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ABSTRACT

Hebbian models of development and learning require both activity-dependent synap-
tic plasticity and a mechanism that induces competition between different synapses.
Recent experiments have characterized a form of long-term synaptic plasticity that
depends on the relative timing of pre- and postsynaptic action potentials, which we
call spike-timing dependent plasticity (STDP). In modeling studies, we find that this
form of synaptic modification can automatically balance synaptic strengths to make
postsynaptic firing irregular but more sensitive to presynaptic spike timing. It has
been argued that neurons in vivo operate in such a balanced regime. Synapses sub-
ject to STDP compete for control of the timing of postsynaptic action potentials.
Inputs that fire the postsynaptic neuron with short latency or that act in correlated
groups are able to compete most successfully and develop strong synapses, while the

synapses of longer latency or less effective inputs are weakened.
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Introduction

Hebbian learning, the development of neural circuits on the basis of correlated activ-
ity, relies on two critical mechanisms. The best known of these is activity-dependent
synaptic modification along the lines proposed by Hebb'. Equally important is
a mechanism that forces different synapses to compete with one another so that
when some synapses to a given postsynaptic neuron are strengthened, others are
weakened??. For example, correlation-based rules of synaptic modification can pro-
vide a reasonable account of many aspects of development in visual cortex, but only
when they are combined with constraints introduced to ensure competition?. While
Hebbian synaptic modification has received support from experiments on long-term

5 much less is known about the mechanisms that generate

potentiation and depression
competition between synapses.

At first, it might appear that any mechanism that imposes competition among
synapses must involve a global intracellular signal that reflects the state of many
synapses. The constraints used in many models of Hebbian learning®, while not bio-
physically realistic, are based on this idea. Typically these constraints limit the sum of
synaptic strengths received by a cell, or the mean activity of the cell. Competition can
also arise locally if the processes that modify synaptic strengths equilibrate at a pre-
set level of total synaptic innervation or postsynaptic activity. This can be achieved
through static mechanisms such as thresholds and negative input correlations®, dy-
namic mechanisms involving non-Hebbian synaptic growth or decay terms such as

79 or shifts in the synaptic modification rule itself as in the slid-

synaptic scaling
ing threshold of the BOM model'?. Here we explore an entirely different mechanism
suggested by experimental results on the effect of spike timing on long-term synaptic
modification!'~'? (D.E. Feldman, Soc. Neurosci. Abst. 25, 223, 1999) in which dif-
ferent synapses compete for control of the timing of postsynaptic action potentials.
We show that the dependence of synaptic modification on spike timing provides a
mechanism that can lead to competitive Hebbian learning without requiring global
intracellular signaling or pre-set activity or synaptic efficacy levels.

=19 gyggests that

Experimental evidence from a number of different preparations
both the sign and degree of synaptic modification arising from repeated pairing of
pre- and postsynaptic action potentials depend on their relative timing. In recent ex-

1'® culture, and in vivo

periments on neocortical slices', hippocampal slice!” and cel
studies of tadpole tectum', long-term strengthening of synapses occurred if presy-

naptic action potentials preceded postsynaptic firing by no more than about 50 ms.
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Presynaptic action potentials that followed postsynaptic spikes produced long-term
weakening of synapses. The largest changes in synaptic efficacy occurred when the
time difference between pre- and postsynaptic action potentials was small, and there
was a sharp transition from strengthening to weakening as this time difference passed
through zero. We call this form of synaptic modification spike-timing dependent
plasticity (STDP).

Synaptic modification by STDP-like rules has been studied previously in mod-

22—24

els of temporal pattern recognition®®?!, temporal sequence learning , coincidence

detection?? navigation?=?°, and direction selectivity®®?' (N.J. Buchs, J. Reuti-
mann & W. Senn, Soc. Neurosci. Abst. 25, 2259, 1999). We focus instead on the
competitive and stabilizing properties of STDP. The competitive nature of STDP has
been noted?'?, but not studied in detail previously. Stability of an STDP-like rule in
combination with non-Hebbian plasticity has been studied in a linear, stochastically-

132, but we find qualitatively new behavior when the intrinsic

spiking neuron mode
nonlinearity of the spike-generation mechanism is taken into account. We find that
STDP alone can lead to stable distributions of synaptic conductances, subject only
to a limit on the strengths of individual synapses. The synaptic conductance distri-
butions produced by STDP force the postsynaptic neuron into a balanced, irregularly
firing regime®*~*2 in which it is sensitive to the timing of the presynaptic action poten-
tials it receives. Such sensitivity leads to competition among inputs for the control of
postsynaptic spike timing. This allows STDP to selectively strengthen synapses of in-
puts with relatively shorter latencies or stronger mutual correlations, while weakening

the remaining synapses.

