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a b s t r a c t

In this paper a new general purpose perceptual control architecture, based on nonlinear neural lattices, is
presented and applied to solve robot navigation tasks. Insects show the ability to react to certain stimuli
with simple reflexes, using direct sensory-motor pathways, which can be considered as basic behaviors,
inherited and pre-wired. Relevant brain centres, known as Mushroom Bodies (MB) and Central Complex
(CX) were recently identified in insects: though their functional details are not yet fully understood, it
is known that they provide secondary pathways allowing the emergence of cognitive behaviors. These
are gained through the coordination of the basic abilities to satisfy the insect’s needs. Taking inspiration
from this evidence, our architecturemodulates, through a reinforcement learning, a set of competitive and
concurrent basic behaviors in order to accomplish the task assigned through a reward function. The core of
the architecture is constituted by the so-called Representation layer, used to create a concise picture of the
current environment situation, fusing together different stimuli for the emergence of perceptual states.
These perceptual states are steady state solutions of lattices of Reaction–Diffusion Cellular Nonlinear
Networks (RD-CNN), designed to show Turing patterns. The exploitation of the dynamics of the multiple
equilibria of the network is emphasized through the adaptive shaping of the basins of attraction for
each emerged pattern. New experimental campaigns on standard robotic platforms are reported to
demonstrate the potentiality and the effectiveness of the approach.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Current approaches to the implementation of cognitive systems
are mainly divided into two classes: the cognitivist approach
based on symbolic information processing, and the emergent
systems approach. The former often used Artificial Intelligence
technique, while the latter focused on the exploitation of self-
organization in dynamical systems. This is often based on bio-
inspired solutions, relying on distributed networks mimicking the
cerebral system. In some cases both approaches are used, creating
hybrid architectures (Vernon, Metta, & Sandini, 2007).
Drawing inspiration from perceptual mechanisms of biological

systems, machine perception researchers are starting to develop
new perception schemes for roving robots. For example, Verschure
and co-workers developed a perceptual scheme (Distributed
Adaptive Control, DAC5) as a neural model for classical and
operant conditioning (Verschure, Voegtlin, & Douglas, 2003).
Recently Gnadt and Grossberg (2008) introduced SOVEREIGN, a
neural architecture that can incrementally learn planned action
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sequences to carry out route-based navigation towards a rewarded
goal. The architecture includes several interacting subsystems
which model complementary cortical properties summarized
in the What and Where processing streams. Other interesting
approaches were proposed by Freeman and co-workers. They
developed a dynamicalmodel of the olfactory system, called K-sets
(Freeman, 1987). A discrete implementation of Freemans K model
(i.e. KA sets) was developed and applied to navigation control
of autonomous agents (Harter & Kozma, 2005). The controller
parameters have been learned through an evolutionary approach
and also by using unsupervised learning strategies (Harter, 2005).
In this paper, following the paradigm known as Behavior-

Based Robotics (Arkin, 1991), in which the perceptual process
is considered tightly interconnected with the agent behavioral
needs, perception has been treated as an emerging complex
phenomenon. Here a large amount of heterogeneous information
is fused to create an abstract and concise internal representation
of the surrounding environment, which at the same time takes
into account the needs and the motivation of the agent (Brooks,
1994), while the whole process is mediated through a behavioral-
dependent internal state (Nolfi, 2002).
Starting from these considerations and taking into account the

latest results in the field of neurobiology (Freeman, 2004) and the
advancement in artificial cognitive system (Vernon et al., 2007),
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we developed a general control architecture for implementing the
sensing-perception-action cycle (Lynch, 1960) to be potentially
applied to different robotic platforms involved in several missions
in cluttered environments. To this aim, we borrowed from the
insect world neural structures responsible for both simple and
complex behaviors.
The internal representation of the external world, used for the

action or behavior selection, is formalized by using Turing patterns
(Murray, 2002; Turing, 1952). Classical examples of Turing patterns
are animal coat patterns (stripes, spots and so on). In this work,
Turing patterns are obtained in a nonlinear dynamical system, a
Reaction–Diffusion CNN (RD-CNN) (Goras & Chua, 1995), as steady
state conditions. More formally, they are attractors in complex
nonlinear dynamical systems for particular sets of environmental
stimuli and serve to modulate, through a reinforcement learning,
competitive and concurrent basic behaviors. Learning is also
introduced in the afferent layer to shape the basins of attraction
of the Turing patterns in order to enhance this form of dynamic
classification of the sensory events. This learningmechanism leads
to the formation of abstract and flexible internal representations,
mediated both by the environment and the agent needs. The
second order cells within the RD-CNN mimic non-spiking neuron
models, like neurons of group 12 in the pleural ganglia of the sea
mollusk Clione Limacina (Orlovsky, Deliagina, & Grillner, 1999).
These non-spiking neurons are enrolled when a sudden speed
variation has to take place, induced by external or even, as argued
in Arshavsky, Panchin, and Pavlova (1989), internal (e.g. humoral)
motivations. These steady state plateau potentials in this neuron
group lead to a suitable modulation of the animal motion, to
fulfill a given motivation. From a structural point of view, in this
work Turing patterns are generated within an array of non-spiking
neurons in a RD-CNN. They are used to form percepts, i.e internal
representations of the external world information. It should be
pointed out that the sameCNN cell neural structure,with a suitable
modulation of its parameters, can generate spiking dynamics that
were used to model the Central Pattern Generator in bio-inspired
robots (Arena, Fortuna, & Branciforte, 1999). Therefore, the RD-
CNN structure can be considered as the basic unit to generate the
suitable neural, self-organizing dynamics at different levels in an
artificial brain architecture. It should be noted that several VLSI
analog implementations of RD-CNNs have been developed (Arena,
Fortuna, Frasca, & Patané, 2005). Such chip prototypes are hosted
within boards containing programmable digital hardware, in such
a way that complex dynamics representing the solutions within
the chip canbepost processed allowing a real time implementation
of the whole architecture for robot control.
In this work we assigned to the robot, as a simple case of

