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In this paper a new technique for action-oriented perception in robots is presented. The paper starts
from exploiting the successful implementation of the basic idea that perceptual states can be em-
bedded into chaotic attractors whose dynamical evolution can be associated with sensorial stimuli.
In this way, it can be possible to encode, into the chaotic dynamics, environment-dependent pat-
terns. These have to be suitably linked to an action, executed by the robot, to fulfill an assigned
mission. This task is addressed here: the action-oriented perception loop is closed by introducing a
simple unsupervised learning stage, implemented via a bio-inspired structure based on the motor
map paradigm. In this way, perceptual meanings, useful for solving a given task, can be autono-
mously learned, based on the environment-dependent patterns embedded into the controlled chaotic
dynamics. The presented framework has been tested on a simulated robot and the performance have
been successfully compared with other traditional navigation control paradigms. Moreover an
implementation of the proposed architecture on a Field Programmable Gate Array is briefly outlined
and preliminary experimental results on a roving robot are also reported. © 2008 American Institute
of Physics. �DOI: 10.1063/1.3005783�

Recently, a new family of chaotic systems, generating
multiscroll attractors, was introduced. This type of cha-
otic dynamics was taken into consideration by the au-
thors of this paper to model perception for action mecha-
nisms, with application to autonomous mobile robot
control. In this paper the authors complete the method-
ology by adding an unsupervised learning structure to
the controlled multiscroll system. In this way the robot
autonomously learns to answer, to a given environmental
stimulus set, with that action which contributes to in-
crease an a priori fixed reward function, representing the
robot assigned mission. The simple learning strategy
adopted is suitable to be implemented in hardware for
real time working together with the already implemented
multiscroll system.

I. INTRODUCTION

After the introduction of multiscroll chaotic systems,
several circuit solutions for a real time implementation were
proposed �see Refs. 1 and 2 for details�. In particular, the
potential role of multiscroll dynamics in perception was en-
visaged in Ref. 2. In fact, the peculiar chaotic attractor
shown by a multiscroll system �as shown in Fig. 2�a� below�,
consists of a number of chaotic scrolls distributed all over
the phase plane. These scrolls can be easily varied in number
and position by modulating the system nonlinearity. In recent
works,3–5 a bio-inspired approach based on a new control

technique, applied to multiscroll systems, was introduced to
deal with navigation control in simulated and real environ-
ments. These works are based on a paradigm which consid-
ers perception no longer as a standalone process, but as a
holistic and synergetic one, tightly connected to the motor
and cognitive system.6 Perception is now considered as a
process indivisible from action; behavioral needs provide the
context for the perceptual process, which, in turn, works out
the information required for motion control. In this work a
framework for action-oriented perception has been realized
employing chaotic dynamical systems controlled through a
new technique called weak chaos control �WCC�.

The WCC technique allows us to create perceptual states
directly related to the concept of embodiment and
situatedness.7 Moreover WCC allows a suitable control of
the various scrolls, in front of the incoming environment
stimuli. This fine control constitutes the basis for the emer-
gence of environment-shaped dynamic patterns, that in this
paper are used to face with the action-oriented perception
task.

The approach proposed was partially inspired by Free-
man’s neurobiological theories. His approach, in the field of
odor perception, recognizes the existence of stimulus-
specific activity patterns.8,9 Without entering in detail, the
cerebral cortex processes information coming from objects
identified in the environment from receptors by enrolling
dedicated neural assemblies. These are nonlinear dynamical
coupled systems, whose collective dynamics, joined to
motivation-induced behavioral changes, creates stimulus-
specific activity pattern shapes. Freeman and co-workers, in
their extensive experimental studies on the dynamics of sen-
sory processing in animals,10 conceive a dynamical theory of
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perception. Through the electroencephalogram �EEG�, Free-
man evaluated the action potentials in the olfactory bulb and
he noticed that the potential waves showed a typical chaotic
behavior. The mental shaping of neural activity patterns,
stimulus-specific, is the result of a chaotic dynamics in the
sensory cortex in cooperation with the limbic system that
implements the supporting processes of intention and
attention.9

The application of chaotic models as basic blocks to re-
produce adaptive behaviors11–13 is an interesting aspect of
the current research focussed at modeling intelligent behav-
iors and transferring them to robotics. The idea is that chaos
provides the right properties in term of stability and flexibil-
ity, needed by systems that evolve among different cognitive
states.

Skarda and Freeman11 have investigated the role of
chaos in the formation of meanings. According to their
works, chaotic dynamics can constitute the normal back-
ground activity of neural systems. If the system �i.e., neu-
ronal ensembles� is perturbed by sensory inputs, the result is
a transition into a new attractor, depending on the state of the
system, motivation, and environment. The advantage of a
chaotic background activity with respect to noise is that
noise cannot be easily controlled �e.g., stopped or started�,
whereas a chaotic dynamic can be easily enslaved and sup-
pressed, switching among different attractors. Therefore cha-
otic dynamics can further improve reactive system capabili-
ties; in fact chaotic systems generate a wide variety of
attractors that can be controlled guiding the transit from one
to another, similarly to the emergence of adaptive behaviors
in living beings.

Freeman’s studies led to a model, called K-sets, of the
chaotic dynamics observed in the cortical olfactory system.
This model has been used as a dynamic memory, for robust
classification and navigation control of roving robots.14–16

The architecture proposed here, taking into consideration
the relevant principles previously underlined, is based on the
control of chaotic dynamics to learn adaptive behaviors in
roving robots. The main aim is to formalize a new method of
chaos control applied to solve problems of perceptual state
formation.

