
http://adb.sagepub.com

Adaptive Behavior

DOI: 10.1177/1059712309105814
 2009; 17; 179 Adaptive Behavior

Fady Alnajjar, Indra Bin Mohd Zin and Kazuyuki Murase
 Environment

A Hierarchical Autonomous Robot Controller for Learning and Memory: Adaptation in a Dynamic

http://adb.sagepub.com/cgi/content/abstract/17/3/179
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 International Society of Adaptive Behavior

 can be found at:Adaptive Behavior Additional services and information for

 http://adb.sagepub.com/cgi/alerts Email Alerts:

 http://adb.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.co.uk/journalsPermissions.navPermissions:

 http://adb.sagepub.com/cgi/content/refs/17/3/179 Citations

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://www.isab.org.uk
http://adb.sagepub.com/cgi/alerts
http://adb.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://adb.sagepub.com/cgi/content/refs/17/3/179
http://adb.sagepub.com

179

A Hierarchical Autonomous Robot Controller for

Learning and Memory: Adaptation in a Dynamic

Environment

Fady Alnajjar1, Indra Bin Mohd Zin2, Kazuyuki Murase1,2,3

1 Department of System Design Engineering, University of Fukui, Japan
2 Department of Human and Artificial Intelligence Systems, Graduate School of Engineering,
University of Fukui, Japan
3 Research and Education Program for Life Science, University of Fukui, Japan

This work concerns practical issues surrounding the application of learning and memory in a real

mobile robot with the goal of optimal navigation in dynamic environments. A novel hierarchical adap-
tive controller that contains two-level units was developed and trained in a physical mobile robot “e-

Puck.” In the low-level unit, the robot holds a number of biologically inspired Aplysia-like spiking neu-

ral networks that have the property of spike time-dependent plasticity. Each of these networks is
trained to become an expert in a particular local environment(s). All the trained networks are stored in

a tree-type memory structure that is located in the high-level unit. These stored networks are used as

experiences for the robot to enhance its navigation ability in both new and previously trained environ-
ments. The robot’s memory is designed to hold memories of various lengths and has a simple search-

ing mechanism. Forgetting and dynamic clustering techniques are used to control the memory size.

Experimental results show that the proposed model can produce a robot with learning and memoriz-
ing capabilities that enable it to survive in complex and highly dynamic environments.

Keywords Aplysia-like spiking neural network · clustering · forgetting · learning · memory · spike

time-dependent plasticity · tree-type memory

1 Introduction

Many real world robotic problems are dynamic and
require dynamic algorithms capable of adapting over
time. It is obvious that frequent changes in the physi-
cal environment are usually very difficult to model.
An optimal behavior for one instance might not be
optimal in the next instance. Therefore robots with the
ability to learn, memorize, and deal with different
environments are needed.

In recent decades, many groups of researchers have
argued that to build a sufficiently autonomous mobile
robot capable of interacting with real world applica-
tions, both learning and memorizing algorithms should
be combined and concurrently introduced to the robot
(Moore, 1990). This is the only way in which the robot
can frequently use its history (knowledge) to increase
the effectiveness of its adaptive ability and to guaran-
tee its stability. The development of such a system,
therefore, is one of the major trends in current robotic

Copyright © 2009 International Society for Adaptive Behavior
(2009), Vol 17(3): 179–196.
DOI: 10.1177/1059712309105814

Correspondence to: Dr. Kazuyuki Murase, Department of Human and
Artificial Intelligence Systems, Graduate School of Engineering,
University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
E-mail: murase@synapse.his.fukui-u.ac.jp. Tel.: +81(0)776 27 8774,
Fax: +81(0)776 27 8420

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

180 Adaptive Behavior 17(3)

research that is focusing on moving autonomous robot-
ics closer to interfacing real world applications (Flore-
ano & Mattiussi, 2008).

The ability to learn has been achieved using vari-
ous types of well-known learning algorithms such as:
genetic algorithm (Xiao, Michalewicz, Zhang, & Tro-
janowski, 1997), reinforcement learning (Lin, 1992),
and case-based learning (Vasudecan & Ganesan, 1994).
These approaches, however, can only survive at the
local level (Nowostawski, Epiney, & Purvis, 2005), that
is, they do not adapt to changes in the environment, or
they can only operate on a predefined and/or fixed fit-
ness landscape. They are therefore very difficult or
even impossible to use in multi-task dynamic environ-
ments.

Some evolutionary algorithm (EA) variants have
been shown to offer a robust and effective optimization
for solving dynamic optimization problems (Branke,
2002) by using a population of candidate solutions.
However, training the whole or the majority of each
population in the environment can be time consuming
and even harmful if the environment changes dynami-
cally, especially when we are dealing with real robotic
applications. In addition they have no comparative
memory. The only way in which selection operates in
such algorithms is in the present (Floreano & Mat-
tiussi, 2008).

Self-organization by Hebbian-rule has also been
used to solve dynamic problems, because the robot
can adapt within a short time and follow changes in
the environment (Nielsen & Lund, 2003). The prob-
lem with such a mechanism is that it could produce
runaway processes of potentiation and it cannot
maintain the stability of neural function (McClelland,
2005). Simultaneous localization and mapping (SLAM)
has worked very well for addressing the problem of
building a map of an unknown environment and
controlling a robot in a dynamic environment (Dis-
sanayake, Newman, Clark, Durrant Whyte, & Csorba,
2001). However, in this mechanism, there were no
clear clues for developing any kind of memorizing
algorithms.

The case-based reasoning module has been used
for adapting robots to dynamic environments using a
kind of memory (Likhachev, Kaess, & Arkin, 2002).
The problem with this approach is that the forgetting
mechanism could negatively affect the robot’s per-
formance in some domains (Kira & Arkin, 2004).
Cost sensitive reinforcement learning (Tan, 1991)

could be viewed as a system with a kind of memory.
The robot remembers the results of several perceptual
actions to define its internal state. In another sense,
however, with this memory the agent has no mecha-
nism for maintaining state information from one overt
action to the next. The agent no longer has to deter-
mine what to remember and when to forget. It remem-
bers the results of all its perceptual actions and then
throws all its memory away when it makes an overt
action (McCallum 1996).

The biologically inspired Aplysia-like spiking
neural network (ASNN), or its expanded version, has
proven to be an effective and quick adaptive mecha-
nism for performing robot navigation in a dynamic envi-
ronment (Alnajjar & Murase, 2006a, 2008a, 2008b). It
uses the minimum network structure required for per-
forming the task and it modulates its synaptic weights
online during the robot’s navigation. The main draw-
back of this circuitry is that it has no memory, that is,
the advantage of the adaptation history (the past
knowledge) is not taken into account by the robot. The
robot forgets the trained environment immediately
after it adapts to a new one. A stable behavior and/or
an advance action are, however, hard to create. Work-
ing to develop a dynamic memory that can lead to
such advantages may therefore give a new direction to
the future of robotics research.