study, a foraging task. To investigate the learning capability of the
proposed architecture, both simulations in a virtual environment
and experiments on a roving robot have been considered.

2. Control architecture

As in insects, the proposed perceptual architecture is organized
in various control levels consisting of functional blocks, acting
either at the same level, as competitors, or at distinct hierarchical
levels showing the capability to learn more complex, experience-
based behaviors (Wessnitzer & Webb, 2006).
The control architecture is reported in Fig. 1. It consists of

series of parallel sensory-motor pathways (i.e. basic behaviors)
that are triggered and controlled by specific sensory events in
a reflexive way, giving the knowledge baseline to the system.
Going up in the hierarchical scheme, two relevant centres of the
insect brain are considered: the Mushroom Bodies (MB) and the
Central Complex (CX). BothMB and CX are not yet well understood
from a biological/neurogenetic point of view. However interesting
Fig. 1. Functional block diagram of the implemented control architecture. The
interaction between the robot and the environment is realized by direct sensory-
motor pathways, the basic behaviors, which are modulated by the representation
layer. Mushroom Bodies (MB) and Central Complex (CX) are relevant centres of
the insect brain devoted to temporal correlation, information storage and retrieval,
and other functionality summarized in a correlation layer. Finally the high level
functions of the representation layer consist of a preprocessing block, a perceptual
core, a selection network, while the Reward function drives the learning process.

studies (Gronenberg & Lopez-Riquelme, 2004; Homberg, 1987;
Wessnitzer &Webb, 2006) underlined howdeeply these structures
are involved in perceptual processes. In particular MBs are mainly
devoted to the enhancement of causal relations arising among the
basic behaviors, by exploiting the temporal correlation between
sensory events; information storage and retrieval in the case
of the olfaction sense; resolving contradictory cues through the
visual sense by imposing continuation or adaptive termination
of ongoing behavior. CX is instead responsible of integration of
visual information, storing and retrieving information on objects
and their position in space, controlling the step length in order
to approach or avoid such objects; motor control, landmark
orientation and navigation, orientation storage and others. Some
of these functionalities have been already developed creating a
correlation-based anticipation layer.
These aspects were treated separately in previous papers by

using causal Hebbian rule in an array of spiking neurons for
anticipation (Arena, Fortuna, Frasca, & Patané, 2009), and in Arena
and Patané (2009) where memory structures based on Recurrent
Neural Networks were considered. In this paper, for the sake of
brevity, we briefly discuss only the high level representation layer,
where perception is formed, considering that the anticipation layer
can be added within this architecture to further enhance the
capabilities.
As depicted in Fig. 1 the control process can be divided

into functional blocks: at the lowest level, we place the parallel
pathways representing the basic behaviors, each one triggered by
a specific sensor; at a higher level we introduce a representation
layer that processes all the sensory information in order to
define the final behavior. At the highest layer we introduce a
lattice of non-spiking neurons. This neural lattice shows distinct
characteristics of complex dynamical systems. The emerging
assemblies of neural states take on the meaning of percepts. These
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ones are then associated to suitable modulations of the basic
behaviors. This modulation is performed through an unsupervised
learning processwhich creates associations among sensory stimuli
and patterns. In this way, at the end of the leaning stage, each
pattern represents a particular behavior modulation, while its
trained basin of attraction represents the set of all the environment
conditions, as recorded through the sensors, leading to the
emergence of that particular behaviormodulation. Themodulation
parameters associated with each pattern are learned through a
reinforcement learning: here the reinforcement signal is provided
by a motivation layer implementing the degree of satisfaction
of the robot. This depends on the local satisfaction of the single
basic behaviors with the addition of other terms that reflect
the robot mission. The presence of additional information into
the motivation layer, not used by the basic behaviors can be
exploited by the Representation layer in order to increase the robot
performance.
Memory is of course distributed in the whole architecture but

a specific block has been also created (i.e. Memory in space and
time in Fig. 1). This block develops a contextual layer, like in
Verschure et al. (2003). Here sequences of successful emerged
patterns are memorized to be retrieved when needed. Details
about this memory structure are reported in Arena et al. (2007).
In such a way, as it happens in insects, the basic behaviors,

