a task-specific function he(t) to
transform these values to relevant membrane-potential
influences.

h)=h")+3 > we,t-1") (1.6)
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With this addition neurons can become excited by outside
influences, effectively transforming analogue input values
into the signal the network can process: a spike. We can now
describe the current excitation of a neuron by

w(t)= Y m(t—1")+h() 17

er,
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Figure 3. Proximity experiments: explicit and implicit fitness
functions. o = average fitness of whole population; + = fitness of best
individuals.

where the refractory state, effects of incoming postsynaptic
potentials and external events are combined. Once combined
with equation 1.3 it forms the spike-response model, a
powerful yet easy to implement model for using exact spike-
timing information in computation of neural networks.

Evolving spiking circuits on a robot

In order to use the spike response model for our experiments,
some simplifications to the standard model were made in
order to avoid overly large genomes and limit the amount of
computation needed. Our derivation of the model is mainly
based on the model described by Floreano and Mattiussi [4].
The software we used is i [12], an application that has been
designed in collaboration with ASL2 for evolutionary
robotics with neural networks.

A first important note is that time has been made discrete:
continuous time is assumed in the spiking response model,
but discrete time steps were introduced to make
implementation easier. Neurons are updated each time step,
but input and output are respectively set and read only at
specified intervals (more details below).

A spike is assumed to last one time step, after which one
time step of absolute refractoriness holds. After this, the
refractory kernel is computed for each neuron using a
simplified version of equation 1.3

1) =exp(~—) @1)

where s is the number of time steps since the last spike
time of this particular neuron, as we take into account only
the refractory kernel of the last spike for each neuron. The
formula for postsynaptic contributions of incoming spikes
(1.5) remains the same, although only incoming spikes of the
last 20 time steps are taken into account.

We will now describe the architecture of the networks and
the handling of in- and output, as both of these are
unconstrained in the general model. We distinguish receptor
neurons and interneurons: receptor neurons are used for
feeding input (sensor data) into the network and only have
outgoing synaptic connections; interneurons may have both
incoming and outgoing synaptic connections and thus can be
fully interconnected and recurrent. The number of receptor
neurons is provided beforehand by the task; the number of
interneurons is at least the number of required output values,
as one interneuron is used for each output. We added one
additional (bias) receptor neuron with a constant input of 1
to all networks to ensure basic network activity.

In our experiments, all neurons (receptor and
interneurons) in the network are updated each time step, but
a certain number of these updates together form a
sensorimotor cycle. For the experiments described in this
paper, the number of updates per cycle was fixed to 20. At

the first update of a cycle, new input values (in the range
[0,1]) are fed into the receptor neurons. At each update, each
receptor neuron stochastically determines its he¥(t), based on
the current input:

he(®) = flip(input) 22)

where flip() returns 1 with probability equal to its
argument, 0 otherwise. As a membrane potential of 1 crosses
the threshold, this would normally gives a spike (please note
that receptor neurons also have a refractory period; the
maximum fire rate for all neurons is 0.5).

It is clear that rate coding is used for encoding the input;
the same coding method is used to determine the output of
the network. For each interneuron that is used for output, all
spikes during the last # updates of a cycle are counted and
divided by the maximum number of spikes that could have
occurred, giving a value properly scaled between 0 and 1.
The number of updates at the end of each cycle that
contribute to the output value is always the same in our
experiments: the spikes in the 20 last neuron updates of a
cycle determined the output value (as the number of updates
per cycle is also 20, this means each update is used for output
calculation).

Now that we know how one network cycle is done,
coupling the network with the sensors and motors is not very
complicated: at the start of a sensory-motor cycle, the sensors
are read and the returned values are used as input for the
network. At the end of the cycle, the output given by the
network is used to set the motor speeds of the robot. This is
done in a push-pull way: two outputs are used to determine
one motor speed, subtracting one output from the other to
get a value in the range [-1, 1]. Each cycle has a fixed length
of 100ms, therefore sensors are read and motor speeds are set
10 times a second and one lifetime of 30 seconds consists of
300 cycles.

Although we used evolution to search for network
parameters as much as possible, we chose some parameters
fixed to avoid overly large genomes and being unable to
evolve anything useful from such a huge parameter-space.
Let us first discuss the fixed parameters before proceeding
with the genotype-phenotype mapping. The threshold $ was
set to 0.5, which means that only a few recent incoming
spikes may evoke a spike. The synapse and neuron time
constants, ts and tm, were set to 10 and 4, respectively; the
synaptic delay was set to 2 network updates, synaptic
strength is fixed to 1.