Verschure, Voegtlin, and Douglas (2003) have
developed a neural model called distributed adaptive
controller (DAC), which includes a mechanism for
perceptional and behavioral learning. The controller
design was based on the assumption that adaptive
behavior is mainly the result of three tightly coupled
layers: reactive, adaptive, and contextual control.
Each of these layers was assigned to deal with a spe-
cific task: sensory-motor interaction, learning, and
memory, respectively. The work has proven the
importance of preserving the robot’s behavior to build
a robust perceptual learning, and achieve a stable
behavior. Verschure and Althaus (2003) have also
tried to extend the work to show that the perspectives
on intelligent systems offered by old and new AI can
be unified by assuming that the knowledge level
describes the competence of an intelligent system.

Following this line of research, in this study we
intend to develop a hierarchical neural system that
includes two layers. The first is to support sensorimo-
tor interaction and behavioral learning; the second is
to observe the interrelationship between these behav-

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Alnajjar et al. A Hierarchical Adaptive Controller with Memory 181

iors to shape the robot’s memory. In this article we
focus on designing a memory that could enhance a tra-
ditional robot’s control system to enable it to face real
world problems.

This article is an extension of the ASNN pre-
sented by Alnajjar and Murase (2006a, 2008b), which
is used as the first layer of the proposed controller and is
augmented by a dynamic memory as the second layer.
We have called the entire system a dynamic memory
ASNN (DMASNN). We believe that the memory pro-
posed in this study can be applied to any type of net-
work architecture or learning algorithm. However, in
this study we examined its ability with ASNN, since
ASNN has been proven to be an appropriate quick
adaptive controller for physical mobile robots (Alnaj-
jar & Murase, 2006a, 2008b).

The article is organized as follows. Section 2 gives
a brief background to the work. Section 3 describes the
working mechanism of the low- and high-level units
in the DMASNN. Section 4 describes the robot and
the environments. Section 5 describes the experimen-
tal setup and results. A brief discussion and compari-
son with earlier reported works are given in Section 6.
Finally, Section 7 offers some general conclusions and
directions for future research.

2 Background

We believe that the ability of any organism to survive
in a dynamic environment depends mainly on the
number of experiences that the agent has learned and
retained in its memory (Dempsey, Vaidya, & Cheng,
2003), which obviously controls its behavior (Noice
& Noice, 2006) and/or may even be responsible for its
survival (Glickman, Balthrop, & Forrest, 2005). The
way an agent learns the behavior, organizes it, and
stores it in its memory could therefore be a measure
that reflects the level of the intelligence of the agent
(Craik & Lockhart, 1972).

Recently, the importance of developing an auton-
omous mobile robot capable of learning and organiz-
ing its own experiences in a virtual memory space has
been of interest to many groups of researchers (Gan-
tovnik, Anderson-Cook, Gurdal, & Watson, 2003;
Kira & Arkin, 2004). Although the ability to learn has
been well developed, there has been relatively little
work combining learning and memory in one control
system (Floreano & Mattiussi, 2008). To date there is

no clear idea as to how the actual biological memory
works, therefore this area of investigation is still
open.

In this article, we propose a novel quick self-
adaptation system with both learning and memorizing
abilities that can build an autonomous mobile robot
capable of surviving in real dynamic environments.
The novelty of our work relies mainly on the proposed
high-level memory. In this work, the robot can build
online a number of biologically inspired ASNNs, each
of which allows it to adapt to one or a group of similar
environments and the entire network can remember
and manage past experiences and switches between
them for optimal navigation.

To achieve the maximum capacity of the working
mechanism of the proposed algorithm, our framework
is constructed as a hierarchical network architecture.
The advantage of this type of architecture, its ability
to cope with complex robot behaviors, has been veri-
fied by many researchers (Albus, 1999; Kumar &
Stover, 1998; Paine & Tani, 2005; Stening, Jacobsson,
& Ziemke, 2005; Tani & Nolfi, 1999). It works by
decomposing complicated behaviors into many simple
behavior modules and solving each model independ-
ently in each layer (Tani & Nolfi, 1998). The higher
layers in such a network architecture usually supervise
the activation of lower layer networks which have
only local tasks to perform.

The network model used in this study is represented
by two-level units. The low-level (learning level) con-
tains a number of ASNNs each of which adapts to a
local environment. The high-level (memory level)
keeps tracking the functionality of the robot’s behav-
ior in each environment and supervises the activation
of the networks in the low-level.

The experimental results show the utility of our
adaptive controller. The robot could design and con-
trol its memory (behavior) based on its experience to
speed up its adaptation to new environments. We
believe that our model has self-adaptability, because it
works without direct user interaction.

3 Dynamic Memory Aplysia-Like
Spiking Neural Network (DMASNN)

In this section we describe the details of the two-level
units in the hierarchical network architecture and the
utilities of each unit.

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

182 Adaptive Behavior 17(3)

3.1 Low-Level Unit for Robot’s Local Tasks

The low-level unit is designed to handle the robot’s
local tasks in a local open environment; in this study,
the task is to perform navigation and obstacle-avoid-
ance behavior. This level consists of a number, N, of
ASNNs, where the value of N depends on the amount
of experience the robot acquired. Each of these net-
works is trained and becomes an expert in a particular
environment(s). Each environment is identified by its
surrounding brightness, obstacle color, and sound,
which can be detected by the high-level unit sensors.
Building a new network or switching between existing
networks in this level is managed by the high-level
unit.

The ASNN used in this level is an effective adap-
tive controller for an autonomous mobile robot (Alna-
jjar & Murase, 2006a, 2008b). We have demonstrated
the validity of this circuitry as an adaptive controller
in a real mobile robot that successfully performed
obstacle-avoidance behavior in an open environment
(Alnajjar & Murase, 2006a, 2008b). Here we briefly
describe the structure and function of this network.

3.1.1 ASNN The structure of ASNN was inspired by
the siphon-gill and tail-siphon withdrawal reflex cir-
cuits of Aplysia (Squire et al., 2007); more specifi-
cally, by the associative facilitation mechanism of the
sensorimotor connection that underlies the short- and
long-term sensitization of Aplysia.

Aplysia is a marine snail with a minimal structure
containing a basic mechanism for learning and mem-
ory. The schematic model of heterosynaptic facilita-
tion of sensorimotor connection in Aplysia is shown in
Figure 1a (modified from Squire et al., 2007). A sen-
sory neuron (SN) makes synaptic contacts on two
motor neurons, MN1 and MN2. When US1, one of
the unconditioned stimulus pathways, is activated by
stimulation of the animal, the corresponding motor
neuron MN1 is activated and a withdrawal reflex is
elicited (unconditioned response, UR). The uncondi-
tioned stimulus US1 also activates a facilitatory neu-
ron FN1 that makes a presynaptic contact (synapse-
on-synapse contact) onto the SN’s synapse on MN1.