Spike-Timing Dependent Synaptic Plasticity

The modeling studies we present are based on a spike-timing dependent synaptic plas-
ticity rule in which a function F'(At) determines the amount of synaptic modification
arising from a single pair of pre- and postsynaptic spikes separated by a time At. The

function (Fig. 1)

Ay exp(At/1y) if At<0

1
—A_exp(—At/7_) if At>0, 1)

Flag - {
provides a reasonable approximation of the dependence of synaptic modification on
spike timing seen in the experimental data. The parameters 7, and 7_ determine the
ranges of pre-to-postsynaptic interspike intervals over which synaptic strengthening
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Figure 1: The STDP modification function. The change of the peak conductance at a
synapse due to a single pre- and postsynaptic action potential pair is F(At) times the
maximum value g,,,., with At the time of the presynaptic spike minus the time of the

postsynaptic spike. In this figure, F' is expressed as a percentage.

and weakening occur. A, and A_, which are both positive, determine the maximum
amounts of synaptic modification, which occur when At is close to zero.
Experimental results suggest a value for 7, in the range of tens of milliseconds
and, in the examples we present, we use 7, = 20 ms. Data from some preparations
indicate that the temporal window for synaptic weakening is roughly the same as
that for synaptic strengthening''®'? while other results reveal a larger window for
synaptic weakening!” (D.E. Feldman, Soc. Neurosci. Abst. 25, 223, 1999). We have
run simulations under both conditions. For the results we report here, we do not see a
significant difference between the two cases, and we use 7, = 7_ = 20 ms throughout.
We determine the parameters A, and A_ by dividing the total modification mea-
sured experimentally for multiple spike pairs by the number of pairs. This assumes
that the effects of individual spike pairs sum linearly (see Discussion). In our simu-
lations, A,y = 0.005, except in Fig. 2f where A, = 0.02. To set the value of A_, we
make the important assumption that synaptic weakening through STDP is, overall,
a slightly larger effect than synaptic strengthening®®. Specifically, stable competitive
synaptic modification requires the integral of the function F' to be negative, which
assures that uncorrelated pre- and postsynaptic spikes produce an overall weakening

of synapses. A negative integral of F' requires A_7_ > A,7,. The data are mixed on
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this issue. The results that report similar time scales for synaptic strengthening and

418,19 indicate rough equality between the two effects and, in some cases,

weakening
even suggest a slight dominance of strengthening over weakening. The data showing a
longer temporal window for synaptic weakening'” (D.E. Feldman, Soc. Neurosci. Abst.
25, 223, 1999) support the dominance of synaptic weakening over strengthening by
STDP. In our simulations we use A_/A, = 1.05, except for Fig. 2d where A_/A,
varies.

In the model we study, g, denotes the peak synaptic conductance (the synaptic
conductance immediately after an isolated presynaptic spike) due to an excitatory
synapse labeled by the integer a (with a = 1,2,...,N). This conductance must
always be positive, and is not allowed to exceed a maximum value g,,.. A pre- and
postsynaptic spike pair separated by a time interval At modifies the peak synaptic
conductance by an amount g, F(At). The value A, = 0.005 thus corresponds to a
change of 0.5% of the maximum synaptic strength per spike pair. If this modification
rule would push the peak synaptic conductance beyond the allowed range 0 < g, <
Tiax> 0, 1S set to the appropriate limiting value. A scheme for implementing this
modification rule is presented in the Methods section.

We examine how STDP acts on the excitatory synapses driving an integrate-and-
fire model neuron with N = 1000 excitatory and 200 inhibitory synapses (see Meth-
ods). The excitatory synapses are activated by various types of spike trains: uncorre-
lated spike trains generated by independent Poisson processes at various rates, bursts
of action potentials with different latencies, and partially correlated spike trains. The
model neuron also receives inhibitory input consisting of Poisson spike trains with a
fixed rate of 10 Hz. In the simulations, excitatory synapses are modified on the basis
of their pre- and postsynaptic spike timing, while inhibitory synapses are held fixed.