which are often life-saving sensory-motor pathways, are progres-
sively enriched with emergent capabilities which incrementally
increase the animal skills. Themain focus is therefore on the appli-
cation of complex dynamics to obtain a proper, complex, context-
learned modulation of the basic skills. This process is the main
characteristic of our approach which makes it different from the
other control strategies, based on the subsumption architecture
proposed by Brooks (1986). The latter in fact, uses a high level ap-
proach to design both the basic behaviors and the coordination
block. In our strategy, complex dynamical systems are success-
fully used. Both architectures use a behavioral decomposition of
the system to exploit parallel computation, although the Subsump-
tion network makes a rigid hierarchy among the basic behaviors:
the lower ones cannot influence the upper ones, while the latter
can act on the former. In our scheme, taking inspiration from the
insect brain organization, all the basic behaviors are sensory-motor
pathways elicited by only one sensory modality and on the same
hierarchical level: knowledge is incrementally built upon their
modulation, giving importance to one or the other, depending on
the context. Under this perspective the proposed architecture re-
sembles the Motor Schemas, introduced by Arkin (1991). Turing
Patterns in RD-CNN are hosted, in our architecture, within a layer
here called Representation Layer. The Representation Layer in our
architecture does not refer to a place where a predictive model of
the body–environment interaction is learned. This area is rather
a layer where the single sensory-motor modalities, constituted by
the parallel sensory-motor pathways, are modulated in a feedfor-
ward way, taking into account all the incoming sensory stimuli.
This leads to the emergence of a contextually self-organizing ac-
tivity, focusing at modulating the basic behaviors.
All the sets of environmentally driven multisensory informa-

tion, leading to one rewarding behavior modulation, are collected
into a unique basin of attraction. It is represented by its steady
state condition, depicted as a pattern. This pattern is a binary im-
age, suitable for a very compact coding. It should be noted that the
number of different patterns that are able to emerge from the neu-
ral RD lattice could be very high (on the order of some hundreds
in a square 4 × 4 network). So the number of different behavior
modulations could be as large as needed to cope with very com-
plicated and cluttered environments. The result of the behavior
modulation leads to a particular robotmotion, at each time t . This is
formalized with a final action AF (t) that consists of a variable turn-
ing movement (rotation) and a fixed-length forward movement.
Themain characteristics of the cognitive architecture are described
in the following subsections.
a b

Fig. 2. (a) The robot acquires information from six sonar sensors grouped into three
pairs (F: Front, L: Left, R: Right) and a target sensor providing the phase (P) and
distance (T) between robot and the target. (b) Initialization for the first layer CNN
cells in the representation layer. The corner cells are set by obstacle stimuli (Front,
Left, Right obstacle distance sensors) and by the target distance sensor, if present.
The central cells are set by the previous executed rotation (O) and by the angle
between the robot heading and the robot–target direction.

2.1. Sensory block

To deal with the problem of autonomous navigation, the robot
is provided with three distance sensors (covering the front, left
and right hand sides of the robot) for obstacle detection. Moreover,
the robot receives information on the angle between the robot
orientation and the direction of the robot–target and, in some
simulations, also on the distance between the robot and the target.
A graphic overview of the sensory apparatus is sketched in Fig. 2.

2.2. Basic behaviors

With basic behaviors, we refer to some ‘‘genetically’’ pre-
wired reflexes, triggered by specific sensory events through direct
sensory-motor pathways. Referring to crickets, these behaviors
are: the capability showed by crickets to recover heading during
walking, called optomotor reflex (Böhm, Schildberger, & Huber,
1991); the female ability to follow the sound chirp emitted by a
male, named phonotaxis (Webb & Scutt, 2000); and the ability to
avoid obstacles, e.g. detected by the antennae.
At each time step t , the optomotor reflex tries to compensate for

the previously executed rotation, as occurs in crickets that try to
compensate leg asymmetry to maintain the heading during walk.
Even though a detailed neural network could be developed to

carefully model the neural control system for such behavior (e.g.
see Russo, Webb, Reeve, Arena, and Patané (2005)), in this work a
very simple rule was adopted consisting of: Ao(t) = −AF (t − 1),
where Ao(t) is the rotation triggered by the optomotor reflex at the
time step t and AF (t − 1) is the turn executed by the robot at the
previous time step.
The obstacle avoidance behavior guides the robot in avoiding

obstacles perceived using multiple distance sensors: Aa(t) =
fa(dF (t), dL(t), dR(t)); here Aa(t) is the rotation triggered by the
obstacle avoidance, fa(·) is a simplified version of the traditional
potential field navigation algorithm (Borenstein & Koren, 1991)
and dF (t), dL(t), dR(t) are the distances provided by the three
distance sensors.
Finally, phonotaxis proposes a rotation Ap(t), aiming to compen-

sate for the phase between the robot heading and the robot–target
direction: Ap(t) = fp(p(t)), where p(t) is the phase between the
robot and the sound source. The function fp(·), used in this appli-
cation, is a simplified version of the model for phonotaxis behav-
ior, reported in Horchler, Reeve, Webb, and Quinn (2004). Table 1
summaries the model variables used to describe the system basic
behaviors.
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Table 1
Summary of the model variables used to describe the basic behaviors and their
meaning (see text for details).