The facilitation of the sensorimotor reflex is
based on an activity-dependent heterosynaptic neuro-
modulation. The presynaptic terminals from FNs release
presynaptic neuromodulator(s), such as serotonin. When

a conditioned stimulus (CS) is paired with the US1,
the SN’s terminal on MN1 is selectively sensitized
because of the coincidence of its activity with the neu-
romodulator action. Now, CS alone is sufficient to
activate MN1 by releasing a larger amount of neuro-
transmitter, which elicits the conditioned response
CR. In contrast unconditioned stimulation US2, which
is unpaired with the CS, produces no change in the
SN’s synapse on the corresponding motor neuron
MN2. The coincidence of CS and US is thus detected
by a presynaptic mechanism. The detection by a post-
synaptic mechanism that is also present in Aplysia is
omitted here for simplicity.

To fabricate such a network in a real mobile
robot, several schemes are possible. The simplest cir-
cuitry is shown in Figure 1b. The sum of both sensors
activities, represented by the activity of the SN, plays
the role of the CS. The coincidence with the left/right
sensor’s activity enhances the synaptic transmission
from the SN to the MN1/MN2, thus the signal to the
left/right motor is potentiated. Notice that the path-
ways that activate MNs by USs (dash-dot lines in Fig-
ure 1a) are now present as the paths from the SNs to
the MNs through the hidden neuron (HN) in Figure 1b.
The left and right sensory signals in the robot thus
have to take on the role of conditioning stimuli for the
signals to left and right motors, respectively.

Figure 1 (a) The schematic model of heterosynaptic fa-
cilitation of sensorimotor connection in Aplysia. (b) The
implementation to an adaptive mobile robot controller.
CR, conditioned response; CS, conditioned stimulus; FN,
facilitatory neuron; HN, hidden neuron; MN, motor neu-
ron; SN, sensory neuron; UR unconditioned response;
US unconditioned stimulus. (Adapted from Alnajjar & Mu-
rase, 2008b.)

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Alnajjar et al. A Hierarchical Adaptive Controller with Memory 183

3.1.2 Spike Timing-Dependent Plasticity (STDP)
With the circuitry described above, we used a model
of synaptic plasticity for the heterosynaptic facilita-
tion at the sensorimotor connections called the spike
timing-dependent plasticity (STDP).

STDP is a form of synaptic modification rule
found recently in the natural synapses (Song, Miller,
& Abbott, 2000). STDP differs from EAs by modify-
ing synaptic weights. Instead of using evolutionary
operators such as crossover and mutation, and retrain-
ing each individual in the environment, STDP modi-
fies the synaptic weights online during the robot’s
navigation based on the pre- and post-neuron firing
rates. Inputs that fire the postsynaptic neuron with
short latency or that act in a coherent manner develop
strong synaptic connections, and vice versa (Song et
al., 2000). In other words, synapses modifiable with
STDP compete for control of the timing of postsynap-
tic action potentials to be more sensitive to the presyn-
aptic action potentials.

There are two types of computational models of
STDP (Song et al., 2000). The type that based on neu-
ron firing rates is used in this study. The synaptic
strengths of the postsynapses are modified in accord-
ance with the difference in average spike-time inter-
vals at the presynaptic sites and presynaptic modulator
input from the input-layer neurons. Here, the STDP
takes place in accordance with ∆tpre-post, Equation 1,
where ∆tpre referrers to the firing rate of the hidden-
layer neuron and ∆tpost to that of the output-layer neu-
ron; N is the number of spikes in each time period. The
postsynaptic weight is modified by (–/+0.1), to drive
∆tpre-post to a minimum value (see Figure 2). More
details can be found in Alnajjar and Murase (2008b).

∆tpre-post = (1)

After the synaptic modification, the postsynaptic
neuron tends to respond more quickly to the presynap-

tic spiking. In our early work STDP was successfully
used in adapting the ASNN to an open environment
and to following the changes in that environment
(Alnajjar & Murase, 2006a, 2008b).

3.1.3 Spike Response Model (SRM) We have cho-
sen the spiking response model (SRM), a type of SNN
model, to present ASNN. This model is easy to under-
stand and to implement, especially when it combines
with the mechanism of STDP. More details about this
model can be found in Alnajjar and Murase (2006b)
and Floreano, Zufferey, and Nicoud (2005).

In SRM, a single variable υi (Equation 2) that
describes the state of a neuron is defined. In the absence
of a spike, the variable υi is in its resting value, zero in
this study. Each incoming spike generates a postsyn-
aptic potential that takes time to return to zero (see
Figure 3).

(2)

(3)

(4)

The function ε(s) describes the time course of the
postsynaptic response generated by an incoming spike.
If the summation of the effects of several incoming
spikes reaches a threshold (θ), an output spike is trig-
gered. Once the neuron has emitted a spike, its mem-
brane potential is set to a very low value period, called
the refractory period η(s), to prevent an immediate sec-
ond spike, and then it gradually recovers to its resting
potential. Notice that during the refractory period
spikes are hardly evoked by the input.

In Equation 3, the effect of ε of an incoming spike
on the neuron membrane is a function of the differ-

Figure 2 A type of STDP based on the difference in fir-
ing rates in pre- and postsynaptic sites.

ti pre()∆
i 0=

N

∑
N 1–

ti post()∆
i 0=

N

∑
N 1–

-------------------------–

Figure 3 A schematic drawing of a spiking response
model (SRM). (Adapted from Alnajjar & Murase, 2006b.)

υi t() ωj
t

j
∑ εj sj()

f
∑ ηi si()

f
∑+=

ε s() s ∆–()– τm⁄[]exp 1 s ∆–() τs⁄–[]exp–()=

η s() s τm⁄–[]exp–=

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

184 Adaptive Behavior 17(3)

ence (s = t – t0) between the current time t and the fir-
ing time t0 of the neuron. The properties of the
function are determined by: (a) the delay ∆ between
the generation of a spike at the pre-synaptic neuron
and the time of arrival at the synapse; (b) a synaptic
time constant τs; and (c) a membrane time constant τm.
The function η(s) in Equation 4 calculates the refrac-
tory period. Finally, ωj

t is the weight value from the
jth synapse on the neuron. In practice, each synaptic
potential has to be terminated in a finite time. The val-
ues of exponents were truncated for 20 sampling peri-
ods in our experiments (Alnajjar & Murase, 2006b).

3.2 High-Level Unit for Learning and Memory

It is well known that as humans learn and remember,
the brain does not change its overall structure or grow
new neurons; instead the connections between existing
neurons are just restructured in response to the current
experience (Lehman & Carey, 1986). The memory
introduced in this level is developed based on the
above phenomenon.