Balanced Excitation

To function properly, a neuron must establish and maintain an appropriate level of
excitation so that it can respond to its inputs by firing action potentials at reason-
able rates. Response variability also provides a constraint on the synaptic inputs to
a neuron. The responses of an integrate-and-fire model receiving many independent
presynaptic inputs can be considerably less variable than responses seen in vivo.
Correlations of input spike timing, such as synchronization, can contribute to in-
creased variability?. However, a number of authors have noted that a high degree

of variability can also arise if the excitatory inputs to a neuron are balanced rela-
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3541 " The critical condition is

tive to the inhibitory synaptic and membrane currents
that the mean input to the neuron should only be sufficient to raise the membrane
potential to a point below, or only slightly above, the threshold for action potential
generation, so that spike times are determined primarily by positive fluctuations in
the total level of input. As we will see, STDP provides a mechanism by which this
balance can be established and maintained over a wide range of input firing rates*?.
This results in a state in which presynaptic action potentials can control the timing
of postsynaptic spikes and competition among synapses can arise.

To study the equilibrium distribution of synaptic strengths arising from STDP, we
initially set the peak conductances of all the excitatory synapses of the model neuron
t0 Gpnax, Which produces a high firing rate. All the excitatory synapses to the model
neuron received independent Poisson spike trains with the same average rate. After a
period of adjustment, a steady-state condition was achieved in which the firing rate of
the postsynaptic neuron and the distribution of peak synaptic conductances remained
constant. Although all the peak synaptic conductances started with the same value,
there is no stable equilibrium state with a uniform distribution of values. Instead,
most of the peak synaptic conductances are pushed toward the limiting values of
zero or g, (Figs. 2a and 2b). For low input rates, more synapses approach the
upper limit (Fig. 2a), and for high input rates more are pushed toward zero (Fig.
2b). This has the effect of keeping the total synaptic input to the neuron roughly
constant, independent of the presynaptic firing rates. The split between strong and
weak synapses is also affected by the values of g, (fewer strong synapses develop for
larger g,,.) and A_/A,. The initial distribution of synaptic strengths has little effect
on the final steady-state distribution as long as the postsynaptic neuron is initially
firing action potentials.

STDP has a strong regulatory effect on the steady-state firing rate of the postsy-
naptic neuron, which, for the equilibrium distribution of synaptic strengths, increases
by only about 1 Hz for each 5 Hz increase in the input firing rate (Fig. 2c). In
contrast, if the peak synaptic conductances are held fixed in this model, the firing
rate increase is over 100 Hz for a 5 Hz increase in the input firing rates. Synaptic
changes due to STDP take time to develop, so STDP only regulates the long-term
average firing rate and the neuron remains highly sensitive to transient changes of
the input firing rates.

The coefficient of variation (CV) of the postsynaptic spike train, which is the

standard deviation of the interspike intervals divided by their mean, is fairly large
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Figure 2: Balanced excitation and irregular firing produced by STDP. A) Histogram of
the fraction of synapses taking different peak conductance values ranging from zero to g,,,-
For an input rate of 10 Hz, the peak synaptic conductances tend to the limiting values, but
more are near g, than near zero. B) Same as A, but for an input rate of 40 Hz. Now
more peak conductances are near zero than near g,,,.. C) The postsynaptic firing rate and
CV (stdev/mean) of the postsynaptic interspike intervals for different input firing rates. D)
The ratio of total inhibitory to excitatory currents at threshold and the percentage of strong
synapses (g > 0.87,,.¢) for different presynaptic firing rates. The inhibitory or excitatory
current at threshold is defined as the current that would flow if all conductances of the given
type were simultaneously activated while membrane potential was clamped at threshold.
The leak conductance is included as an inhibitory conductance in this ratio because it acts
to hyperpolarize the neuron. E) The postsynaptic firing rate and CV of the postsynaptic
interspike intervals for input firing rates of 10 Hz but different values of A_ /A, the ratio
of the amplitudes of maximal synaptic weakening and strengthening. F) Same as A, but
with g,,,., 2.33 times larger and the synaptic modification per spike pair four times larger
(Gmax = 0.035, Ay = 0.020, A_0.021). The larger value of g,,,, forces more synapses to
lower conductance values, while the higher modification rate filled in the distribution.
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and remarkably independent of the input firing rate (Fig. 2¢) when the distribution of
synaptic strengths due to STDP has equilibrated. This suggests that STDP regulates
the variability of the postsynaptic response. The high degree of firing variability is
primarily due to an overall balance between inhibitory and excitatory conductances
in the model. A reasonable measure of this balance is the ratio of total inhibitory to
excitatory currents when the membrane potential is at the action-potential threshold.
STDP adjusts this ratio to be slightly greater than one over the entire range of
presynaptic firing rates considered (Fig. 2d). This indicates a balanced condition in
which, on average, inhibitory effects are slightly dominant at threshold.