AF (t) Final action
Ao(t) Optomotor reflex
Ap(t) Phonotaxis behavior
Aa(t) Obstacle avoidance behavior
fa Potential field
fp Cricket inspired phonotaxis
di(t) Distances robot–obstacle (i = F , R, L)
p(t) Phase robot–target

2.3. Representation layer

The ability to interpret ‘‘situations’’ in terms of robot environ-
ment interaction (i.e. perception for action), is here considered as a
complex behavior, growing up from the basic behaviors. The robot
perceives using its sensory apparatus and processes at a cogni-
tive level to optimize its behavior in relation to the mission as-
signed. The aim of the Representation layer, the highest control
level within the whole cognitive process, is to achieve context de-
pendent decisions. To this aim, all the available sensory modal-
ities, each one separately being responsible of each single basic
behavior, have to constitute the input to this layer. They are
here incrementally transformed into environment representations,
which lead to the modulation of the basic behaviors. These mech-
anisms are plastically modified by experience. In this work a CNN
was designed to generate, on the basis of information coming from
sensory events, Turing patterns as perceptual patterns. At the af-
ferent (i.e. input) level, an unsupervised learning algorithm plasti-
cally shapes the basins of attraction of the Turing patterns in order
to adjust the classification of the information with respect to the
robot motivation.
The whole representation layer consists of a preprocessing block,

a perceptual core, a selection network and a motivation layer,
responsible for driving the learning process. Fig. 1 shows the main
components of the representation layer.

2.3.1. Preprocessing block
The sensorial inputs, normalized in the range [−1, 1], enter

the preprocessing block: each stimulus is the input for a Sensing
Neuron (SN) with piece-wise linear activation function, made-
up, in this case, of 10 amplitude-varying steps learned in an
unsupervised way as briefly explained in Section 2.3.4. Finally,
each output of the SNs sets the initial condition for a cell of the
nonlinear dynamical system that realizes the perceptual core of the
Representation layer.

2.3.2. Perceptual core
The creation of a concise representation of the environment is

crucial for the cognitive process, since it is the result of the dynamic
processing of the external stimuli.
To implement this feature, we use a nonlinear partial differ-

ential equation, discretised in space as a neural lattice made-up
of second order CNN cells, connected by local diffusion. This con-
stitutes a two-layers RD-CNN, able to generate Turing patterns
(Turing, 1952). The dimension of the network has been fixed to
4 × 4 on the basis of a previous work (Arena et al., 2007). Each
cell c(i, j) of the two-layers RD-CNN has state variables (x1;i,j for
the first layer and x2;i,j for the second layer, with i, j = 1, . . . , 4)
and reads:

ẋ1;i,j = −x1;i,j + (1+ µ+ ε)y1;i,j − sy2;i,j + D1∇2x1;i,j
ẋ2;i,j = −x2;i,j + sy1;i,j + (1+ µ− ε)y2;i,j + D2∇2x2;i,j

yh;i,j =
1
2
(|xh;i,j + 1| − |xh;i,j − 1|) (1)
where yh;i,j (h = 1, 2) is the output of the layer h of the cell c(i, j)
and D1, D2, µ, ε and s are parameters of the model. To satisfy the
analytical conditions to obtain Turing pattern the parameters have
been set to: µ = −0.7, ε = 1.1, s = 0.9, D1 = 0.05, D2 = 15,
γ = 1/D1 = 20 (Arena et al., 2007).
As shown in Fig. 2.b, the output of each SN sets the initial

conditions for the state variable of two central cells or a corner cell,
which have been proven to have higher control than the other cells
(Arena et al., 2007). The initial conditions for the state variables of
the second layer are set around zero for all the cells.
The RD-CNN evolves towards the condition in which all the

state variables of the first layer, i.e. the x1;i,j, saturate at a value
greater than 1 or lesser than−1. In this case, each output variable
y1;i,j will be either 1 or −1, a condition that we consider a Turing
pattern.
To better understand how initial conditions influence the

pattern emergence, we performed a simple experiment, where
we set to zero the initial conditions for all the first layer cells
except the top-right corner (C(1; 4)) and bottom-left (C(4; 1))
corner cells of a 4 × 4 lattice, whose initial conditions have
been varied in [−1; 1] range, mimicking two sensory inputs. The
second layer cells are set to random values in the range [0:005;
0:005]. Fig. 3(a) shows the geometries of the basins of attraction
for the 39 emerged patterns (represented by different colors),
obtained by varying the initial conditions for the two cells above
mentioned. At the end of the learning phase, executed with a
simulation inwhich the two sensory inputs were associated to two
distance-to-obstacle sensors, the number of basins of attraction
and corresponding emerging patterns is tightly decreased to 15
(Fig. 3(b)). The effect of the unsupervised learning in the sensing
block was to cluster the Turing patterns into a meaningful set of
non-redundant internal states, and to adapt the internal states
(shape of basins of attraction) to the robot motivation.
To simplify the successive processing, we associate a simple

integer code for each Turing pattern as already discussed in Arena
et al. (2007). The code is obtained converting the binary scheme of
the pattern (i.e. sequence of black and white cells) into an integer
value. This code is stored in a Pattern Vector at the first occurrence.
Each element of the pattern vector contains the Pattern Code and
the step of its last occurrence (Occurrence Lag). Once the external
stimuli have been preprocessed, we reset the CNN, set again the
initial conditions of the selected cells through the new outputs of
the SNs (Fig. 2.b) and let the CNN re-evolve and generate a Turing
pattern.
The effect in terms of trend of new emerged patterns during

learning is shown in Fig. 4 where a typical result for a single run is
reported. The use of Turing patterns as steady states of a dynamical
system implies a form of sensor fusion, i.e. we synthesize hetero-
geneous sensory information into a single attractor. At each step,
the information coming from sensors is fused to form a unique ab-
stract and concise representation of the environment, as discussed
in Section 2.