This level is represented by a tree-type memory
structure inspired by McCallum’s (1996) work. This
kind of memory structure has several properties of
great practical value, one of which is that the data can
be retrieved, modified, and inserted relatively quickly
(Gantovnik et al., 2003; Lehman & Carey, 1986). We
have intentionally limited the maximum size of the
memory to 25 nodes (tree’s leafs), where the robot can
store its experiences (see Figure 4). Each node presents
a network connection for one or a group of similar
environments. The activation of any node depends
on the appearance of its related environment. The
robot constructs the tree online, that is, builds a new
branch, within its size limit, only when a new environ-
ment arises. The memory is divided into four parts.
The first three parts are used to identify the current
environment based on the camera, light, and micro-
phone sensory inputs of the robot. The last part is used
to store each of the network’s data (e.g., trained synap-
tic weights, fitness, and training time).

The working mechanism of DMASNN can be
briefly summarized in two main aspects (see the flow-
chart in Figure 5 for further details):

1. When the robot identifies a new environment, it
builds a new hidden node with random pre- and
postsynaptic weights, places it into ASNN, trains

the network in the environment, and stores its data
in its related node. If the environment is changed
before the network is completely trained or if the
network is not called by the robot for a certain
period of time, the connection to its node will
gradually fade and the network will be signed as
an un-completed trained network (UCTN). Using
the above two conditions, we can ensure that most
of the time there will be at least a candidate net-
work in UCTN. This phenomenon could be equiv-
alent to the short-term memory in the biological
brain because it is not given much time for memo-
rizing and is therefore easily forgotten.

2. When the robot faces an environment that it has
already been trained in, the memory searches the
tree, beginning at the root and successively mov-
ing down, following the sequence of the high-level
sensor’s input, until it reaches the required leaf with
the trained hidden neuron and simply replaces it in
the network and continues the training.

We have applied two useful techniques that were
incorporated into DMASNN to enhance the memory
ability. These techniques were based mainly on track-
ing the adaptation history of the robot and using it in
the future. The first technique, called environment’s
similarity marker (ESM), was designed to speed up
the learning mechanism during the robot’s navigation.
The second, called forgetting and dynamic clustering
mechanisms (FDCM), was designed to forget and to

Figure 4 DMASNN layout. Networks’ data are stored in
the nodes (n0–n31).

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Alnajjar et al. A Hierarchical Adaptive Controller with Memory 185

cluster some of the nodes inside the memory to guar-
antee within its maximum. The next two subsections
will introduce ESM and FDCM, respectively.

3.2.1 ESM In the belief that similar problems could
have similar solutions (Leake & Wilson, 1999), it may
be worthwhile using networks that have similar syn-
aptic weights to deal with similarly structured envi-
ronments, or at least to initialize newly created
network synaptic weights from the point where the old
trained one has stopped, instead of initializing it ran-
domly. In other words, generate a solution on the basis
of already acquired knowledge and experience in the
memory.

In this study, therefore, ESM is introduced to the
memory. This technique gradually learns how to pre-
dict organized synaptic weights based on the current
available knowledge when a new ASNN needs to be
built. ESM evolves by observing the trained network’s
behaviors, that is, it evolves based on the correlation
between the trained ASNNs, in the low-level, and its
related environments. Learning these relationships
helps the high-level unit to gradually build managed
synaptic weights in the newly created ASNN, which
can speed up the robot’s adaptation time in new envi-
ronments. For instance, if a network X1 trained and
performed well in an environment Y1, and if there is an
environment Y2 which is 80% similar to the environ-
ment Y1, then it may be worth creating network X2,
which is a copy of network X1, to perform the task in
environment Y2, instead of creating a network Z with
initial random synaptic weights and starting the learn-
ing from the initial state. In this study, ESM’s synaptic
weight copy conditions were programmed based on
our observation during the experiments as follows:

• If ESM’s value ≥ 80%, then the old synaptic
weights found will all be copied to the new net-
work and continue the training in the new envi-
ronment.

• If ESM’s value ≥ 60%, then the less activated side
of the old synaptic weights found will be ran-
domly regenerated and copied with the other
remaining weights to the new network.

• If ESM’s value ≥ 40%, then the postsynaptic
weights of the old existing network will be ran-
domly regenerated and copied with the other
remaining weights to the new network.

• If ESM’s value < 40%, then the whole synaptic
weight will be randomly generated for the new
network.

Figure 5 (dotted boxes) illustrates the working mecha-
nism of ESM. When the environment is changed,
ESM stores its maximum fitness, synaptic weights,
and the training time in a particular node. Thereafter it
compares the synaptic weights with the networks that
share the same branch in the memory, and a similarity
value is then assigned to this branch’s level as in
Equations 5 and 6.

 If (current < old) (5)

If (current > old) (6)

where “current” represents the last trained network,
while “old” represents the previously trained networks
that shared the same node with the “current” one. Fur-
ther explanation is provided by the result of the sec-
ond experiment (Section 5.2).

3.2.2 FDCM Although it is unfair to limit the amount
of experience that the robot can learn by limiting the
memory size, it is, however, not practical to keep add-
ing nodes to the memory for any incoming experience
(the memory could exceed the maximum). The robot
therefore needs to control its memory size by knowing
what to forget, what to remember, and how to manage
its experiences by clustering similar ones to minimize
its need for storage space. Information that has greater
correlation with others can be mentally connected to
the existing related information in the memory. This
correlation can be measured by ESM (Equations 4
and 5).

ESMn

current[|left.Pre_syn. – left.post_syn|

|right.Pre_syn. – right.post_syn|] + 
 
 

old[|left.Pre_syn. – left.post_syn|

|right.Pre_syn. – right.post_syn|] + 
 
 
--- * 100=

ESMn

old[|left.Pre_syn. – left.post_syn|

|right.Pre_syn. – right.post_syn|] + 
 
 

current[|left.Pre_syn. – left.post_syn|

|right.Pre_syn. – right.post_syn|] + 
 
 
--- * 100=

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

186 Adaptive Behavior 17(3)

In this section, we introduced a FDCM to control
DMASNN memory size. See the dashed boxes in Fig-
ure 5. The novelty of this technique is that it combines
forgetting and clustering mechanisms (Kira & Arkin,
2004; Zimmermann, 2003). When the memory becomes
full, the networks that are marked by UCTN become
candidates for gradual removal from the memory until

free space is made available for more new experi-
ences. The main reasons for deleting existing UCTN
from the memory are:

1. These networks have not obtained much experi-
ence in the environment, that is, the robot has not
spent much time training them. Therefore, retrain-

Figure 5 DMASNN’s working mechanism. Dotted and dashed boxes represent the working of ESM and FDCM re-
spectively.

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Alnajjar et al. A Hierarchical Adaptive Controller with Memory 187

ing them if their environments are reintroduced
will not be very time consuming.

2. Some of these networks could have been initial-
ized with very complex synaptic weights during
training. Therefore, regenerating the network at a
later time could give the robot a chance to develop
a better initial synaptic weight.