An additional contribution to firing variability comes from the reduction in the
number of strong synapses for high input rates. Fig. 2d shows the number of strong
synapses (those with § > 0.87,,...) for different presynaptic firing rates. For the value
of G,... we used, roughly half the synapses are strong for a 10 Hz presynaptic rate.
The number of strong synapses drops to 10% when the presynaptic rates are set to 40
Hz. In all cases, the balance between inhibition and excitation is the dominant source
of variability, but the reduction in the number of strong inputs also contributes when
the presynaptic firing rates are high.

Both the firing rate and the coefficient of variation of the postsynaptic neuron
depend on the ratio A_/A, (Fig. 2e). If this ratio is slightly larger than one, the
firing rate of the postsynaptic neuron is maintained in a reasonable range, and the
CV is close to one, indicating an irregular postsynaptic spike train.

Synaptic conductances tend to be pushed close to the upper and lower limits of
their allowed range by the STDP modification rule we are using (Figs. 2a and 2b).
This results in a bimodal distribution. A more continuous distribution arises if the
degree of synaptic modification per spike pair is increased. Fig. 2f shows an example
in which the equilibrium distribution of synaptic conductances is roughly exponential,
except for a small excess near g = 7,,,,.. The basic features of STDP, regulation of the
postsynaptic firing rate and CV, remain in this case, but the synaptic conductance
distribution more closely matches the experimentally observed distribution of spon-
taneous synaptic (mini) potentials®®, which provides one estimate of the distribution
of synaptic strengths.

The reason that STDP achieves a balanced state can be understood from basic
response characteristics of a neuron integrating many inputs. Such a neuron can
operate in two different modes with distinct spike-train statistics and input-output

38,39,42

correlations When excitation is strong, as at the beginning of our simula-
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Figure 3: Correlation between pre- and postsynaptic action potentials before and after
STDP. The solid curves indicate the relative probability of any presynaptic spike occurring
at time fpe when a postsynaptic spike occurs at time fpos. A correlation of one is the
value due solely to chance occurrences of such pairs. The dashed curves show the STDP
modification function from Figure 1. The time-integral of the product of the synaptic
modification curve and the correlation function determines whether, on average, synapses
are strengthened or weakened. A) At the beginning of our simulations, when all the peak
synaptic conductances are set to their maximal value, there is only a small excess of presy-
naptic spikes prior to a postsynaptic action potential. B) At the end of the simulations,
when STDP has established a steady-state distribution of conductances, there is a larger
excess of presynaptic spikes prior to a postsynaptic action potential. In the steady-state,
this excess compensates for the asymmetry in the STDP modification curve, i.e., for the
fact that A_ /Ay > 1.

tions, so that the mean input to the neuron would bring it well above threshold if
action potentials were blocked, the neuron operates in an input-averaging or regular-
firing mode. The postsynaptic action potential sequences produced in this mode are
significantly more regular than the presynaptic spike trains that evoke them. The
interspike intervals of the postsynaptic response depend on the total synaptic input,
but the absolute timing of individual postsynaptic action potentials is fairly insen-
sitive to presynaptic spike times. As a result, there are roughly equal numbers of
presynaptic action potentials before and after each postsynaptic spike**1? (Fig. 3a).
As we have noted, the area under the synaptic weakening portion of the STDP curve
(Fig. 1) is greater than the area under the strengthening part. Initially in our sim-
ulations, there is an overall weakening of the excitatory synapses because the small
excess of presynaptic spikes occurring prior to postsynaptic action potentials is not
large enough to overcome the excess of synaptic weakening imposed by the STDP
rule (Fig. 3a).