We now arrive at the genotype-phenotype encoding. The
genome, a binary string, consists of a certain number of
blocks, each block encoding one spiking interneuron. The
first bit of each block encodes whether the interneuron is
excitatory or inhibitory: a spike coming from an excitatory
synapse adds to the membrane potential, the opposite for
inhibitory connections. The remaining bits of each block
encode the existence (i.e., whether there is a synaptic
connection or not) of incoming synapses from all receptors
and interneurons.

An important parameter in the experiments we haven't
discussed yet is the fitness function, which very much
depends on the task to be evolved. We will now describe the
experimental setup used, the tasks and the fitness functions.

Experimental setup

We already mentioned before that we used the Khepera
robot for our experiments. The Khepera is a robot with two
wheels that can be controlled separately, making it very easy
to manoeuvre the robot. A standard Khepera is equipped
with wheel encoders that can read the actual wheel speeds
and infrared sensors that give proximity readings. For the



Experiment SNN Fitness Behaviour

#inter Genl12 Solutions? # generations | Straight & turn? Wall-following?
Proximity
Implicit 0 0.56 / 0.76 1 Few 12 No No
Explicit 0 0.62 / 0.83 Many 12 Yes No
Vision
Implicit, Laplace 0 1.02/1.76 M Some 20 Yes (not perfect) Yes
Explicit, Laplace 0 057/0.83 Many 12 Yes Yes
Explicit, no filter 4 0.51 / 0.84 Some 18 Yes No
Explicit, no filter 2 0.50/0.53 Some 25 No Yes
Explicit, no filter 0 0.50 / 0.52 Some 60 Yes Yes

Table 1. Overview of all results. Properties of each experiment are given (proximity or vision; implicit or explicit fitness function; Laplace filter
or no filter, raw vision), also the number of additional interneurons added to the spiking neural networks (SNN: #inter). Under Fitness, the
fitness values of the 12th generation of each experiment is shown (average of whole population / fitness of best individual). Under Behaviour, we
find how well the resulting individuals perform: whether good solutions have been found (Solutions?), the number of generations necessary to
obtain good solutions (# generations) and which strategies have been found by evolution (Straight & turn? and Wall-following?). ) Please note
that these values cannot be compared with the values given by the explicit fitness function.

vision experiments, we used the so-called kevopic turret, a
generic I/O add-on for the Khepera, in combination with a
TSL3301 camera. This camera gives an 8-bit greyscale image
of 102 pixels with a 150° field of view; 16 equally spaced
pixels are selected from this linear image.

Proximity - The objective of the first series of experiments
was to evolve spiking controllers that show simple
Braitenberg behaviour [3] using only proximity readings as
network input. The behaviour we intend the robot to show is
that of some of the simplest vehicles Valentino Braitenberg
[3] described: drive straight ahead unless a sensor senses
something nearby. With proximity sensors this means that
the robot has to drive straight ahead until a wall is
encountered and the Khepera should steer away. Each of the
8 IR proximity sensors was used to feed input into one of the
8 receptor neurons of the networks, 4 interneurons were used
to determine the wheel speeds of the two wheels in push-pull
mode (as described above). The environment was a wooden
arena with white walls and floor of 50 x 60 cm.

Vision - The second series of experiments were conducted
with the Khepera equipped with the kevopic turret and
TSL3301 camera. We used the same arena as in the proximity
experiments, but added randomly spaced vertical black and
white stripes to the walls and made sure lighting conditions
were always the same. The 16 vision greyscale values were
used to determine the input for 16 receptor neurons, but this
sensor data was presented in different ways: in the first
experiments, a Laplace filter was applied to the raw vision
data and the resulting contrast values were used as network
inputs. In later experiments, no filter was used and the raw 8-
bit vision values were fed into the network directly after
scaling into the range [0,1]. As before, 4 interneurons were
used to determine the wheel speeds in push-pull mode. In
these experiments, the objective was to evolve controllers
able to show the same behaviour as in the proximity
experiments: using only vision, the Khepera was asked to
navigate around the arena with black and white striped
arena as fast as possible without hitting the wall.