If after deleting all the existing UCTN the memory
is still full, the dynamic clustering mechanism starts to
operate, that is, the connections between the nodes are
reorganized. It starts clustering all similar networks in
the level ESM1. The network that has a longer experi-
ence time and better fitness than others will survive.
The clustering range gradually grows wider (ESMn + 1)
as the memory gets full, that is, more trained networks
with less correlated environments could cluster together
to form a group of networks with a wider range of adap-
tation. Note that increasing the clustering range of the
less correlated networks can decrease the robot’s per-
formance in some domains, because one network needs
to survive in a wide range of environments.

4 The Robot and the Environment

4.1 The Physical Robot e-Puck

The miniature mobile robot e-Puck was originally
developed for educational purposes (http://www.e-
puck.org). As illustrated in Figure 6a, it is equipped
with a large number of sensors: eight infrared (IR)
proximity sensors with a detection distance of 3–4 cm,
eight light sensors, three omnidirectional microphones
and a color camera with a resolution of 640 × 480 pix-
els. As output, in addition to the two wheels e-Puck is
equipped with a speaker and LEDs. The communica-
tion links supported by e-Puck are the standard RS232,
an infrared remote control, and Bluetooth. On Blue-
tooth, there is a serial line emulation supported by any
PC, making communication and the development of
PC software simple. In all the experiments reported
here, we used the Bluetooth connection to transfer
data to and from the robot.

4.2 The Dynamic Environments

In this study, 26 different types of physical environ-
ments can be built with fixed position obstacles as
shown in Figure 6b. Each environment is identifiable

by the obstacles’ colors, surrounding brightness, and
sound. These identifiable marks can be easily recog-
nized by the high-level unit sensory inputs, such as the
color camera, light sensors, and microphones, respec-
tively. Each of these sensors were set to give four dif-
ferent binary readings based on its value (see Table 1),
and produce an impact to the IR sensors’ readings as
illustrated in Figure 7. For instance, if the environ-
mental has white obstacles, maximum surrounding
light, and maximum sound level, then the high-level’s
camera sensors, light sensors, and microphones will
reflect the values 00, 11, 11, respectively; the robot
will identify this environment as (00-11-11). Notice
that the obstacles’ color, the surrounding light, and the
sound level that we use are easy recognizable by the
high-level unit sensors, that is, the recognition error is
very low.

5 Experiments and Results

In this section, we show the adaptation process of the
low-level unit in the local environment, the validity of

Figure 6 The locations of input sensors and output mo-
tors in e-Puck (a). The environment’s layout (b).

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

188 Adaptive Behavior 17(3)

the memory coping with different environments, and
the working mechanisms of both ESM and FDCM.

5.1 Adapting in a Local Environment with a
Single Run

This experiment briefly summarizes the adaptation
mechanism of ASNN for the robot to perform a navi-
gation task in a local environment with a single run.

This mechanism takes place in the low-level unit (Fig-
ure 1b).

In such a task, the robot is required to at least have
left and right proximity sensors and left and right
motors. When the robot recognized a new environment
with its high-level sensory inputs, the high-level unit
built an ASNN with random synaptic weights unique to
this environment. During the robot’s life, these synaptic
weights were gradually modified by the mechanism
of STDP whenever the robot performed any undesired
behavior. The modification in synaptic weights depended
on the sensitivity between the pre- and postsynaptic
firing rates and the effect of presynaptic modulation in
the activated sensorimotor side. This modification
autonomously generated the obstacle avoidance behav-
ior in the mobile robot. Therefore, while the robot was
moving, the activation of the left/right sensor resulted
in an increase in the left/right motor activity and a
decrease in the right/left motor activity to avoid obsta-
cles on the left/right side of the robot and keep moving
forward in the environment (see the demonstration in
Figure 8). Further details of this experiment can be
found in Alnajjar and Murase (2008b). Figure 9 illus-
trates the adaptation process of the robot’s perform-
ance in environment (00-00-00). The performance was

Table 1 Extracting a binary reading from the high-level robot’s sensors.

High-level sensors Environment’s setup Sensor reading Sensors representations

Color camera

White obstacles > 230 00

Light gray obstacles [140, 190] 01

Dark gray obstacles [80, 120] 10

Black obstacles < 50 11

Light sensors

Normal light > 3950 00

Extra 40 Volt [3800, 3900] 01

Extra 60 Volt [3400, 3600] 10

Extra 80 Volt < 3200 11

Microphones

No sound < 3% 00

10 KHz [5, 20]% 01

5 KHz [30, 70]% 10

300 Hz > 80% 11

Figure 7 The impact of other sensory inputs on IR sen-
sor readings. Each data point represents an average of
five readings of IR sensors that are 2 cm away from an
obstacle.

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Alnajjar et al. A Hierarchical Adaptive Controller with Memory 189

measured by the rewards that the robot earned during
its training as follows:

• +30 points, if both wheels were moving forward;
• +15 points, if the robot was turning right (left) to

avoid a left (right) obstacle;
• –30 points, if the robot was turning right (left) to

avoid a right (left) obstacle;

• –10 points, if robot was turning itself around or
moving backward.

5.2 Memorizing, Learning, and Switching
Mechanisms

This experiment was conducted to evaluate the per-
formance of the high-level unit (robot’s memory) in
memorizing different experiences and its ability to
switch between these experiences based on the current
situation. It was also designed to examine whether or
not the learning performance of ESM can speed up
the adaptation time of the robot in new environ-
ments.

In this experiment, seven randomly generated
physical environments were introduced sequentially to
the robot for 30 min each. Each environment was iden-
tified by its obstacle’s color (O), surrounding brightness
(B), and sound (S), (see Table 2). In each environment,
the robot was left to navigate freely until the desired
behavior was obtained and then it was moved directly to
the next environment. The latest memory structure is
shown in Figure 10. Notice that from those introduced
environments, the levels of ESM2, ESM4, and ESM6

were trained by Equations 5 and 6. ESM6 was trained
after the training in environment 2 was completed,
ESM4 was trained by environment 4, and ESM2 was
trained by environments 3, 5, and 7.

In this experiment, we also monitored the robot’s
performance in each environment. The results are
shown in Figure 11. From the figure, we can clearly
see that the proposed algorithm can substantially
improve the performance of the robot in a dynamic
environment. In other words, the robot used its past
knowledge to deal with future situations: (a) For
repeated environments the robot simply switched to
the desired network and continued the training (e.g.,
environment 6); (b) For new environments, after some
of the ESMi levels were trained, the robot used these
trained levels to predict networks having weights that
were close to the optimal ones (e.g., environments 5

Figure 8 The final robot’s behavior for avoiding left (a)
or right (b) obstacles. Regarding the synaptic weight
modifications done by STDP, in (a)/(b), the firing rate of
the left/right motor neuron LM/RM is larger than the firing
rate of right/left motor neuron RM/LM when the left/right
sensors are activated LS/RS, respectively. The arrows in-
side the motors illustrate the motors’ movement direction.