The WCC approach, following these guidelines, uses a
chaos control technique, applied to a multiscroll chaotic
system.1 WCC is a general technique that can be applied to
several chaotic systems.2,17 All sensory signals are mapped
as different potential reference dynamics used to control the
chaotic system. This creates associations among sensor infor-
mation and a particular area located within the multiscroll
phase plane, in a way that reflects the topological position of
the robot within the sensed environment. This property,
joined to the robot motivation defined through a suitable re-
ward function, contributes to create perceptual meanings of
the mental patterns, useful for behavior modulation. The
term “perceptual meaning,” within the framework of action-
oriented perception, is here referred to the capability of a
system to build a meaning, based both on sensor information
and on the context of the action that the agent �animal or
robot� performs to satisfy its motivation.

The multiscroll chaotic system has been chosen instead
of other regular chaotic systems to exploit its modularity in
the design of the multiscroll attractors. The multiscroll sys-
tem can be designed depending on the robot embodiment.
Each scroll can be related to the presence of one or more
active sensors; in this way motion control can be used to
improve the perceptual process by placing the robot sensors
in the most appropriate positions. Consequently, the most
important information can be selected, discarding what is
less useful for the given task.

The aim of this paper is to assess the WCC navigation
technique performance presented in previous works3–5 in re-
lation to the problem of action-oriented perception.

In fact in the referred papers above, the controlled sys-
tem dynamics was linked to a given robot action using fixed
rules, a priori selected by the designer. On the contrary a real
perceptual architecture should be able to autonomously asso-
ciate, to a given environmental state, as recorded by sensors
the action that contributes to increase a given reward. In this
manuscript we address such an issue by adding an associa-
tive learning layer �called in the following action selection
stage�. Since associations are incrementally learned via feed-
back through the environment, as recorded by sensors,
placed in a given position in the considered robotic structure,
this technique allows us to also implicitly consider, within
the robot control system, information about the robot struc-
ture and dimensions, including the sensor position, thus situ-
ating the robot within the environment. The improvements
provided by the action selection layer are shown in several
works,18,19 in relation to different applications.

With regards to the type of learning used in the action
selection stage, a fundamental issue is that, given the high
degree of information that the chaotic system can embed, in
terms of sensor measures, the task to be solved by the asso-
ciative layers should be really simple. Candidate algorithms
are based on reinforcement learning �RL�; this is used to find
how to map situations to actions, so as to maximize a pre-
defined reward signal. The system does not know which ac-
tions to take, but instead it must discover which actions yield
the best reward by trying them.33 In the proposed architec-
ture, to close the loop, the perception-action link is plasti-
cally learned, introducing a simple reward-based mechanism,
derived by the motor map paradigm. It is inspired by the
paradigm of Kohonen nets20 and is able to plastically react to
localized excitation by triggering a movement �like the mo-
tor cortex or the superior colliculus in the brain�.21 The motor
map paradigm has been already successfully applied to solve
navigation control problems.19,22 The proposed navigation
control technique, based on the action-oriented perception
paradigm, has been tested in a simulation environment and
subsequently was implemented using a hardware platform.

As clearly outlined, our approach is focused to design a
new methodology for action-oriented perception, with en-
hanced capabilities of real time implementation on moving
robots. The strategy aims at autonomously learning fast,
reflex-based “action-maps.” This leads to the limitation that
the approach is not designed to make any form of action
planning or behavior planning, i.e., no possibility is allowed
to learn chains of actions within any temporal horizon. This
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would require more complex architectures and, of course, a
much longer learning phase. This is outside of the scope of
the present work.

In the next section we will describe the control architec-
ture that reproduces the sensing-perception-action loop. Sec-
tion III is devoted to illustrate a case of study; the application
of the control architecture to a problem of autonomous navi-
gation. Simulation results and comparisons with other tradi-
tional approaches are reported in Sec. IV, whereas Sec. V
describes a hardware implementation based on Field Pro-
grammable Gate Arrays. Finally, in Secs. VI and VII we will
give some remarks and draw the conclusions.

II. WCC CONTROL ARCHITECTURE

The proposed control architecture is a general frame-
work designed to deal with action-oriented perception
mechanisms. The idea is that an agent with no a priori
knowledge except for its body structure, can learn how to
accomplish a given task performing the action-oriented per-
ception loop. The architecture is general and can be used to
control different kinds of agents �e.g., roving and legged ro-
bots, robotic arms� that need to interact with an external
environment.

In this work the whole control architecture is described
from a general perspective and an application in the case of

autonomous roving robots dealing with basic navigation
tasks is also reported and compared with other, more tradi-
tional, solutions.

The overall architecture for action-oriented perception is
shown in Fig. 1, where two main blocks can be distin-
guished:

• the perceptual block, which, via the WCC technique, leads
to the emergence of input-induced dynamics patterns �in
our case periodic trajectories�;

• the action selection network, where actions are learned, at
the aim to increase the values of a predefined reward func-
tion, representing the robot motivation.

As discussed above, taking inspiration from biological
evidence,11,12 a chaotic dynamical system was adopted as an
engine able to generate emergent solutions, thanks to the
richness of different attractors that can arise in the controlled
multiscroll.

The chaotic system, joined to the action selection net-
work, is used here as a basic block to create a meaning of the
sensory input by means of a control technique that can easily
allow us to enslave and suppress the chaotic dynamic,
switching among different attractors.

For autonomous navigation in a roving robot, when no
stimuli are perceived �i.e., there are no active sensors� the
multiscroll system evolves in a chaotic behavior and the ro-

FIG. 1. �Color online� Control architecture.
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bot continues to explore the environment performing an ac-
tion determined by the chaotic evolution of the multiscroll
system. When external stimuli are perceived, the controlled
system converges to a cycle �i.e., a periodic pattern� that
depends on the contribution of active sensors through the
control gains. The corresponding action will plastically de-
pend on the characteristics of the cycle, as a result of the
learning algorithm taking place within the action selection
layer. When the stimuli stop, the system falls back into a
chaotic dynamic.

The learning mechanism is driven by a reward function
�RF�, designed on the basis of the mission to be accom-
plished �in our case navigation�. Each block is described in
the following, referring to Fig. 1.