As the excitatory synapses are weakened by STDP, the postsynaptic neuron en-
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ters a balanced mode of operation in which it generates a more irregular sequence
of action potentials that are more tightly correlated with the presynaptic spikes that
evoke them. The total synaptic input in the balanced mode is, on average, near or
sub-threshold, so the postsynaptic neuron fires irregularly, primarily in response to
statistical fluctuations in the total input. Because action potentials occur preferen-
tially after a random fluctuation, there tend to be more excitatory presynaptic spikes
before than after a postsynaptic response®3%42 (Fig. 3b). The STDP rule achieves a
steady-state distribution of peak synaptic conductances when the excess of presynap-
tic action potentials prior to postsynaptic firing compensates for the asymmetry in
areas under the positive and negative portions of the STDP modification curve*? (Fig.
3b). If the total excitatory drive were weaker than that provided by this distribu-
tion, stronger fluctuations of the total input would be required to cause postsynaptic
spikes. This would create an even greater excess of presynaptic action potentials prior
to postsynaptic firing, which would lead to an increase in synaptic strengths, driv-
ing the system back to the steady-state distribution. STDP thus modifies excitatory
synaptic strengths until there is a sufficiently, but not excessively, high probability of
a presynaptic action potential occurring prior to a postsynaptic spike . This causes

the neuronal response to be sensitive to the timing of input fluctuations.

Latency Reduction

For uncorrelated stochastic presynaptic spike trains, chance determines whether a
given synapse will ultimately become weak or strong through STDP. When the presy-
naptic inputs are correlated in various ways, the fate of individual synapses is con-
trolled in a more systematic manner. STDP strengthens synapses that fire prior to
a postsynaptic spike and weakens those that fire later. Suppose, for example, that
a stimulus causes a barrage of presynaptic inputs to fire with varying latencies, and
that these latencies extend over a period longer than that required to evoke postsy-
naptic spiking. In this case, STDP will strengthen shorter-latency excitatory inputs
while weakening those with longer latencies. The ultimate effect of this synaptic
modification is to make the postsynaptic neuron respond more quickly.

To illustrate this latency reduction, we considered a model neuron receiving inputs
that are silent except for isolated events represented by bursts of spikes with a Poisson
distribution at 100 Hz for 20 ms. Different synapses are not activated precisely
synchronously during these events. Instead, each synapse was assigned a relative
latency chosen randomly from a Gaussian distribution with a mean of zero and a
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Figure 4: Reduction of latency by STDP. A) The initial peak synaptic conductances plot-
ted as a function of the relative latency of their synaptic inputs. B) The initial postsynaptic
response to a barrage of excitatory input with burst onset for each synapse occurring at
the time of its relative latency. C) The steady-state peak synaptic conductances plotted
as a function of the relative latency of the synaptic input. Short-latency synapses have
been strengthened and long-latency synapses have been weakened. D) The response of the
postsynaptic neuron to the same input barrage as in B, but after STDP has modified the
peak synaptic conductances as in C.

standard deviation of 15 ms. The burst of action potentials at a given synapse occurs
at a time given by the sum of its relative latency and the absolute latency associated
with the event.

Initially, all the synapses were set to the same strength of 0.2g,.. (Fig. 4a).
This produced a response in the postsynaptic cell that began shortly after the time
marked zero, which indicates the mean input latency, and lasted for about 25 ms
(Fig. 4b). The input events were then repeated periodically until the STDP rule had
established a fixed distribution of peak synaptic conductances. STDP strengthened
short-latency inputs to the maximum allowed level, 7, .., and weakened synapses
with longer latencies to zero (Fig. 4c). This produced a quicker response in the
postsynaptic neuron, which fires almost 20 ms earlier than it did originally (Fig. 4d).
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Correlation-Based Hebbian Modification

Factors that enhance the ability of a given synapse to rapidly evoke a postsynaptic
response lead to its strengthening through STDP. Correlating different synaptic inputs
so they are more likely to arrive together in a cluster is an effective way of increasing
their ability to evoke postsynaptic action potentials. By cooperatively generating
action potentials, such a cluster of synapses can grow stronger, while weakening other
synapses that are not part of the cluster. To study this effect, we generated input spike
trains at rates that were correlated across synapses (see Methods), and examined the
effect of STDP.

Presynaptic firing rates were generated to have a correlation function that decayed
exponentially with a time constant 7, and varied in amplitude across the population
of synapses (see Methods). Specifically, the correlation between two cells a and b is
c.Cp With ¢, and ¢, which we call correlation parameters, varying from zero to 0.2
uniformly across the 1000 excitatory synapses. When the correlations decay rapidly
(1. = 20 ms, Fig. 5a), more correlated synapses become stronger and less correlated
synapses weaken (compare Figs. 5a and 5b). This trend disappears for larger cor-
relation times (7. = 200 ms, Fig. 5b). To be strengthened, a group of inputs must
fire together long enough to generate a postsynaptic action potential, but must then
stop firing so they are not subsequently weakened. As a result, correlations have a
large effect when the correlation time constant is approximately equal to the time
constants 7, and 7_ that govern the time scales for STDP32,

Although the degree of strengthening produced by STDP is sensitive to correla-
tions, it is not strongly affected by other properties of the presynaptic spike trains.
When input firing rates are time-independent and uncorrelated but vary uniformly
across the population of synapses, there is little tendency for synapses firing at either
faster or slower rates to be preferentially strengthened or weakened by STDP (Fig.
5¢). Higher firing rates increase the speed at which synaptic modification occurs, but
they do not otherwise affect the final equilibrium distribution of maximal synaptic
conductance values produced by STDP.