Figure 9 The adaptation process of the robot’s perform-
ance in environment (00-00-00) for 30 min. The perform-
ance was measured every 60 s for a single trial.

Table 2 Seven environments introduced to the robot.

Env. No 1
O B S

2
O B S

3
O B S

4
O B S

5
O B S

6
O B S

7
O B S

Env. ID 00 00 00 10 11 10 00 00 10 00 10 00 00 10 10 00 00 10 10 11 00

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

190 Adaptive Behavior 17(3)

and 7). In both cases the robot could therefore shorten
the adaptation time.

We then introduced the same sequence of physical
environments (Table 2) to the robot that has ASNN
without a memory (Alnajjar & Murase, 2008b). Fig-
ure 12 illustrates the results of the robots’ adaptation
times in both situations. It can be seen from the figure
that the robot adapted by DMASNN had used its
memory to decrease its adaptation time in the new
environments. The network that was generated to nav-
igate in environment 3, for instance, was also used to
navigate in environment 6 and, therefore, the adapta-
tion time was very short. In contrast, the robot which
had no memory trained in each environment inde-
pendently, without considering its past knowledge to
enhance its ability. For instance, even though environ-
ment 6 was a copy of environment 3, which the robot
had trained in before, the adaptation times for both
environments were almost equal.

5.3 Memory Controlling

In this experiment, we examined the ability of FDCM
to control the memory size. We continued the prior

experiment by introducing an additional eight random
physical environments to the robot. Therefore, in total,
15 physical environments were introduced sequentially
to the robot, two of them were replicated and the other
13 were different. With these 13 different environments,
all ESM levels were trained by Equations 5 and 6. The
trained ESM values are shown in Table 3. Thereafter,
because of the difficulty of filling up the memory with
real environments, and because of our robot’s limited
ability, we built a memory simulation and fed it with
the trained ESM values (Table 3). For this simulation,
we introduced a random number of simulated environ-
ments between (00-00-00) and (11-11-11), as well as a
random training time for each environment. Table 4
shows the memory performance in the physical and
the simulated environments.

From Table 4, we can see that the memory does not
delete or cluster any networks if it still has free space
(the first three rows in Table 4). When the amount of
experience exceeds the memory capacity, forgetting
and clustering mechanisms operate in sequence. The
robot forgot three environments from the 35 intro-
duced environments without any clustering operation
(the fourth row in Table 4). In the fifth row, eight

Figure 10 Memory structure after applying seven random environments to the robot. The seven new environments
were recognized successfully by the robot. Six were new and one environment was replicated. Each environment was
represented by one node at the latest leaf of the tree. Thick lines show the networks that were created by ESM: net-
works 5 and 7 were copied from networks 4 and 2 respectively, after ESM2 was trained. When environment 6, which is
a duplicate of environment 3, was reintroduced, the robot directly switched to network 3, without building a new network.
Latest ESM values are shown at the right side of the figure.

Table 3 ESM’s values.

ESMn 1 2 3 4 5 6

ESM value 91.5% 82.9% 76% 59.4% 42.5 26.8

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Alnajjar et al. A Hierarchical Adaptive Controller with Memory 191

environments were forgotten and 15 were clustered at
(ESM1 = 91.5%). In the last row, when 61 new envi-
ronments were introduced, 11 environments were for-
gotten and 18 were clustered at (ESM2 = 82.9). The
clustering level gradually modified itself based on
ESM to overcome the new incoming experiences.

5.4 Validity

Experimental results prove the validity of the proposed
controller. Experiment 1 examined the performance
of SNN at the low-level. The synaptic weights were
adapted online whenever the robot performed unde-

Figure 11 The robot performances in the seven environments addressed in Table 2. Vertical dotted lines illustrate the
time needed for the robot to reach the desired behavior.

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

192 Adaptive Behavior 17(3)

sired behavior. The robot adapted to the given environ-
ment, navigating smoothly while avoiding obstacles,
within a short time.

Experiment 2 showed the performance of the
proposed memory at the high-level. The memory con-
structed its branches online based on the new environ-

Table 4 FDCM and memory performance.

No. of
Env.

New
Env.

Repeated
Env.

Extra
Env.

Forgotten
networks

Clustered
networks

Clustered
threshold level

(by ESM’s)

Number of
trained

environments

Number
of used
nodes

R
ea

l 7 6 1 – 0 0 100% 6 6

15 13 2 – 0 0 100% 13 13

Si
m

ul
at

io
n

32 27 5 – 0 0 100% 27 27

50 35 15 3 3 0 100% 35 32

100 55 45 23 8 15 91.5% 55 32

150 60 90 28 9 19 91.5% 60 32

200 61 139 29 11 18 82.9% 61 32

Figure 12 The adaptation time of the robot in the series of seven environments by: (a) DMASNN, (b) ASNN without
memory.

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Alnajjar et al. A Hierarchical Adaptive Controller with Memory 193

ments that were identified by the high-level robot’s
sensors. ESM was also examined at this stage. The
correlations between the introduced environments
based on their identification and the network behavior,
were taken into account. The newly added network was
used to update the value of ESM at the related level,
which represents the correlations between this network
and all networks that share the same ESM level.

Experiment 3 examined the validity of the FDCM.
Networks with less performance or training time were
more likely candidates to be forgotten from memory
when the memory required extra space. If the forget-
ting process did not fulfill the memory requirement, a
dynamic classifying mechanism started to operate.
This operation relied on the value of ESMi, starting
from i = 1 (minimum), that is, environments with high
correlations. Thereafter, it gradually increased to i =
maximum, that is, environments with fewer correla-
tions, depending on how much space was needed by
the memory. Note that although forcing the memory
to cluster a larger number of environments, that is,
increased i in ESMi, could lead to more space in the
memory, it could also lead to lower performance and
thus may cause confusion in the robot.

6 Discussion

Xiao et al. (1997), Lin (1992), and Vasudecan and
Ganesan (1994) have all tried to solve robot naviga-
tion tasks with various degrees of success. In these
works the mechanisms were implemented at a local
level and did not guarantee a stable representation if
the input distribution changed over time. Dissanayake
et al. (2001) tried to solve a dynamic environment
without any memory algorithm. Using this approach,
the robot forgot everything it had learned from the
environment immediately after it moved to a new one.

Likhachev et al. (2002) used a kind of memory to
solve dynamic problems. Although it seems to be suc-
cessful in their simulation, in order to control the
memory size they have applied a kind of forgetting
mechanism that is activated when the memory gets
full. It is easy to argue that forgetting some cases can
have adverse effects on the performance of the robot
in some domains. In work reported by Kira and Arkin
(2004), the memory stopped accepting any new
incoming information if there were no candidate cases
to remove. This, of course, limits the robot’s learning

ability. Zimmermann (2003) applied a kind of mem-
ory for dynamic problems with a clustering mecha-
nism to control its size. However, the clustering
threshold is fixed and initially predefined. Verschure
et al. (2003), built DAC, a hierarchical adaptive con-
troller represented by three main levels to address a
new idea for learning and memory. His work proved
the importance of attaching a memory to the robot
control system to guarantee its stability.