A. Perceptual system

The core of this layer is the weak chaos control method
�WCC�.5 The crucial advantage of this approach is the pos-
sibility to create stimulus-dependent dynamic patterns, that
can be used for real time generation of suitable actions. To
model this behavior a chaotic system, proposed by Chen,1

has been used as a plastic layer in which perceptual states
can emerge. The chaotic behavior of Chen’s multiscroll sys-
tem can be enslaved to regular periodic patterns �here used as
perceptual states� by using the sensory stimuli as reference
control signals. The multiscroll system has been preferred to
a regular chaotic one because we need to map the agent
embodiment in the system dynamics and a very simple solu-
tion, that will be further discussed in the following, consists
of a topological distribution of the sensory inputs in the sys-
tem phase plane. Chen’s system can be easily designed in
order to increase the number and position of scrolls and this
opportunity allows us to handle with a large number of dis-
tributed sensors.

The control mechanism has been realized via a feedback
on the state variables x and y controlled to track the reference
cycles. The equations of the controlled multiscroll system
can be written as follows:

ẋ = y −
d2

b
f�x;k2;h2;p2,q2� + �

i

Kxi
�xmi

− x� ,

ẏ = z + �
i

Kyi
�ymi

− y� , �1�

ż = − ax − by − cz + d1f�x;k1;h1;p1,q1�

+ d2f�y ;k2;h2;p2,q2� ,

where xmi
and ymi

are the reference signals, Kxi
and Kyi

are
the control gains and the following so-called saturated func-
tion series f�x ;k ;h ; p ,q� has been used:

f�x;k;h;p;q� = �
i=−p

q

f i�x;k;h� , �2�

where k�0 is the slope of the saturated function, h�2 is
called saturated delay time, p and q are positive integers, and

f i�x;k;h� = �2k if x � ih + 1,

k�x − ih� + k if �x − ih� � 1,

0 if x � ih − 1,
�

f−i�x;k;h� = �0 if x � − ih + 1,

k�x + ih� − k if �x + ih� � 1,

− 2k if x � − ih − 1.
�

The parameters used in the following �a=b=c=d1=d2

=0.7, k1=k2=50, h1=h2=100, p1= p2=1, q1=q2=2� permit
us to generate a 2D 5�5 grid of scroll attractors.3

A key point of this approach is that the reference cycles
distribution in the phase plane x−y reflects the topological
distribution of the sensory information taking into account
the agent embodiment. Moreover, the sensor range depicts
the current robot operating space, which is dynamically en-
coded within the phase space of the multiscroll system. The
control acts only on the two state variables x and y and the
link between reference signals and sensors is obtained
though control gains. These control parameters are related to
the amplitude of the sensory stimuli, so a regular periodic
pattern emerges as a function of the sensor readings.3,5

The different dynamics shown by the controlled system
are depicted in Fig. 2, where three different reference cycles
are taken into account �i.e., Re f i�. When the agent does not
perceive any stimulus, the multiscroll system evolves chaoti-
cally �Fig. 2�a��. When the control gains for the Re f2 are set
to Kx2

=Ky2
=0.1, the chaotic evolution is confined in a part of

the phase plane topologically related to the stimulus �Fig.
2�b��. Furthermore if the control gain grows reaching a value
Kx2

=Ky2
=2 �i.e., the agent is giving more importance to the

sensors related to Re f2�, the chaotic dynamics collapses to a
cycle �Fig. 2�c��. Finally, when another stimulus is perceived
concurrently, for instance, the sensor associated with the
Re f3 is very active �Kx2

=Ky2
=2 and Kx3

=Ky3
=15�, the

controlled system dynamics is influenced accordingly
�Fig. 2�d��.

An important advantage given by the characteristic of
the multiscroll system is the possibility to extend the grid of
scrolls in a third dimension adding another simple piecewise
linear function as described in Ref. 1. This solution can be
useful when the three-dimensional distribution of sensors in
the agent is important �e.g., in a multilegged robot or in a
robotic arm�. In this condition the control law can be easily
extended to the state variable z.

In order to solve the robot navigation task, an action is
performed by the robot according to the characteristics of the
emerged pattern.

Each cycle that emerges from the control process �i.e.,
perceptual state� can be identified through its center position
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and shape. A code is then associated to each cycle and it is
defined by the following parameters:

• xq and yq: the center position in the phase plane x−y;
• x̄q: maximum variation of the state variable x within the

emerged cycle;
• ȳq: maximum variation of the state variable y within the

emerged cycle;

where q indicates the emerged cycle.
The result of this stage is the emergence of a few param-

eters as compact information coming from sensors. Those
linked to the following stage of action selection, will contrib-
ute to the realization of stimulus-dependent activity patterns.
This approach has been suitably applied to robot navigation.
Other parameters could be taken into consideration to im-
prove the methodology for more complex tasks.

In the application dealing with autonomous navigation,
only contact, distance, and target sensors have been used,
although other sensors could be included. Distance sensors
have a visibility range that describes the area where the robot
is able to detect static and dynamic obstacles, while target
sensors return the target detecting angle with respect to the
frontal axis of the robot.

B. Action selection layer

The parameters obtained through the WCC technique are
processed by the action selection block �see Fig. 1�. This
block establishes the association between the parameters of
the emerged cycle and the consequent robot action. For navi-
gation purposes, an action consists of two elements:

action = �module,phase� . �3�

The module and phase of an action determine the motion
step and the rotation angle to be performed by the robot,
respectively. To perform this task, the motor map �MM�
paradigm was employed. MMs are suitable to control robot
behaviors in an unknown environment because they are
adaptive, unsupervised structures and simple enough to al-
low a real time learning. The MM is composed of two layers:
one �V� devoted to the storage of input weights and another
�U� devoted to the output weights. This allows the map to
perform tasks such as motor control. Formally, a MM can be
defined as an array of neurons mapping the space of the input
patterns into the space of the output actions:

�:V → U . �4�

FIG. 2. �Color online� Dynamic evolution of the controlled multiscroll system for different values of the control gains. �a� Kx2
=Ky2