2.3.3. Selection network
The Selection Network associates each element q of the pattern

vector with a set of three parameters (kqo, k
q
a, k

q
p). At the first

occurrence of the pattern q, they are randomly chosen in the range
[0, 1] with the constraint that: kqo + k

q
a + k

q
p = 1. Then, the

parameters are modified under the effect of the learning process
acting at the efferent (i.e. output) stage of the Representation
layer as explained in the following. After completing the learning
process and once the Turing pattern q(t) has been generated at
each time step t , the corresponding modulation parameters are
selected and the behavior that emerges is the weighted sum of
the actions suggested by the basic behaviors at that time: AF (t) =
kqo · Ao(t)+ k

q
a · Aa(t)+ k

q
p · Ap(t).
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Fig. 3. (a) Initial Basins of attraction for the 39 patterns and (b) final shape of the basins of attraction for the 15 patterns obtainedwith the introduction of the learned sensing
neurons. The patterns emerged by varying initial conditions for top-right corner cell (x-axis) and bottom-left corner cell (y-axis) of a 4× 4 lattice in the range [−1, 1]. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Number of new patterns that emerge during learning when γ = 20. It is a
typical result for a single run of the robot. The number is an average in windows of
100 steps.

2.3.4. Motivation layer and learning process
The association between Turing patterns and modulation

parameters is learned through a reward-based reinforcement
learning implemented by a simplified Motor Map (MM) (Arena
et al., 2007; Schulten, 1992), whereas the fitness of each action is
evaluated by means of a Reward Function (RF ), defined as follows:

RF(t) =
∑
i

hi · RFi(t) (2)

where RFi represents the degree of satisfaction related to the basic
behavior i where i = o, a, p, indicating optomotor, avoidance and
phonotaxis reflex, respectively:

RFo(t) = ro(|AF (t − 1)|)

RFa(t) =
∑
i

ri(edi(t))

RFp(t) = rp(|p(t)|).

(3)

Here AF (t) is the action performed at time t , di(t) is the distance
between the robot and the obstacle detected by the sensor i
(i = Front(F), Right(R), Left(L)) and p(t) is the phase between the
robot orientation and robot–target direction. The goodness of the
behavior can be evaluated at each step via the function DRF(t) =
RF(t)− RF(t − 1). A positive (negative) value for DRF(t) indicates
a successful (unsuccessful) behavior. Successful behaviors are
followed by reinforcement, like in Skinner’s experiments (Skinner,
1974) in order tomaximize the RF . In more details during learning,
when the Turing pattern q emerges at the time step t , the behavior
performed by the motor layer is:

AF (t) =
∑
i

(kqi + g
q
i (ξ)) · Ai(t) (4)

where gqi (ξ) (i = o, a, p) are Gaussian variables (zero-mean and
unitary variance), the variance (σ 2q associated with the pattern
q) determines the range of the random search for the optimal
modulation parameters. After the execution of the behavior
defined in (4), the DRF(t) is evaluated and, in case it is greater
than the average increase in the RF generated by q, called bq, the
modulation parameters are updated in the direction suggested by
the random variable according to:

kqi (new) = k
q
i (old)+ εg

q
i (ξ) (5)

where ε = 0.1 is the learning rate. Furthermore, the variance of the
Gaussian variable is decreased exponentially. In caseDRF < bq, the
modulation parameters do not change.
If DRF < 0, the learning process acts on the afferent (input) as-

sociation, realized by the SNs, between the stimuli and the initial
conditions for the CNN cells aiming to establish the correct associ-
ation between the sensory events and the internal representations
(Turing patterns). In particular, our choice for the SNs activation
function consists in an increasing function constituted by ten vari-
able amplitude steps, θi (1 ≤ i ≤ 10), covering the whole input
range [−1, 1]. At the beginning of the learning phase, all the steps
have zero amplitude and, when we want to punish the system due
to a DRF < 0, the step amplitudes are modified randomly in or-
der to try and change the pattern. The idea is that, when the action
associated with the previous situation is no longer able to make
the robot succeed in accomplishing the current task, a new pattern
should emerge and the suitable action to this new environmental
condition has to be learned by the robot. In such away the sensorial
stimuli will be divided into classes, associating different situations
with patterns that generate rewarding behaviors. In more detail, if
the action associated with the currently emerged pattern is unsuc-
cessful (i.e. DRF(t) < 0), then the learning algorithm for each SN
acts as follows:

• determinewhich of the RF components has suffered the highest
decrease (e.g. the component associated with the Front side
obstacle detector);
• for the selected SN determine the step amplitude θi related to
the current input value;
• extract a number rnd from a zero-mean, uniformly distributed
random variable r;
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Fig. 5. The roving robot P3AT.

• the step amplitude θj is modified as: θi(new) = θi(old) + rnd,
provided that it lies in the range [−3, 3], compatible with the
state variable dynamics for the CNN cells.

To guarantee the convergence of the algorithm, the variable
rnd varies in the range [−m, m] where m, initially sets to 0.5,
decreases at each step with an aging coefficient m(new) =
0.999 ·m(old). The result is that the association between sensorial
stimuli and Turing patterns is dynamically tuned by modulating
the basins of attraction of the steady state patterns. The effect is
that, at the beginning of the learning phase, a lot of pattern-action
associations arise which are stabilized at later stages. This strategy,
already effective, can be improved by including the dependence
on the Reward function fluctuations. More details on the whole
mathematical model are given in Arena et al. (2007), whereas an
initial assessment of the application to a roving platform can be
found in Arena, Fortuna, Lombardo, and Patané (2008).