In contrast to the above approaches, in our model
we developed a hierarchical adaptive controller with
dynamic memory that can: (a) remember the maxi-
mum possible experiences that the robot has gone
through; (b) learn from the relation between stored
experiences to predict advance synaptic weights that
are close to the optimal ones, to speed up the adapta-
tion time for new environments; (c) forget only the
networks that are not well trained or that initially have
bad synaptic weights and take a long time to train; (d)
cluster the trained networks that are, to some degree,
performing similar behaviors with an online changea-
ble threshold value (ESM) that is based on the current
memory capacity. Although our algorithm guarantees
to find a space for huge numbers of new environ-
ments, it cannot guarantee that the robot will perform
well in all of these environments; neither can human
memory because one network needs to survive in a
wide range of different environments. FDCM has a
reverse relationship with the number of introduced
environments with respect to the robot’s memory size
and the correlation between these environments.

We believe that such a consideration can be rea-
sonably accepted in respect of how our brain works.
The more the robot increases the clustering level (i.e.,
ESMn++), the lower performance it can achieve and
the more confusion may occur.

7 Conclusion and Future Direction

In this article we described DMASNN, an adaptive
controller with dynamic memory for an autonomous
mobile robot in dynamic environments. Two-level
units were used in the controller: a high-level unit that
regulated the robot’s memory using a tree-type mem-
ory structure and a low-level unit that made the robot
adaptable to a local environment by ASNNs.

In this study, two key aspects that enhance the
ability of DMASNN were studied: (a) whether the

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

194 Adaptive Behavior 17(3)

robot was able to learn from its past knowledge to
speed up its learning ability in a series of dynamic
environments using the environment similarity marker
ESM, and (b) how the memory size could be control-
led without limiting the robot’s learning ability by
using the forgetting and dynamic clustering mecha-
nisms FDCM. Our results showed that the proposed
DMASNN could consistently adapt well to all the
environments tested in a very short amount of time. In
addition, it could control the memory size by manag-
ing and classifying its experiences. In this model, the
robot frequently restructured its memory (behavior)
based on its available knowledge.

We believe that the memory component presented
in this study is simple and general and can be success-
fully applied to a broad range of tasks or environ-
ments. The low-level unit (learning level), therefore,
can be replaced by any type of network architecture or
learning algorithm, for example, the work in Zin,
Alnajjar, and Murase (2009). In contrast with earlier
reported work, which had no clear virtual memory,
this model offers a unique ability for memorizing dif-
ferent environments and managing different networks
to deal with each environment independently, as well
as controlling the memory size.

More experimental data needs to be collected to
test the capability of DMASNN, and more formal com-
parisons with existing similar algorithms are planned
for the future. We are also planning to improve decod-
ing and encoding data to and from the memory. The
nodes that are repeatedly firing in the memory can
improve the robot’s skill in some domain, and there-
fore, build strong experiences which are hard to forget
and vice versa for those which are non-periodically fir-
ing. We are also planning to implement this algorithm
on a large office-like robot (e.g., Robovie-R) with var-
ious types of sensory inputs and motor outputs, simi-
lar to the network introduce in Alnajjar and Murase
(2008a), to evaluate the validity of the proposed adap-
tive controller.

Acknowledgments

This work was supported by grants to KM from the Japanese
Society for Promotion of Sciences, Yazaki Memorial Founda-
tion and by the University of Fukui.

References

Albus, J. S. (2000). 4-D/ RCS Reference model architecture for
unmanned ground vehicles. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation (pp.
3260–3265). New York: IEEE.

Alnajjar, F., & Murase, K. (2006a). An autonomous mobile
robot controlled by a spike neuron network with one hid-
den-layer neuron having spike timing-dependent plastic-
ity. In Proceedings of 3rd International Conference on
Soft Computing and Intelligent Systems and 7th Interna-
tional Symposium on Advanced Intelligent Systems (pp.
207–212), Tokyo, Japan.

Alnajjar, F., & Murase, K. (2006b). Self organization of spik-
ing neural network that generates autonomous behavior in
a real mobile robot. International Journal of Neural Sys-
tems, 16, 229–239.

Alnajjar, F., & Murase, K. (2008a). Sensor-fusion in spiking
neural network that generates autonomous behavior in real
mobile robot. In Proceedings of International Joint Con-
ference on Neural Networks (pp. 2201–2207).

Alnajjar, F., & Murase, K. (2008b). A simple adaptive control-
ler for autonomous mobile robot: An Aplysia-like spiking
neural network with one hidden-layer neuron and spike tim-
ing-dependent plasticity. Adaptive Behavior, 16, 306–324.

Branke, J. (2002): Evolutionary optimization in dynamic envi-
ronments. In Series of genetic algorithms and evolutionary
computation, Vol.3. Norwell, MA: Kluwer Academic Pub-
lishers.

Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing:
A framework for memory research. Journal of Verbal
Learning and Verbal Behavior, 11, 671–684.

Dempsey, P. W., Vaidya, S. A., & Cheng, G. (2003). The art of
war: Innate and adaptive immune responses. Cellular and
Molecular Life Sciences, 60, 2604–21.

Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant
Whyte, H. F., & Csorba, M. (2001). A solution to the
simultaneous localization and map building (SLAM)
problem. IEEE Transactions on Robotics and Automation,
17, 229–241.

Floreano, D., & Mattiussi, C. (2008). Bio-inspired artificial intel-
ligence: Theories, methods, and technologies. Cambridge,
MA: MIT Press.

Floreano, D., Zufferey, J. C., & Nicoud, J. D. (2005). From
wheels to wings with evolutionary spiking neurons. Artifi-
cial Life, 11, 121–138.

Gantovnik, V. B., Anderson-Cook, C. M., Gurdal, Z., &
Watson, L. T. (2003). A genetic algorithm with memory
for mixed discrete-continuous design optimization. Com-
puters & Structures, 81, 2003–2009.

Glickman, M., Balthrop, J., & Forrest, S. (2005). A machine
learning evaluation of an artificial immune system. Evolu-
tionary Computation, 3, 179–212.

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Alnajjar et al. A Hierarchical Adaptive Controller with Memory 195

Kira, Z., & Arkin, R. C. (2004). Forgetting bad behavior: Mem-
ory management for casebased navigation. In Proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (Vol. 4, pp. 3145–3152).

Kumar, R., & Stover, J. A. (1998). A behavior-based intelligent
control architecture. In Proceedings of the 1998 IEEE
International Symposium on Intelligent Control (pp. 549–
553), Gaithersburg, MD.