In almost all experiments, only the 4 interneurons used to
determine wheel speeds were used, but additional
interneurons were added in a few exceptions (which will be
mentioned later). At the start of each epoch of an individual,
a pre-programmed Braitenberg behaviour (based on infrared
proximity-sensor data) was executed for one second to start
with a more or less random starting position.

We mentioned that we used two different fitness functions
for the experiments, which we called implicit and explicit
versions of more or less the same function; essential is that
both are functions of the measured actual speeds of the robot
wheels. Both fitness functions have the same general form:

2./ 1)
itness =——— :
A T
Fitness f(t) is computed at the end of each sensorimotor
cycle t, summed for all cycles and divided by the total
number of cycles T (of one life time). The implicit version of
f(t) we used is:

0
f(t)—{

5+,

s, <0vs, <0 -
otherwise 62

where s; and s, are the actual wheel speeds of the left and
right wheel, respectively, normalised in the interval [-1, 1].
This function rewards an individual only when none of the
wheels is moving backward and is equal to the function used
by Floreano & Mattiussi [4]. The more explicit version:

0.1*drive(t) + 0.5 * rotate(t)

)=
S0 +0.4* forward (t)

) Is, | +|s,
drive(t) =———

(3.3)

tate(r) =1 515,

rotate(t) =1———
2
max(s,,0) + max(s, ,0)

forward (t) =

2

This fitness function is divided into three terms: the first
term rewards all wheel movement and is meant to encourage
all motion; the second term gives a penalty when the robot
rotates, as we want individuals moving straight ahead; the
last term rewards all forward motion, as we prefer
individuals moving forwards. This function is more explicit,
because it gives more ‘hints” as to what the robot should do.
The implicit function only says to drive forward, this
function is more explicit by rewarding moving forward and
penalising rotation, hopefully making the fitness landscape
smoother and therefore making it easier for evolution to find
good solutions.

Results

We ran quite a few experiments (running continually day
and night) in order to try different experimental settings and
to see whether we could repeatedly obtain the same results.
Due to time limitations, we weren't able to repeat all
experiments more than once, and therefore we are unable to
use average fitness values in the results of each experiment.
We picked a number of experiments that gave realistic



results and of which we are sure that we would achieve
something similar if done again.

Some of the experiments had to be discarded because of
erroneous results, an example is an evolutionary run where
the fitness values were higher than the theoretical maximum
quite often; although the communication with the Khepera is
fairly robust, communication went wrong during a few runs,
resulting in these illegal fitness values (i.e., incorrect actual
motor speeds were received by the software).

The results of the selected experiments are summarised in
Table 1. The series of proximity experiments consist of two
experiments of 15 generations, though we repeated both
experiments and found identical results in the repeats. All
settings except for the fitness function were equal, which
clearly shows in the fitness graphs (fig. 3): in case of the
explicit function, the values start at 0.5 because individuals
that do (almost) nothing don’t get a penalty for rotation and
all values are between 0 and 1, while the implicit function
starts at 0 and gives values between 0 and 2. (Of course, these
could also be scaled to the range [0, 1], but it would remain
impossible to compare.) This doesn’t tell us much more than
that comparing absolute values is useless though; comparing
evolutionary results is much more interesting. Looking at the
graphs, we see that the fitness values change more or less the
same over the generations: the maximum fitness first
increases fast, but remains pretty stable after that, while the
average fitness increases slowly but steady.

The two graphs displayed in figure 3 are typical for all
achieved results: the maximum fitness sometimes increases
with large steps, but can remain the same for a long while as
well and can even drop sometimes, the average fitness
always increases slowly. When fitness values change like
this, one can be quite sure that the task is evolvable; at least
evolution is able to find individuals with higher fitness
values. Naturally, this doesn’t guarantee the target
behaviour, as designing a good fitness function remains a
difficult issue.

The vision experiments were allowed to run for at least 20
generations, but the more complex experiments (without
Laplace filter) were allowed a longer running time to see
whether this could improve results. Fitness values of the 12th
generation of each experiment are given in Table 1 and can
be compared: it is clear that using a Laplace filter helps
individuals a lot, as the maximum fitness of the 12t
generation without input filter and without additional
interneurons is only 0.52, not at all like the 0.83 when the
Laplace filter is used! On the other hand, adding
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Figure 4. Vision experiments without input filter. Drawn is the
fitness value of the best individual of each generation for three
different evolutionary runs: + = 4 extra interneurons; * = 2 extra
interneurons; o = no extra interneurons.

interneurons makes it easier to find good solutions, as the
12th generation of the experiment without Laplace and with 4
extra interneurons has a maximum fitness of 0.84, which we
may consider the same.