=0; �b� Kx2
=Ky2

=0.1; �c�
Kx2

=Ky2
=2; �d� Kx2

=Ky2
=2 and Kx3

=Ky3
=15.
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The learning algorithm is the key point to obtain a spa-
tial arrangement of both the input and output weight values
of the map. This is achieved by considering an extension of
the Kohonen algorithm. At each learning step, when a pattern
is given as input, the winner neuron is identified; this is the
neuron which best matches the input pattern. Then, an update
process of both the input and output weights for winner neu-
ron and its neighbors is performed. The learning procedure is
driven by a reward function that is defined on the basis of the
final aim of the control process.23 A MM although very effi-
cient to be trained, could be difficult to be implemented in
hardware because of the high number of afferent and efferent
weights. Since this work is oriented towards a hardware
implementation on real roving robot prototypes, a simplified
version was adopted �for more details, see Ref. 19�. The first
difference is that the relationship of proximity among the
neurons is not considered, therefore only the weights of the
winner neuron are updated. Another and more important dif-
ference is that the input layer is substituted by a pattern table.
Each emerged cycle, identified by a code, is stored in the
pattern table �if it is not yet present� when the cycle emerges
for the first time. Each element in the pattern table contains
the emerged cycle code and the number of iterations from its
last occurrence �defined as age�. If the pattern table is full,
the new element will overwrite the one containing the code
of the pattern least recently used �LRU�, i.e., that one with
the highest age value. In the standard MM paradigm, the
afferent layer V represents the actual state of the system: in
our application the pattern table performs the same function,
by synthesizing information from the environment. There-
fore the winning neuron of the input layer is replaced by the
element q of the pattern table which contains the last
emerged cycle parameters. Moreover the output layer is now
constituted by two weights for each element of the pattern
vector. The element q is connected to the weights wqm and
wqp which represent, respectively, module and phase of the
action associated with the pattern q �Aq�. At each step, the
robot does not perform the exact action suggested by the
weights of q �wqm and wqp�, but the final action is

Aq = �Aq�module�,Aq�phase��

= �wqm + asq
�1,wqp + asq

�2� , �5�

where �1 and �2 are random variables uniformly distributed
in the range �−1;1�. The parameter asq

limits the searching
area. Every time the pattern q emerges, asq

is reduced to
focus the action search in a smaller range so to guarantee the
convergence of the efferent weights. When there are no in-
puts, the perceptual core of the robot �the multiscroll system�
behaves chaotically. This implies that there are no emerged
cycles and no entries in the pattern table. In this case the
robot explores the environment and its action depends on the
position of the centroid of the chaotic dynamics shown by
the system during the simulation step. Of course the explo-
ration phase can be performed also using a forward motion,
i.e., not considering the chaotic wandering.

The unsupervised learning mechanism that characterizes
the MM algorithm, is based on a reward function �RF�. This

is a fitness function and it is the unique information that
allows to determine the effectiveness of an action depending
on the assigned task.

In a random foraging task, a suitable choice for the RF is

RF = − �
i

ki

Di
2 − hDDT − hA��T� , �6�

where Di is the distance between the robot and the obstacle
detected by the sensor i, DT is the target-robot distance, �T is
the angle between the direction of the longitudinal axis of the
robot and the direction connecting robot and target, and ki,
hD, and hA are appropriate positive constants determined dur-
ing the design phase.24,25

III. APPLICATION TO ROBOT NAVIGATION

To demonstrate the applicability of the control scheme
introduced above with a moving agent, an autonomous navi-
gation task was taken into consideration.

The proposed framework has been firstly evaluated with
a simulated roving robot and subsequently it was tested in a
controller board based on a powerful Field Programmable
Gate Array �FPGA� chip. To simplify the comparison of the
proposed architecture with other more standard control tech-
niques, a well-defined simulation setup has been followed.
The simulation process consists of three main phases:

�1� Learning: during the learning phase the robot is placed
into a training environment. While exploring, the system
plastically changes the perception-action association on
the basis of the overall goal �i.e., defined through the
RF�.

�2� Test in the same environment as in the learning phase:
the learning mechanisms are stopped and the robot per-
formances are evaluated.

�3� Test in an unknown environment: the robot is placed into
a series of new environments, different from the learning
ones, to show the generality of the learned behaviors.

During the learning phase a growing set of emerged
cycles, arise in response to different environmental states,
and are associated with suitable actions through the MM al-
gorithm. In order to evaluate the robot performances in a
quantitative way, the following parameters have been consid-
ered:

• Pnew: cumulative number of new perceptual states that
emerge during learning;

• Bumps: cumulative number of collisions with obstacles;
• Explored area: new areas covered �i.e., exploration capa-

bility�;
• Retrieved targets: number of targets retrieved in the

environment.

Initially each new pattern is associated with a random
action, but the continuous emerging of such a pattern leads
the action selection network to tune its weights in order to
optimize the association between the perceptual state and the
action to be performed. It is also desirable that new patterns
occur only during the first learning steps �i.e., epochs�. To
guarantee the convergence of the algorithm, the learning pro-
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cess cannot be considered ended while new patterns continue
to emerge with a high frequency. Moreover, in order to solve
the robot navigation problem, it is necessary that a pattern
occurs several times, since the robot learns by trial and error.

Since the term asq
gives information about the stability

of the action associated with the pattern q, this was used to
evaluate the convergence of the learning process. The LRU
algorithm �that manages the pattern table� was modified to
consider the asq

. The pattern q cannot be replaced if its asq
is

under a fixed threshold �ASLearn� that is determined during
the design phase.

The code that identifies an emerged cycle is constituted
by the four parameters xq, yq, x̄q, and ȳq that take on continu-
ous values because they depend on the evolution of the state
variables of the controlled system.