3. The roving robot P3-AT

The robot used for the experimental set-up is a standard plat-
form, the Pioneer P3-AT robot built by MobileRobots inc. It is a
classic four wheeled rover controlled through a differential drive
system, using encoders with inertial correction to compensate for
skid steering. The robot is equipped with an embedded computer,
wireless Ethernet-based communication, a laser scanner, a com-
pass sensor and a pan-tilt actuated color camera. Moreover it is
equipped with eight forward sonars that sense obstacles from
15 cm to 5 m and five bumpers for collision detection.
The robot can be controlled through a suite of library (i.e. the

ARIA library) and a 2D virtual simulation environment, named
MobileSim, can be used instead of the real robot in a transparent
way using the same control library.
As shown is Fig. 5, we have customized the standard

configuration including a hearing circuit, a CNN-based camerawith
panoramic lens and a gray-scale color sensor placed on the bottom
of the robot, used as a low level target sensor, to detect black spots
on the ground. These additional sensors are managed from the
onboard computer using a microcontroller-based bridge.
In the experiments reported in the following section, part of

the robot sensory system was used to develop the three basic be-
haviors taken into consideration (see Section 2.2). In particular for
Fig. 6. Environment used for the robot simulations. The lines departing from the
robot simulate the ring of sonar.

the obstacle avoidance behavior both contact sensors (i.e. front and
rear bumpers) and distance sensors (i.e. ring of sonars) were con-
sidered. To include the optomotor reflex, the gyroscope embedded
on the robot was used. Finally, the phonotaxis behavior was repro-
duced using an ad hoc built cricket-calling-song producing circuit.
A gray-scale color sensor was also used to detect the successful ar-
rival at a sound target.
The hearing sensor is the most interesting part of the sensory

apparatus: it allows efficient localization of a specific sound source
with a very simple analog circuit. It is inspired by phonotaxis in
crickets: female crickets are able to recognize the species specific
pattern of male calling song, produced by opening and closing
their wings, and move towards it. For Gryllus bimaculatus, these
songs consist of four 20 ms syllables of 4.7 kHz sound waves,
separated by 20 ms intervals, which make up a ‘‘chirp’’, produced
several times a second. Females appear to be particularly selective
for the repetition rate of syllables within each chirp. The hearing
circuit (Webb & Scutt, 2000) consists of two microphones and a
circuit board fine-tuned to the carrier frequency of the cricket song.
The output from each ear is an analog signal in the range from 0
to 5 volts. The input to the circuit is given by two microphones
separated by a distance equivalent to a quarter of the wavelength
of the carrier frequency (i.e. 18 mm).
In the simulation environment (i.e. MobileSim), the whole

sensory system was modeled taking into consideration specific
characteristics of each sensor: detection range, time response,
resolution and others.

4. Simulation results

4.1. Simulation set-up

The software simulation environment, developed in C + +,
allows us to interface with the P3-AT robot and its simulation
environment (MobileSim). The arena used consists of three
rooms as depicted in Fig. 6, with six targets randomly placed.
The simulated environment reproduces a real environment with
dimensions of about 7.5 × 4.5 m. The map was acquired using
the scanner laser equipped on the real robot. The simulated robot
is equipped with eight sonar sensors but only six of them were
used, covering a range of [−50◦, 50◦]with respect to the direction
of motion. Moreover, the six sonar are considered as three pairs
(left, front and right) and the minimum distance value acquired
for each pair (i.e. nearest object for each side) is processed by the
control architecture. The target sensor provides the distance from
the active target and the phase between the robot orientation and
the robot–target direction. The target sensor simulates the hearing
board equipped on the real robot. It should be noted that, for all
the distance sensors, the output is saturated to the limit of the
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Fig. 7. (a) Evolution of the kfi q1 for the emerged pattern (q1 = 52 274). The evolution of the modulation parameters is shown in (b–d) where the solutions adopted at the
beginning of the learning stage (b), between 5000 and 10000 movements (c) and for the last 5000 movements are shown. In the last picture it is also indicated the region
associated with the pattern 52274.
detection range, so even if no obstacles are detected, the output
of the sensor would be 5 m. The target sensor has a range of 3 m
and a visual conus of [−90◦, 90◦]. All the sensor outputs are scaled
in the range [−1, 1]. The components of the RF in Eq. (3) were
heuristically defined as: ro(t) = −AF (t − 1), rp(t) = −|p(t)|,
rF (t) = −e−8(dF (t)+1), rL(t) = −e−8(dL(t)+1), rR(t) = −e−8(dR(t)+1),
where dF (t), dR(t), dL(t) are the distances detected by the sensors
F , R, L, while p(t) is the angle between the robot heading and the
robot–target direction and AF (t − 1) is the rotation made by the
robot in the time step t−1. In the following simulations, the choice
for the other parameters in Eq. (2) is ho = 1, ha = 10, hp = 10.
In this way more importance is given to the contribution of the
obstacle information than to the target one, because the former
is crucial to preserve the robot integrity. In particular the output
coming from the front side obstacle sensor has the greatest weight
in the RF . Through the definition of this reward function, we give
to the robot knowledge about the task to be fulfilled, but it has
no a priori knowledge about the correct way to interact with the
environment. So the phase of the actions associated with each
pattern is randomly initialized within the range [−20◦, 20◦]. The
forwardmovement performed for each action has a fixed length of
25 cm.