It is therefore interesting to compare the trajectories of the
maximum fitness of the experiments where raw vision data
was used (fig. 4). With 4 additional interneurons, the
maximum fitness increases pretty fast and evolution doesn’t
seem to have problems finding solutions that achieve high
fitness values. Every time we remove two of these
interneurons though, evolution needs more time to find
solutions that have a higher fitness: more than 50 generations
are required when no additional interneurons are added and
thus only the 4 interneurons that are used for output are
available. It is remarkable though that solutions are found
whatsoever: we shouldn’t forget that raw vision is used as
input, that only 20 network updates a cycle are done and that
only 4 interneurons are in the network! The important
question is of course whether the solutions found in this case
show a behaviour that is comparable with that of the
traditional experiment (with Laplace filter).

In order to be able to compare the behaviours resulting
from the various evolutionary runs, we now arrive at a very
important part: the analysis of the behaviour of evolved
individuals.

Behavioural analysis

Let us first introduce some of the typical behaviours that we
have observed while watching the evolved individuals.
Naturally, evolution does not provide only satisfying results:
in almost every generation, individuals exist that do nothing,
rotate on the spot or drive ahead as fast as possible without
reacting on anything (such as a wall or even a collision). We
will forget about these and focus on the good behaviours that
we obtained, which can generally be divided into four
categories (see fig. 5).

A first simple - but efficient - strategy that we observed is
what we called ‘Big turn, small turn”: the robot turns either
clockwise or counter-clockwise all the time and all it does is
rotate (almost) on the spot when a wall is detected. This
behaviour isn’t entirely what we intended, as we wanted the
robot to move straight ahead as much as possible.

A second strategy is to drive straight ahead until a wall is
detected and the robot turns around about 180° immediately.
This is very much like the third strategy, where the robot also
drives straight ahead but doesn’t turn around fully, it only
turns away from the wall.

Figure 5. Four typical evolved behaviours. Approximations.
Distance before turning from the wall differs with vision: bad
individuals bump, good individuals hold a distance of between 5 and
10cm. (a) Big turn, small turn. (b) Drive straight, turn around. (c)
Drive straight, turn away. (d) Wall-following.



The fourth and last strategy is very different from the
previous ones, as it always actively uses the walls: it stays
near the wall and follows it. Whereas the other strategies
don’t care where the wall is (they just get away from it when
necessary), individuals using this strategy even actively seem
to ‘search’ for the wall and stay near it as soon as it is found.
The resulting behaviour is that the robot drives nearby all
walls of the arena, not getting too far away from them but
certainly not actively avoiding collision.

Now we know the behaviours we can expect, let’s focus on
the experiments. Table 1 displays for each experiment how
many good strategies were evolved, how many generations
were needed for this and whether the second/third (straight
& turn) and fourth (wall-following) strategies were found.

When we take a look at the proximity experiments, we
immediately see that although both fitness functions seemed
to perform well accordingly to the fitness graphs, the
resulting behaviours the give rise to vary. In case of the
implicit fitness function, only a few well-behaving indivi-
duals were evolved and individuals seem to be rewarded for
the wrong thing: many individuals simply drive straight
ahead until they collide. As the starting position is often
turned away from the wall, this gives a relatively high fitness
value. The explicit fitness function resulted in much better
individuals; certainly seen over the whole 12t generation this
function did a significantly better job when we look only at
behaviour. Many individuals are able to drive straight ahead
and turn away just before (in some cases when against) the
wall. As the sensivity and range of the proximity sensors
isn’t large, it's rather difficult to obtain better results: the
sensors cannot detect the wall until the robot is only a few
centimetres away from it. We haven’t observed any wall-
following individuals, which may be due to the short range
of the proximity sensors: this makes it difficult to actively use
the walls to stay close to them without colliding.