The choice of the tolerance to distinguish among differ-
ent patterns is a crucial problem during the design phase. If
the tolerance increases, the number of patterns representing
the robot perception of the environment decreases. Then, the
learning time is reduced but the perception-action association
is more rough. On the contrary, if the tolerance is reduced the
number of actions increases, producing a wider range of dif-
ferent solutions for the navigation task. In this way it is fea-
sible to reach a better but more time consuming solution.

Table I shows the value of the most relevant parameters
used during the learning phase. In the RF, the contact sensors
are dominant with respect to the distance and target ones
since it was considered more important to preserve the robot
safety. For the same reason the weights of the front distance
sensors in the reward function are higher than lateral sensors.

A. Simulation environment

To test the performance and the potential impact of the
proposed architecture we developed a software tool for mo-
bile robot simulations.26 The framework has been designed
to evaluate and compare the performance of different control
strategies applied to the navigation of autonomous roving
robots. The tool permits to create a 3D environment in which
the exploring capabilities of a robot executing a navigation
task such as a food retrieval task, can be evaluated. The
behavior of the system is monitored with the help of a real-
time visualization tool that gives a complete idea of the sys-
tem evolution in terms of internal state and corresponding
robot actions �see Fig. 3�.

An example of the robot behavior guided by the internal
patterns generated through the WCC technique is shown in
Fig. 4. Movies of this simulation are available on the web.27

The modular structure of the simulator allows us to eas-
ily integrate new blocks as the action selection module. The

simulated environment, where the robot is placed, is made up
of obstacles, walls, and targets. When the robot finds a target,
this one is disabled until another target is found. This mecha-
nism allows the robot to visit different targets exploring the
whole environment. A target is represented by a point sur-
rounded by a circle that indicates its visibility range. Ob-
stacles are represented by walls and by rectangular objects
distributed in the environment.

The simulated robot has a cubic shape and the dimension
of each edge is 1 robot unit �ru�. The sensory system
equipped on the robot consists of four distance sensors, three
contact sensors, and one target sensor. The detecting distance
is set to 2.5 ru for the frontal distance sensors, 2.0 ru for the
lateral sensors. The target sensor is able to detect the distance
and the orientation between the robot and the detected target
only when the robot reaches the influence area associated
with each target.

Distance sensors are associated with the reference cycles
that reflect the topological position. A similar strategy has
been adopted for the target. When a target is within the range
of robot visibility, it is considered as an obstacle located in a
position symmetric with respect to the motion direction. The
aiming action is guided by a reference cycle with a low gain,
so that obstacle avoidance is a priority over reaching a target.

Figure 5 shows the link between sensors and reference
signals. Sensors with the same position on the robot are as-
sociated with reference cycles with the same position in the
phase plane.

The four parameters �xq, yq, x̄q, and ȳq� used to charac-
terize the perceptual state �i.e., cycle� that emerges in the
controlled chaotic system representing our perceptual sys-
tem, are associated with a robot behavior through the MM-
like structure that constitutes the action selection layer. The

TABLE I. Relevant simulation parameters of the MM-like structure.

RF parameters Learning parameters

ki for frontal distance sensors 15 as start value 0.6
ki for lateral distance sensors 10 as decrement factory 0.01
ki for contact sensors 20 ASLearn 0.5
hD ,hA 10 Tolerance 8%

FIG. 3. �Color online� Interface of the 3D simulator used to compare robot
navigation control algorithms: frame �I� is the menu that permits us to set
the robot and the environment characteristics, frame �II� permits us to
choose the simulation parameters, frame �III� represents the behavior of the
WCC system and the active reference cycle, frames �IV� and �V� show a 3D
and 2D view of the environment and the robot.
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action selection network consists of 100 entries and two out-
put weights are associated with each input. Each entry is
constituted by the set of the four parameters above, which
describe an emerged cycle. So, when a cycle emerges in the

perceptual system, on the basis of its identification param-
eters, is associated with an empty slot or to a previously
emerged pattern.

IV. SIMULATION RESULTS AND COMPARISONS

In order to test the capabilities of the proposed architec-
ture, the learning phase has been done in two environments
with different characteristics. The first, called E1, is shown in
Fig. 6�a�. It consists of two rooms, with a target in a room
and two obstacles in the other one. In order to guarantee an
easy passage through the rooms, another target is placed in
the communication door between them. The second environ-
ment, called E2, contains a series of obstacles, alternating
with several targets �see Fig. 6�b��.

For each environment a set of five learning trials was
performed with the MM structure randomly initialized. The
learning phase is stopped at 65 000 actions �i.e., epochs�.
Each robot simulation step �i.e., epoch� corresponds to a
single robot action: this is determined simulating the dy-
namical system for 2000 steps with an integration step equal
to 0.1. These parameters guarantee the convergence of the
multiscroll system to a stable attractor when external stimuli
are perceived by the robot.

During the learning phase, a sequence of new patterns
emerges and the robot learns how to behave in the current
situation. To evaluate the convergence of the learning phase,
in Fig. 7 the trends of the cumulative number of new patterns
that arise �Pnew� is shown for both environments. The learn-
ing process leads to a huge improvement of the robot behav-
ior for the situation �i.e., perceptual state� that more often
occurs, while some other patterns cannot be suitably learned
if they seldom emerge.

FIG. 4. �Color online� Example of a
trajectory followed by the simulated
robot and the corresponding mental
patterns that emerge depending on the
robot embodiment and situatedness.

FIG. 5. �Color online� �a� Map of the sensors equipped on the robot. �b�
Reference cycles linked to the robot sensors. Due to the common nature of
contact and distance sensors, if they are placed in the same position on the
robot �e.g., C3 and D3�, a unique reference cycle is used. The target is
considered as an obstacle located in a symmetrical position with respect to
the motion direction. The target sensor is omnidirectional and for this reason
it is associated to four reference cycles distributed in the corners of the scroll
grid.
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After the first 5000 learning epochs, the number of new
emerging patterns is very low and tends to reach a stable
value. These results were obtained by adopting the learning
parameters defined in Table I. In particular, the total number
of emerging patterns, around 70, is directly related to the
tolerance parameter that has been set to 8%. In other simu-
lations carried out, increasing the tolerance factor to 15%,
the number of emerged patterns was reduced to around 30.