4.2. Learning phase

As far as the simulated robot is concerned, the task assigned
to the robot consists of aiming for a target and avoiding obstacles
along the way. When the target is found it is switched off and
another target appears in the arena. The learning phase lasts until
one of the two following conditions occurs: either the aq averaged
on the last 1000 patterns drops below 10−4, or after 5000 targets
have been found. At the beginning of the learning phase, the
robot randomly modulates the basic behaviors, due to the random
initialization of the modulation parameters kqi (i = a, o, p), which
determine the robot heading. During the learning process, the
MotorMap-like algorithm corrects the parameters associatedwith
eachpattern. Fig. 7(a) shows the evolution of the kq1i for the pattern,
i.e. q1 = 52274. The modulation parameters associated to all the
emerged patterns used in the first part, during and at the end of
the learning phase (for a total number of 15000 actions divided in
three blocks of 5000) is shown in Fig. 7(b)–(d).
This evolution is typical in several other simulations (for other

results see Arena, De Fiore, Lombardo, and Patané (2009)), taken
into account and gives an idea of the clustering process that
occurs during learning, where the basins of attraction of the Turing
patterns that are associated to the modulation parameters, change
in space and time leading to the emergence of specific rewarding
behavior combinations. For example it is interesting to notice that
the pattern q1 in this simulation is associated to a behavior mainly
guided by phonotaxis.

4.3. Testing phase

To evaluate the improvement of performance obtained during
the learning process, we compared the result of the learned
structure with other solutions: constant modulation parameters
and randomly chosen modulation parameters. The constant
behavior modulation parameters were chosen through a manual
tuning aimed at optimizing the global performance of the robot.
The parameters used in the following experiments are: Ka =
0.35, Kp = 0.2, Ko = 0.05. The randomly chosen modulation
parameters gives an idea of the behavior of the robot at the
beginning of the learning phase when the behavior modulation is
initialized with random values.
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Fig. 8. Trajectories followed by the robot controlled through: random (a), fixed (b) and learned (c) parameters for the sequence P0. H is the starting point and the sequence
is: P0(1, 2, 3, 4, 5, 6).
Table 2
Simulation results, number of actions needed to retrieve all the six targets
in a given order and improvement with respect to the worst case (i.e.
Random modulation). The sequences are: P0(1, 2, 3, 4, 5, 6); P1(2, 4, 6, 1, 3, 5);
P2(1, 3, 5, 2, 4, 6); P3(3, 5, 2, 4, 6, 1).

Sequence Number of Actions Improvement (%)
Random Fixed Learned Random Fixed Learned

P0 587 256 146 0 56.4 75.1
P1 455 303 299 0 33.4 34.3
P2 297 287 231 0 3.3 22.2
P3 574 524 418 0 8.7 27.2

Table 3
Simulation results, number of collisions that occurs during the target retrieving
process and improvement with respect to the worst case (i.e. Random or Fixed
modulation).

Sequence Number of collisions Improvement (%)
Random Fixed Learned Random Fixed Learned

P0 55 35 20 0 36.4 63.6
P1 93 65 32 0 30.1 65.6
P2 44 46 26 4.3 0 43.5
P3 89 120 58 25.8 0 51.7

For the performance validation four different sequences of
activation for the six targets have been used. The compared results,
in terms of number of steps to complete the sequence and number
of collisions, are reported in Tables 2 and 3. The trajectories
followed during the experiments for the target activation sequence
P0 are reported in Fig. 8.
The learning process leads to a significant reduction of actions

needed to complete a sequence of targets searching, demonstrat-
ing the effectiveness of the control architecture and its capability to
generalize the representations. In particular, this feature has been
proven by performing the test in a scenario that is different from
that one used during learning. Fig. 9 shows examples of trajecto-
ries followed during the testing phase in case of fixed, random and
learned modulation parameters.
To further analyze the performance of the control architecture,

a statistical analysis was performed in the environment shown in
Table 4
Comparison between fixed and learned modulation parameters in reaching the
sequence of targets shown in Fig. 9. Both themean value and the standard deviation
for path length to reach the targets, and number of collisions are better when the
Representation layer is active.

Fixed Learned
Mean
value

Standard
deviation

Mean
value

Standard
deviation

Number of steps 170 9 62.3 3
Number of collisions 15.7 1.5 2.3 1

Fig. 9. A series of ten simulations for each control strategy was
carried out modifying the initial orientation of the robot in the
environment. The results for the fixed and learned modulation
parameters are reported in Table 4. Also in these experiments,
the performance improvement is evident in terms of path length
to find the sequence of targets and robustness of the behavior,
which can be observed by the low value of the standard deviation
in the path length for the different trials. It should be noted that
using the fixed modulation parameters as a benchmark, means
to eliminate the RD-CNN from the architecture, and exploiting
only the basic behaviors, whose weight in the action selection
is constant throughout the experiment. The importance of the
representation layer, introduced in this work, is to add to the
architecture incremental capabilities of building knowledge, based
on the environment. At the beginning of the learning phase, the
role of the Turing Pattern Generator is negligible, and the robot
moves only according to the basic behaviors. As learning proceeds,
the robot acquires the capability to exploit the space-varying
combination of the basic behavior to improve its performance in
relation to its motivation.
The same architecture can deal with a moving target as shown