Leake, D., & Wilson, D. (1999). When experience is wrong:
Examining CBR for changing tasks and environments. In
Proceedings of the 3rd International Conference on Case-
Based Reasoning (pp. 218–232). Springer: Berlin.

Lehman, T. J., & Carey, M. J. (1986). A study of index struc-
tures for main memory database management systems. In
Proceedings of the 12th International Conference on Very
Large Data Base Endowment (pp. 294–303).

Likhachev, M. Kaess, M., & Arkin, R. C. (2002). Learning
behavioral parameterization using spatio-temporal case-
based reasoning. In Proceedings of IEEE International
Conference on Robotics and Automation (Vol. 2, pp.
1282–1289).

Lin, L. J. (1992). Self-improving reactive agents based on
reinforcement learning and teaching. Machine Learning,
8, 293–321.

McCallum, M. K. (1996). Reinforcement learning with selec-
tive perception and hidden state. Unpublished doctoral
dissertation, Doctoral dissertation, Department of Compu-
ter Science, Rochester University, New York, USA.

McClelland, J. (2005). How far can you go with Hebbian learn-
ing, and when does it lead you astray? In Y. Munakata &
M. H. Johnson (Eds.), Attention and performance XXI:
Processes of change in brain and cognitive development.
Oxford: Oxford University Press.

Moore, A. W. (1990). Efficient memory-based learning for
robot control. Ph.D. Thesis, Technical Report No. 229,
Computer Laboratory, University of Cambridge.

Nielsen, J., & Lund, H. H. (2003). Spiking neural building
block robot with Hebbian learning. In Proceedings of
International Conference in Intelligent Robots and Sys-
tems (pp. 1363–1369). Las Vegas, Nevada.

Noice, H., & Noice, T (2006). What studies of actors and acting
can tell us about memory and cognitive functioning. Cur-
rent Directions in Psychological Science, 15, 14–18.

Nowostawski, M., Epiney, L., & Purvis, M. (2005). Self-adap-
tation and dynamic environment experiments with evolva-
ble virtual machines. In: S. Brueckner, G.Di. Marzo
Serugendo, D. Hales, & F. Zambonelli (Eds.), Proceed-
ings of the 3rd International Workshop on Engineering
Self-Organizing Applications (pp. 46–60). Berlin: Springer-
Verlag.

Paine, R. W., & Tani, J. (2005). How hierarchical control self-
organizes in artificial adaptive systems. Adaptive Behav-
ior, 13, 211–225.

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive
Hebbian learning through spike-timing dependent synap-
tic plasticity. Nature Neuroscience, 3, 919–926.

Squire, L., Bloom, F., McConnell, S., Roberts, J., Spitzer, N.,
& Zigmond, M. (2007). Fundamental neuroscience (2nd
ed.) (pp. 1277–1283). San Diego: Academic Press.

Stening, J., Jacobsson, H., & Ziemke, T. (2005). Imagination
and abstraction of sensorimotor flow: towards a robot
model. In Proceedings of the Symposium on Next Genera-
tion Approaches to Machine Consciousness (pp. 50–58),
UK.

Tan, M. (1991). Cost-sensitive reinforcement learning for
adaptive classification and control. In Proceedings of the
9th National Conference on Artificial Intelligence (pp.
774–780). San Jose, CA: AAAI Press.

Tani, J., & Nolfi, S. (1999). Learning to perceive the world as
articulated: an approach for hierarchical learning in sen-
sory-motor systems. In R. Pfeifer, B. Blumberg, J. A.
Meyer, & S. W. Wilson (Eds.), Proceedings of 5th Inter-
national Conference on Simulation of Adaptive Behavior
(pp. 270–279). Cambridge, MA: MIT Press. (The revised
version is in Neural Networks, 12, 1131–1141, 1999.)

Vasudecan, C., & Ganesan, K. (1994). Case-based path
planning for autonomous underwater vehicles. In
Proceedings of IEEE International Symposium on
Intelligent Control (pp. 160–165).

Verschure, P. F. M. J., & Althaus, P. (2003). A real-world
rational agent: Unifying old and new AI. Cognitive Sci-
ence, 27, 561–590.

Verschure, P. F. M. J., Voegtlin, T., & Douglas, R. J. (2003).
Environmentally mediated synergy between perception
and behavior in mobile robots. Nature, 425, 620–624.

Xiao, J., Michalewicz, Z., Zhang, L., & Trojanowski, K.
(1997). Adaptive evolutionary planner/navigator for
mobile robots. IEEE Transactions of Evolutionary
Computation, 1, 18–28.

Zimmermann, A. (2003). Context-awareness in user modeling:
Requirements analysis for a case-based reasoning applica-
tion. In K. D. Ashley, & D. G. Bridge, (Eds.), Case-based
reasoning research and development. Lecture Notes in
Artificial Intelligence, 2689/2003, (pp. 718–732). Berlin:
Springer-Verlag.

Zin, I., Alnajjar, F., Murase, K. (2009) Adaptation of real
autonomous mobile robot in complex environment using
pattern association network controller (PAN-C). Journal
of Advanced Computational Intelligence and Intelligent
Informatics, 13(3).

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

196 Adaptive Behavior 17(3)

About the Authors

Fady S. K. Alnajjar is a Ph.D. student in the department of System Design Engineering,
University of Fukui, Japan. He received a master degree in the Department of Human
and Artificial Intelligence Systems in the same university (2007). His main research
interest is developing a biologically inspired adaptive controller with dynamic memory for
a physical mobile robot. Address: University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507,
Japan. E-mail: fady@synapse.his.fukui-u.ac.jp

Indra Bin Mohd Zin obtained a BE degree in the Department of Human and Artificial
Intelligence Systems at the University of Fukui in March 2008. He continues his study for
Master degree in the same institution. He is interested in building autonomous behavior
of physical robots.

Kazuyuki Murase has been a Professor at the Department of Human and Artificial Intel-
ligence Systems, Graduate School of Engineering, University of Fukui, Fukui, Japan,
since 1999. He received an M.E. in electrical engineering from Nagoya University in
1978, and a Ph.D. in biomedical engineering from Iowa State University in 1983. He
became a research associate at the Department of Information Science of Toyohashi
University of Technology in 1984, an associate professor at the Department of Informa-
tion Science of Fukui University in 1988, and a professor in 1992. He is a member of the
Institute of Electronics, Information and Communication Engineers (IEICE), the Japa-
nese Society for Medical and Biological Engineering (JSMBE), the Japan Neuroscience
Society (JSN), the International Neural Network Society (INNS), and the Society for Neu-
roscience (SFN). He serves on the Board of Directors of Japan Neural Network Society
(JNNS), as a Councilor of Physiological Society of Japan (PSJ) and as a Councilor of
Japanese Association for the Study of Pain (JASP).

 at Katholieke Universiteit Leuven on March 15, 2010 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