A reduced number of emerged patterns leads to speed up
the learning phase, but decreases the specialization of the
robot actions with a consequent lowering of the perfor-
mances.

To evaluate the efficacy of the learning phase, an impor-
tant parameter is as. The value of as is directly related to the
stability of the association among the perceptual state and the
robot action.

Figure 8 shows the evolution of the learning parameter
as in the two environments �i.e., E1 and E2�. In Figs. 8�a� and
8�b� the trend for a single simulation and for each pattern is
shown. The duration of the learning phase, set to 65 000
epochs, guarantees a sufficient stability and reliability for the
perception-action association. In fact the total number of pat-
terns emerged is about 70 and more than 60% of the patterns
have an as�0.5: this corresponds to more than 100 updates
of the associated action following the indication of the re-
ward function, and about the 25% of the patterns have an
as�0.1 that correspond to more than 500 updates.

In Figs. 8�c� and 8�d� the average value for the whole
simulation campaign for each environment is given.

The learning process guided by the reward function sig-
nificantly improves the robot capabilities evaluated in terms
of number of bumps and target retrieved. In Figs. 9 and 10,
the cumulative number of bumps and targets found is shown
for the two learning environments, comparing the behavior
of the system during learning with the same architecture
when the learning is not activated. The results show that
since the first stage of the learning �i.e., about 5000 epochs�,
a significant difference in term of performance is evident.
The robot behavior is completely different as shown in Fig.
11, where the trajectories followed by the robot with and
without learning can be compared.

This comparison outlines the capability of the control
system to create a suitable link among perception and action.

To further outline the results of the testing phase for a
learned architecture, information on the association between
perceptual patterns and corresponding actions is reported. In
particular, in Fig. 12, the final emerged actions associated
with the mostly used patterns are shown. This result is re-
lated to a learning carried out in the environment E1. Figure
12�a� shows the x -y phase plane of the multiscroll system,
together with the internal patterns emerged during a learning
phase. For sake of clarity, each class is reported only with a
marker indicating its position �i.e., parameters xq and yq�.
The vector associated with each pattern, shows module and
phase of the corresponding action performed by the robot,
with respect to the x-axis that indicates the front direction of
the robot motion. In Fig. 12�b�, a typical target approaching
maneuver made by the robot is shown. The sequence of in-

FIG. 6. �Color online� 3D view of the environments used during the learn-
ing phase: E1 �a� and E2 �b�. Black boxes are obstacles, the circles represent
the target detection area. The dimensions of E1 are 20�20 ru2, whereas E2

dimensions are 36�36 ru2.
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FIG. 7. Cumulative number of new patterns that emerge during the learning
phase calculated in windows of 5000 epochs for the environments E1 �a� and
E2 �b�. The bars indicate the minimum and maximum value, whereas the
solid line is the mean value of the set of five simulations performed.
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FIG. 8. �Color online� An example of the evolution of all the as during the learning phase in the environments E1 �a� and E2 �b�. In �c� and �d� the average
value of as among five simulations, calculated in windows of 5000 epochs for the two environments is shown. The bar indicates the minimum and maximum
value for each window.
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FIG. 9. �Color online� Cumulative value of bumps calculated in windows of
500 epochs in the conditions of learning and no-learning for the environ-
ments E1 �a� and E2 �b�. The two trends span among the minimum and
maximum value for each window.
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FIG. 10. �Color online� Cumulative value of retrieved targets calculated in
windows of 500 epochs in the conditions of learning and no-learning for the
environments E1 �a� and E2 �b�. The two trends span among the minimum
and maximum value for each window.
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ternal patterns and the corresponding actions, used to avoid
collisions with an obstacle and to find a target, are depicted.

A main issue in neural network learning is to ensure that
the network, during the learning phase, is able to extract a
“motion rule” from the environment patterns. Since the en-
vironment conditions reflect situations where the robot lo-
cally interacts with targets and/or obstacles, the capability to
learn a motion rule can be generalized to new environments.

So we will refer to this “generalization capability,” shown in
the following section.

A. Comparisons with other navigation strategies

To further evaluate the performances of the control ar-
chitecture, we tested the learned structure in new environ-
ments making a comparison with other navigation strategies.
In particular, a basic version of the traditional method of the
quadratic potential field �PF� has been considered. Also in
this case the robot can use only local information, acquired
from its sensory system to react to the environment condi-
tions �i.e., local potential field�.28,29 For the comparison, two
other control schemes based on the WCC technique have
been taken into account. For these algorithms we adopt a
different action system based on a deterministic action selec-
tion procedure.26,5 The difference between the two versions
is limited to the behavior of the robot during the exploration
phase �i.e., when no stimuli are perceived�. The former
implements a very simple behavior that consists of a forward
movement with the speed set to its maximum value �i.e.,
WCCf�, whereas the latter considers the chaotic evolution of
the multiscroll system to determine the action of the robot
exploring the environment �i.e., WCCc�.

The parameters of all the algorithms taken into consid-
eration �e.g., robot speed, constraints for the movements�
have been chosen in order to allow a comparison among
them.

To compare the results obtained with the reward-driven
learning in the MM structure with the other control schemes,
a learned structure with average performances was chosen.
To compare the navigation capabilities to explore the envi-
ronment avoiding obstacles and retrieving the target found,
two different scenarios were considered. The former �i.e., E3�
is a well structured environment consisting of four rooms

(a)

(b)

(c)

(d)

FIG. 11. �Color online� Trajectories
followed by the robot during a test in
the learning environments. �a� and �b�
Behavior of the robot without learn-
ing; �c� and �d� trajectories followed
after the learning phase. The simula-
tion time is 10 000 epochs.
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FIG. 12. �Color online� �a� Creation of an action map. Each vector indicates
the phase action associated with the emerged patterns indicated only with
their position in the phase plane. �b� Sequence of perceptual patterns and
associated actions generated by the control architecture.
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with a target placed in each room; the latter �i.e., E4� is a
more complex environment filled with randomly placed ob-
stacles and targets. The dimensions of both the environments
are 40�40 ru2.