in Fig. 10. The robot and the target start from two different posi-
tions, and while the former has a constant speed of 25 cm/action,
the latter change its speed in the range 18–40 cm/action. The tra-
jectories followed are shown in Fig. 10(a) while the robot–target
distance during the simulation is shown in Fig. 10(b).
To better understand the sequence of patterns (i.e. combination

of behaviors) used during a target retrieving, an example is shown
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Fig. 9. Trajectories in a different arena in the case of constant (a), randomly chosen (b) and learned (c) modulation parameters. The first two strategies (a–b) take a lot of
time to reach the target and suffer from multiple collisions. From the learned modulation parameters, a very straightforward, although safe, behavior emerges.
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Fig. 10. Moving target simulation. (a) Trajectory followed by the robot (circle
marked line) following a moving target (triangle marked line). (b) Trend of the
robot–target distance during the simulation.

in Fig. 11. At the beginning of the trajectory the robot persists in
the chosenbehavior combinationuntil the environment conditions
lead to a jump into the basin of attraction of another pattern, more
adapt to represent the new situation. In this simulation about ten
different behaviormodulations are used to fulfill the assigned goal.

5. Experimental results

To cross-check experimentally the promising results obtained
in numerical simulations we use the roving robot P3-AT moving
a

b

Fig. 11. (a) Sequence of patterns usedduring a target reaching task. (b) Eachpattern
corresponds to a behavior modulation.

Fig. 12. Experimental set-up. The rover P3-AT facing an environment with two
targets.
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Table 5
Experimental results, number of actions needed to retrieve three targets in a given
order and improvement with respect to the worst case (i.e. Randommodulation).

Sequence Path length (m) Improvement (%)

Random Fixed Learned Random Fixed Learned

P 64 24 17.5 0 62.5 72.7

Table 6
Experimental results, number of collisions that occurs during the target retrieving
process and improvement with respect to the worst case (i.e. Randommodulation).

Sequence Number of collisions Improvement (%)

Random Fixed Learned Random Fixed Learned

P 11 6 2 0 45.4 81.8

in a real environment. Fig. 12 shows the experimental set-up: the
robot is placed in an environmentwith two targets. The trajectories
followed by the robot are reported in Fig. 13. For the complete
architecture the same behavior modulation parameters obtained
through the learning process in simulation were used for the tests
with the real robot. The obtained performance are in line with the
simulation results as reported in Table 5 for the path length and in
Table 6 for the number of collisions.
It should be noted that when the robot is looking for the second

target, after the first one is retrieved and switched off, the phono
sensory system does not allow the detection of S2 because it is out
of the sensor detection range (i.e. [−90◦,+90◦]). This is the reason
for the long path followed to reach the second target also with the
adaptive behavior modulation.
Videos, including simulations and real robot experiments are

available on the web (Arena & Patané, 2008).

6. Remarks and conclusions

In this paper a new control architecture for the sensing-
perception-action loop in robots is described and validated
through simulations and experiments for autonomous navigation
on a standard robotic platform. The control architecture is based
on some predefined basic abilities, called basic behaviors, which
are modulated by the Representation Layer. The Representation
Layer learns to associate sets of sensory events with specific Turing
patterns, and tunesmodulation parameters through reinforcement
learning to perform goal-directed behaviors. Here, unlike similar
approaches referring to behavior-based robotics, we used complex
dynamics to explore attractor based nonlinear computation
(another relevant approach to navigation control can be found in
Arena, Fortuna, De Fiore, and Patané (2008)) and a simple reward-
based learning, to associate rewarding behavior modulation to
contextual information coming from sensors. The whole sensory
system depicts the environment scene as perceived by the robot.
It is clear that within this information, the salient details about
the robot body and position in the environment are naturally
used to achieve an efficient, embodied and situated knowledge.
It should be underlined that algorithms dedicated to handling
navigation tasks could even give better results: the potentiality of
our approach lies in its generality. In fact the approach can be easily
migrated to other robotic platforms, redefining the basic behaviors,
and to other applications, redesigning the reward function. The
approach, for example, is being actually applied to amore complex
structure, an hexapod robot (Arena & Patané, 2005), where the
control actions are much more complex, and the basic behaviors
could include, for instance, not only avoiding obstacles by turning,
but also climbing over steps. In this case patterns can indicate
the particular scheme of leg motions, which should be applied in
front of particular environment conditions. Presently the use of
complex dynamics to achieve contextualization does not enable
the capability to make prediction on sequences of behaviors useful
to reach the target. Indeed this could be inserted very easily by
implementing chains of successful behavior modulations, but we
are currently working at exploiting the complex dynamics within
the Turing Pattern generator to include prediction capabilities. The
above described framework is suitable to be included in a more
complex bio-inspired architecture aiming to emulate an insect
brain at least from a functional point of view. A wider set of
heterogeneous sensors such as cameras could be included.
a b

c

Fig. 13. Trajectories obtained with the real robot in the case of constant (a), randomly chosen (b) and learned (c) modulation parameters.
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