The steady-state peak synaptic conductances are also insensitive to the degree of
variability of the presynaptic input. When we arranged the input firing rates to have a
standard deviation that varied uniformly across the inputs, we found no tendency for
synapses with either more or less variable firing rates to be preferentially strengthened
or weakened by STDP (Fig. 5d).

The basic result of these studies is that STDP is insensitive to the average rate
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Figure 5: Effects of the input parameters correlation, firing rate, or variability on steady-
state peak synaptic conductances. Each input parameter is divided into 20 bins. The
histograms show the average peak synaptic conductances for all inputs within a given bin.
These values are the results of averaging bimodal distributions of synaptic strengths within
each bin. (A) The synaptic inputs have correlation parameters ¢, ranging from zero to 0.2
(ca =0.2(a — 1)/(N — 1)) The degree of correlation between any two inputs is determined
by the product of their correlation parameters. The correlation time constant is 20 ms. The
degree of correlation of a synapse has a strong effect on its peak conductance. (B) Same
as a, but with a correlation time constant of 200 ms. No effect of correlation on synaptic
strength is observed. (C) The synaptic inputs have different firing rates r, ranging from 10
to 40 Hz (r, = 104+30(a — 1)/(N — 1)), and this range has been binned. No strong effect of
rate on synaptic strength is observed. (D) The synaptic inputs have distributions of input
firing rates with different standard deviations (labeled input variability) ranging from 0 to
0.5 in units of the mean rate (o, = 0.5(a — 1)/(N —1)). No effect of variability on synaptic
strength is observed. In this example, 7. = 20 ms, as in (a).
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or degree of variability of a given synaptic input. It is, however, strongly affected by
correlations between different inputs, provided that they decay rapidly enough as a
function of time. Synapses with strong, rapidly decaying temporal correlations are
strengthened as a cluster and suppress other synapses that are uncorrelated or have
temporal correlations that last over longer time periods. STDP thus shows the basic
feature of Hebbian learning, the strengthening of correlated groups of synapses, while
displaying the desirable features of firing-rate independence and stability and a novel

dependence on correlation decay time.

Discussion

Although Hebbian synaptic plasticity is a powerful concept, it suffers from a number
of problems. First, synapses are modified whenever correlated pre- and postsynaptic
activity occurs. Such correlated activity can occur purely by chance, rather than
reflecting a causal relationship that should be learned. To correct for this, neural
network models often use a covariance rather than correlation-based synaptic modi-
fication rule**. However, such a rule cannot, in general, achieve competition between
synapses®. This brings up a second problem of purely Hebbian modification; it is
not competitive, so constraints must be added to obtain interesting results. STDP
appears to solve both of these problems. Accidental, non-causal coincidences weaken
synapses if, as we have assumed, the integral of the synaptic modification function is
negative. Competition arises in a novel way, not due to a global signaling or growth
factor, or to an artificially imposed balance of nonspecific synaptic decay and growth
terms, but rather through competition for control of the timing of postsynaptic action
potentials. Inputs that consistently the best at predicting a postsynaptic response
become the strongest inputs to the neuron. Causality is a key element of STDP. As
Hebb suggested1, synapses are only strengthened if their presynaptic action potentials
precede, and thus could have contributed to, the firing of the postsynaptic neuron.
STDP automatically leads to a balanced, irregular-firing state in which pre- and
postsynaptic spike times are causally correlated. This result depends crucially on the
nonlinearity of the spike-generation process. In a model in which the probability of
spiking depends linearly on membrane voltage®?, the correlation between pre- and
postsynaptic firing does not change shape with overall changes in synaptic efficacy,
as it does in Fig. 3. Nonlinear effects, which make causal input-output correlations
grow relative to acausal correlations as overall synaptic efficacy decreases, are crucial
for producing the stabilizing and competitive effects of STDP that we have discussed.
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STPD regulates both the rate and the coefficient of variation of postsynaptic firing
over a wide range of input rates. This represents a homeostatic regulatory function
of STDP, which is surprising given that, like the Hebb rule, it is destabilizing at
individual synapses.