A typical trajectory followed by the robot in each case is
shown in Fig. 13. The figure qualitatively shows the robot
behavior for the four considered algorithms. For each simu-
lation, the robot is randomly placed in the environment, and
the three control methods are applied monitoring the robot
behavior for 10 000 actions.

In the case of the proposed architecture with the MM-
based action selection layer and the chaotic exploration
movements �WCCMMc�, the parameters used for both the en-
vironments E3 and E4, have been obtained with a learning
phase carried out in the environment E1. This was done to
demonstrate that the knowledge acquired by the system dur-
ing learning can be used also in different environmental situ-
ations. Movies of these simulations are available on the
web.27

To compare the performances of the algorithms we con-
sider, as performance indexes, the cumulative number of tar-
gets found and the area explored by the robot.16

The performance obtained with the WCCMMc architec-
ture in terms of explored area, are comparable with the best
results obtained with the other navigation schemes, as shown
in Fig. 14.

It is important to notice that comparing the results be-
tween WCCf and WCCc, in terms of explored area, the effect
of chaos during the exploration phase is positive and allows
to obtain the best performance.

Furthermore as far as the cumulative number of detected
targets is concerned, the results are excellent for the environ-
ment E4 �see Fig. 15�b��. Instead the simulations performed
in E3 indicate a retrieving problem as illustrated in Fig.

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIG. 13. �Color online� Trajectories followed by the
robot controlled through: �a� �b� local potential field; �c�
�d� WCC with forward exploration strategy; �e� �f�
WCC with chaotic exploration behavior; �g� �h� WCC
with action selection layer based on a MM structure.
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FIG. 14. �Color online� Value of the explored area obtained using three
different control algorithms in two environments: a four-room environment
�E3� �a� and a less structured one �E4� �b�. The arena which dimension is
50�50 robot units, has been divided into locations of 2�2 robot units. The
simulation time is 10 000 epochs and the mean value of the area explored,
mediated over five simulations, calculated with time windows of 1000 ep-
ochs, is indicated. The bars show the minimum and maximum explored area.
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15�a�, in which the performances of the WCCMMc are not
impressive. A justification can be found in the particular dis-
tribution of the targets in E3 that are confined in four well
distinct rooms. In this condition an approach like the PF or
the WCCf is more suitable because they adopt forward ac-
tions during the exploration phase. Nevertheless the perfor-
mances of the WCCMMc can be improved if a learning ses-
sion is performed in the testing environment. In fact, as
shown in Fig. 16, the WCCMMc agent, after learning on the

environment E3, improves its target retrieving capabilities
with respect to the previous one �i.e., learning in E1�. This
final result shows that the proposed architecture can general-
ize the learned motion rules and the performance can be
improved extending the learning to the specific environment
we are dealing with.

V. FPGA-BASED IMPLEMENTATION

The choices done during the design of the control archi-
tecture were oriented to the implementation of the strategy in
a high performing hardware, embedded on a roving robot. In
the following some preliminary results on an experimental
platform are reported.

To realize the WCC approach for navigation control in
hardware, a FPGA-based board was considered. The control
algorithm was implemented on the Nios II, a 32-bit RISC
digital soft-processor, using also customized VHDL �Very
High Speed Integrated Circuits Hardware Description Lan-
guage� blocks for the most time consuming tasks.30

The roving robot Rover II used for the experiments is a
classic four wheeled drive rover controlled through a differ-
ential drive system. Rover II is equipped with four infrared
distance sensors, with low level target sensors �i.e., able to
detect black spots on the ground used as targets� and with a
board for sonorous target detection inspired by phototaxis in
crickets. A scheme of the hardware framework is shown in
Fig. 17.

In the following experiments, to fulfill a food retrieval
task, distance sensors were used for obstacle avoidance,
whereas a cricket-inspired hearing board was considered for
the target detection issues.

The simulation and control of the multiscroll system is
performed directly in a VHDL entity, implementing a fourth
order Runge–Kutta algorithm �RK4�. On the other side, the
NiosII microprocessor is devoted to handle the sensory sys-
tem, to execute the action selection layer and to supervise the
activities of the VHDL entities implementing the weak chaos
control. When the simulation ends, the NiosII reads the pa-
rameters that identify the emerged cycle. Then it calculates
the command to drive the roving robot. The simulation pro-
cess implemented in the VHDL entity lasts about 4.2 ms �the
time is referred to the generation of 2000 samples with an
integration step of 0.1� and the control algorithm running on
NiosII about 80 ms.

The environment used to perform tests and comparisons,
is a 10�10 ru2 room with three obstacles and two targets.
The simulated arena and the real arena are shown in Fig. 18,
where the trajectories followed by the robot after the learning
process are shown and compared with the trajectories shown
by a simulated robot working in a virtual environment mim-
icking the real one.

VI. REMARKS

Among the very few attempts to use dynamical systems
in robot perception, the dual dynamics �DD� scheme is of
interest.31 The key idea is that a robotic agent can work in
different modes, which lead to qualitatively different behav-
ioral patterns. Mathematically, transitions between modes
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FIG. 15. �Color online� Cumulative number of targets found with the con-
sidered control algorithms in E3 �a� and in E4 �b�. The simulation time is
10 000 epochs and the mean number of targets, mediated over five simula-
tions, calculated with time windows of 1000 epochs, is indicated. The bars
show the minimum and maximum number of targets.
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FIG. 16. �Color online� Comparison between the cumulative number of
targets found in the environment E3 by an agent that performed a learning
phase in E1 and another that creates its perception-action map directly in E3.
The simulation time is 10 000 epochs and the mean number of targets,
mediated over five simulations, calculated with time windows of 1000 ep-
ochs, is indicated. The bars show the minimum and maximum number of
targets found.
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can be considered as bifurcations in the control system. One
of the key aspects of the DD scheme is that the overall be-
havior of the agent is the result of a concurrent and weighted
activation of different behaviors, each one modeled by a dy-
namical system. All the behaviors are active at the same
time. In this way the approach tries to formulate in an alter-
native way the very well known behavior based robotic
methodology.