When we compare the results of the vision experiments
with the two fitness functions (with Laplace filter), we see
that although good individuals were evolved in both cases,
the explicit function performed better again. Less generations
were needed and more behaviours were found; less
individuals that do ‘big turn, small turn’, more that do
‘straight & turn’ or ‘wall-following’. Since so many well-
behaving individuals are found when using a Laplace filter
and the explicit function, the task seems rather easy and very
simple input processing strategies (like ‘turn whenever there
is contrast, straight ahead otherwise’) may be sufficient to
accomplish the task at hand.

Using raw vision data as input for the spiking circuits
seems a more challenging task for evolution though, and
when we look at the behavioural results it looks like this is
true. Where evolution needed no additional interneurons to
evolve many good individuals in 12 generations when a
Laplace filter was applied, already 18 generations were
needed to evolve good individuals when no input filter was
used and 4 interneurons were added.

When we reduced the number of additional interneurons,
the number of generations required to achieve high fitness
values increased fast. But when high fitness values were
obtained, well-behaving individuals were also found! And
this happened also when we added 2 or even no inter-
neurons. Not as many good individuals were found as with
Laplace filter and explicit fitness function, there were some
nevertheless. In the run with 2 additional interneurons, no
good ‘straight & turn’ individuals were found and the same
for no additional interneurons and ‘wall-following’, but we
think that this is because the task is harder and a bit more
luck is needed to find a task; we could probably fill the ‘gaps’
by doing a few more runs.

Discussion

In this paper we have shown that circuits of spiking neurons
are well suited for evolving neural controllers for vision-
based navigation. We've extended the preliminary work
done by Floreano and Mattiussi and have found results in
agreement of theirs. More importantly, we found that these
networks of spiking neurons are capable of more than
solving the basic vision task they describe: even without the
help of a Laplace (contrast) filter and with significantly less
neurons artificial evolution finds behaviourally very fit
individuals that solve the task of navigating an environment
with walls randomly sized black and white stripes.

From our results we can conclude that this task is very
simple if the network is provided with pre-processed vision
data such as contrast-values: as early as generation 12 in each
and evolutionary run, individuals are found that show very
good behaviour. (We have even noticed good individuals in
the first generations of some of our experiments, which we
consider exceptions based on luck.) Without such a filter we
see that the task becomes quite a tad more complex, as the
behaviour shown in the 12t generation is far less well
developed. However, if we allow evolution more time we see
that individuals are found that show excellent behaviour,
even if we severely limit the number of interneurons.

Due to constrains on both time and robots we have not
been able to repeat our experiments as often as we would've
liked. We have seen that by using a more explicit fitness
function we can more effectively steer evolution towards
desired behaviour. This was illustrated by our experiments
in which the robot was asked to navigate just by infrared
proximity information and even more so in the various
vision experiments. By using explicit fitness functions one
can punish undesired behaviour that could otherwise be well
rewarded, i.e. circling at high speed with large radius at high
speed.

The genetic encoding used in this experiment decreases
the search space of evolution dramatically; each individual
has to be tested on a real robot, larger genomes could
possibly take many more generations before target behaviour
is found. However, better results might be acquired by
allowing single synapses, instead of all from one neuron, to
be excitatory or inhibitory. Single neurons can then single-
handedly differentiate the behaviour of others by operating
as feature detectors. For harder tasks, it may be a necessity to
evolve even more network parameters that were fixed now.

Future work will include the usage of online learning
methods. Spike-timing dependent synaptic plasticity (STDP)
is a form of competitive Hebbian learning that uses the exact
spike timing information [1]. Neurological experiments show
that long-term synaptic strengthening occurs when pre-
synaptic action potentials arrive shortly before a postsynaptic
spike and weakening when it arrives late. This mechanism
leads to stable distributions of long-term potentation and
depression, making postsynaptic neurons sensitive to the
timing of incoming action potentials. This sensitivity leads to
competition among the presynaptic neurons, resulting in
shorter latencies, spike synchronization and faster informa-
tion propagation through the network [1]. It is our opinion
that this might lead to better, more differentiated behaviour
at possibly lower network resolutions.

Spiking neural networks are computationally powerful
[7,15,19] and very promising in regard to real-world tasks in
which temporal information plays an important role, which
we have shown by evolving circuits that can navigate a robot
using raw vision only. We conclude with the remark that
although a lot of progress has been made on the theory
behind spiking neural networks, more effort is required to
gain knowledge and experience on how to apply these
networks effectively in real applications like robotics.
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