STDP can differentially strengthen the shortest-latency inputs evoked by a stim-
ulus. There is some experimental evidence suggesting that the resulting reduction of
latency in the postsynaptic response occurs in vivo. A phenomenon analogous to the
reduction of latency discussed here predicts that, when a rat moves through a particu-
lar region of space, place cells active for that region should fire earlier after the rat has
repeatedly traversed the area®®?”. This effect has been observed experimentally*>2°.

A key assumption in our model is that synaptic weakening by STDP dominates
over synaptic strengthening. This is critical for stability. If this assumption is not
true, the results we have reported might nevertheless arise from a combination of
STDP and homosynaptic long-term depression (weakening of presynaptic inputs that
fire in the absence of a postsynaptic spike®). As long as STDP strengthens causally
effective inputs, while STDP and/or other forms of long-term plasticity more strongly
weaken causally ineffective inputs, the basic results found here should apply.

Our model of STDP involves two additional assumptions. We assumed that the
effects of spike pairs sum linearly. At least one contradictory effect has been reported,
a dependence of synaptic strengthening on pairing frequency, including a threshold

4. Our model does not incorporate this

effect and frequency-dependent saturation'
finding, but we maintain presynaptic rates above the reported threshold frequency
for synaptic strengthening'*. We also assumed that we could ignore delays of several
minutes between pairing of pre- and postsynaptic spikes and the resultant induction
of synaptic modification that are suggested by experiments'*. If the effect is merely
a delay, this has no impact on our results. If, on the other hand, the process acts as
a low-pass filter on the temporal dynamics of weight change (averaging the effects of
STDP over a long period of time and changing weights according to this average),
this could have a more significant impact. We have re-run our simulations assuming
such a low-pass filtering effect. We observed no changes in our results except for the
case of Fig. 2f, in which individual spike pairings caused larger changes than in the
other examples. In this case, the impact of these larger changes is damped by the
long-term averaging.

STDP may modify the short-term synaptic plasticity properties of a synapse as

well as its efficacy, an effect which has been called synaptic redistribution?®. We have
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run simulations in which we coupled the strengthening and weakening of synapses
through STDP to the degree of synaptic depression exhibited by the synapse, in a
manner consistent with synaptic redistribution. While this does not change the re-
sults we report, it does reveal an interesting interplay between STDP and short-term
plasticity. The most effective way to strengthen a synapse under STDP is to have
it release transmitter before a postsynaptic spike and then stop releasing so that it
does not get weakened by subsequent releases occurring after postsynaptic activity.
A high degree of synaptic depression, which is a feature of strong synapses in the
redistribution scheme®, assures this. STDP that acts to modify release probabil-
ity and change the degree of synaptic depression is thus an extremely effective and
competitive mechanism for driving individual synapses to strong or weak limits.

STDP, while making an important and novel contribution to competition, prob-
ably cannot be the sole source of plasticity in Hebbian learning situations. Like any
other Hebbian modification rule, STDP cannot strengthen synapses in the absence
of postsynaptic firing. If, for some reason, the excitatory synapses to a neuron are
too weak to make it fire, STDP cannot rescue them. A non-Hebbian mechanism,
such as synaptic scaling’ =%, may serve this function instead. In the model of STDP
we use, two sets of inputs that fire at times separated by more that about 100 ms
generate STDP independently and thus do not compete. Experiments suggest that
competition can nevertheless occur under these conditions*”. Such a result could arise
if the STDP temporal window for synaptic weakening has a long enough tail, or if
STDP is supplemented by sufficiently strong heterosynaptic long-term depression®
or competition induced by synaptic scaling” .

The size of the temporal windows over which synaptic strengthening and weak-
ening occur is critical in determining the effects of STDP. It would seem highly ad-
vantageous for window sizes to be different in various brain regions, to be modified
during stages of development, and perhaps to be dynamically adjustable over shorter
time scales as well. This would allow STDP to stay compatible with relevant input
correlations. STDP appears to be NMDA-dependent'*~, and NMDA subunit sub-
stitution might provide a mechanism for adjusting its time course. For example, the
developmental transition from a predominance of NR2B to NR2A subunits leads to a
faster decay time of NMDA-receptor-mediated currents*®. This might be associated
with a reduction in width of the STDP window®. STDP also depends on postsy-

14,15

naptic back-propagating action potentials'®", and modification of their waveforms

might also change the timing requirements for synaptic plasticity. Finally, the re-
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sults we report are sensitive to the ratio of the areas under the strengthening and
weakening parts of the STDP curve (Fig. 1) and would be more robust if this ratio
were under the dynamic control of the average postsynaptic firing rate. It will be
interesting to see if evidence of developmental or activity-dependent meta-plasticity
in either the amplitudes or decay times of STDP modification curves is revealed in

future experiments.