Our approach, as outlined above, is completely different.
In fact only one behavior, at the end of the learning phase, is
active. Moreover, we fully exploit the richness shown by
chaotic wanderings, by controlling the chaotic system in a
“weak mode.” In fact, in this way, even slightly different
sensory information can lead to a different emerged cycle.
The “meaning” of this cycle is gained through a very simple
associative layer, reward driven, that can be implemented in
hardware at low cost and with real time performance.

An application of chaos theory to control robotic sys-
tems is included in Kuniyoshi’s works, in which the coupled
map lattice �CML�, exploited for their rich dynamical
properties,32 are used in experiments with a baby model.18

Coupled chaotic system such as CML, can change their be-
havior to reflect external information via coupling with the
environment, and can explore the multiple dynamics embed-
ded, and get temporarily entrapped in them.

In this work, we adopt an extremely simple dynamical
system, that can be designed and developed in a modular
way to facilitate the scalability of the architecture. Moreover,
the chosen model can be implemented in both in analog2 and
in digital5 hardware to be embedded in a really working ro-
bot prototype.

The learning algorithm used to attain a suitable associa-
tion between the emerged cycle characteristics and a success-
ful action is drawn from the reinforcement learning theory,33

by implementing the simplest version that leads to good

results being also suitable for a reliable hardware implemen-
tation, due to its simplicity.

Another important consideration is that the WCC tech-
nique discussed here is based on a state feedback approach
and the control gains are chosen here in order to grant the
controlled system stability under stimulation with reference
signals �see Ref. 5 for details�. The term weak chaos control
refers to a strategy that does not aim to the exact matching
between the reference and the controlled signal; instead the
chaotic signal has to collapse to an orbit near the reference
signal. At this point, the amplitude value of the control gains
is related to the matching degree between the reference and
the controlled signal. The control gain value could be there-
fore used as an additional choice to weight a kind of “degree
of attention” that the learning system could pay to the corre-
sponding sensor signal. If learning is used also to choose the
control gains, at the end of the learning phase the robot could
be allowed to discard useless sensor signals and to “pay at-
tention” to the important ones. This approach is currently
under active investigation.

Another advantage, given by the chaotic nature of the
perceptual core, is apparent when the robot is trapped in a
deadlock situation. In this situation, standard solutions pro-
posed in the literature consider either the introduction of a
higher layer dedicated to deal with the local minima or to
add noise to escape from the deadlock. In our case the robot
entrapped in a difficult situation, without succeeding in
reaching the assigned target for a long time can decrease its
level of attention to sensory inputs �e.g., reducing the as-
signed control gain, this effect is similar to “boredom” in
living beings� allowing the chaotic dynamics to reemerge.
The result is to increase the exploration movements to avoid
the local minima.

Moreover, the strategy introduced in the paper was ap-
plied to the apparently simple task of autonomous navigation

FIG. 17. Description of the framework used during the experiments. A FPGA-based board equipped on a roving robot.
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learning. The clear advantages over the classical approaches,
for example, related to the potential field, are that the control
structure, based on the multiscroll system, is quite general.
The fact that the results obtained are comparable with those
of the potential field is relevant. This means that a general
approach to learn the sensing-perception-action cycle using
the power of information embedding typical of chaotic sys-
tems, applied to a traditional task, succeeds in reaching the
same results as a technique peculiarly designed to solve that
task. The WCC-MM approach can in fact be applied to learn
an arbitrary action-map, or in general a behavior map. In
particular, we exploit the rich information embedding capa-
bility of a chaotic system with a simple learning that gives a
“meaning” to the embedded information �taking inspiration

from Ref. 9�, within the context of the robot action. This
contextualization is decided through the reward function.
The definition of this function has to be designed a priori,
based on the task to be accomplished. According to the best
of the authors’ knowledge, it is the first time that the chaotic
circuits and system theory, linked to a simple neural learning,
is used to approach problems relevant in robot perception,
even in the simple case of navigation. In fact, here naviga-
tion is treated as a perceptual task. Several other examples
are currently under investigation to further generalize the ap-
proach and a considerable theoretical effort is being paid
nowadays to include the strategy introduced here within a
more general scheme for robot perception in unknown con-
ditions and environments.

FIG. 18. Environment used during the learning phase in real experiments �a� compared with simulations �b�. The dimensions of the environment are 10
�10 ru2. Trajectories followed during a test in the learning environments by the real robot �c� and the simulated one �d�.
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VII. CONCLUSION

In this paper a new perception-action system has been
proposed to deal with robot navigation problems in unknown
environments. The weak chaos control technique permits us
to synthesize the perception schema in a compact form easy
to be processed. The introduced action layer allows us to
generate new behaviors through a very simple unsupervised
learning driven by a reward function. The architecture has
been tested in different simulated environments showing the
increase in terms of robot capabilities obtained during the
learning phase.

The simulation results confirmed that the proposed solu-
tion is suitable to resolve the obstacle avoidance and target
retrieving tasks. The performance indexes adopted have been
compared with other navigation strategies showing that a
learned structure can be used in different kinds of environ-
ments and that reactivating the learning mechanisms im-
proves the performance. Finally the designed and assessed
architecture is suitable for a hardware implementation based
on FPGA. The perceptual core and the learning mechanism
were implemented in hardware and embedded on a roving
robot for a real-time learning of the navigation tasks defined
through the reward function.

Further developments will include the introduction in the
real robot of other kinds of sensors needed to improve the
capabilities to explore and draw more details from the envi-
ronment for perceptual purposes.
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