Methods

The membrane potential of the integrate-and-fire model neuron we use is determined
by

av
T = Viest = V4 Gex(8) (Bex = V) + gin(t) (B = V). (2)

with 7, = 20ms, Vet = —70mV, Eoy = 0mV, and E;, = —70 mV. In addition, when
the membrane potential potential reaches a threshold value of -54 mV, the neuron
fires an action potential, and the membrane potential is reset to -60 mV (parameters
take from reference 37). The synaptic conductances ge, and gy, and their related
peak conductances (see below) are measured in units of the leakage conductance of
the neuron and are thus dimensionless.

Upon arrival of a presynaptic action potential at excitatory synapse a, gey(t) —
Jex(t) +7,, and when an action potential arrives at an inhibitory synapse, gi,(t) —
gin(t) + G, where g, and g,, are the peak synaptic conductances. Otherwise, both

excitatory and inhibitory synaptic conductances decay exponentially,

d ex d in
Tex% = —gex and Tin% = —Gin - (3)

We have taken 7.x = 7, = 5 ms, g;, = 0.05, and 0 < g, < Gpax With 7., = 0.015
(except for Figure 4, where g, = 0.02 and Figure 2D, where g, = 0.035). For a
100 M€ input resistance, g,,,. = 0.015 corresponds to a peak synaptic conductance
of 150 pS.

Synaptic modification is generated in the model through N + 1 functions, M(t)
and P,(t), for a =1,2,..., N. These decay exponentially,

dM dpP,
T_W =—-M and T+ It

Every time the postsynaptic neuron fires an action potential, M(t) is decremented

=-P,. (4)

by an amount A_ | and every time synapse a receives an action potential, P,(t)
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is incremented by an amount A,. M(t) is used to decrease synaptic strength. If
synapse a receives a presynaptic action potential at time ¢, its maximal conductance
parameter is modified according to § — G+ M ()Gay- 1f this makes g, < 0, g, is set
to zero. P,(t) is used to increase the strength of synapse a. If the postsynaptic neuron
fires an action potential at time ¢, g, is modified according to g, — g, + Pu(t)Fax-
If this makes §, > Gaxs G, 1S S€t t0 7.~ These modifications are made after the
decay in conductance described in the previous paragraph, but changing this order
does not modify our results.

The presynaptic firing rates in Figs. 5a and bb, have the correlation function
(ro@)ry(t)) =T24+T2(020ap + (1 — dap)cacy) exp(—|t — t'|/7.), where the angle brackets
represent an average over the ensemble of rates, 7 = 10 Hz, and 0 = 0.5. To generate
such rates, we chose intervals of time from an exponential distribution with mean
interval 7.. For every interval, we generated N + 1 random numbers, y and z, for
a=1,2,...,N, from Gaussian distributions with zero mean and standard deviation
one and o, respectively, where 02 = 02 — ¢2. At the start of each interval, the
firing rate for synapse a was set to r, = 7(1 + x, + ¢.y), and it was held at this
value until the start of the next interval. The correlation function for Fig. 5d is
(ro(t)ry(t')) = T2 4+ 72025, exp(—|t — t'|/7), and the rates were computed using a
similar procedure but with ¢, = 0 and a variable o,,.

To ensure that our results do not depend on initial conditions, we ran multi-
ple trials of the simulations starting from different randomly-generated sets of initial
synaptic weights. There were no detectable changes. After convergence, the vari-
ability in CV and output rate between trials was indistinguishable from that seen
in measurements within a trial. There is always a small degree of variability over
time after a simulation has converged because statistics are gathered over a finite
time, inputs are stochastic, and individual synapses continually change their values,
although their overall distribution does not significantly change. We consider the
synaptic distributions to have converged when the output firing rate stops changing
in a systematic manner. This occurs in about 100 seconds of simulated time. Stabil-
ity has been checked in some simulations for as long as 100 hours of simulated time,
and we have never seen appreciable changes in output rate or CV once convergence
is reached. To be assured of convergence, all presented data were collected only after
1000 seconds of simulated time.
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