
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr
Neurocomputing 71 (2008) 655–666

www.elsevier.com/locate/neucom
A behavior controller based on spiking neural networks
for mobile robots

Xiuqing Wanga,b, Zeng-Guang Houa,�, Anmin Zoua, Min Tana, Long Chenga

aKey Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, P.O. Box 2728, Beijing 100080, China
bVocational & Technical Institute, Hebei Normal University, Shijiazhuang 050031, China
Abstract

Spiking neural networks (SNNs), as the third generation of artificial neural networks, have unique advantages and are good candidates

for robot controllers. A behavior controller based on a spiking neural network is designed for mobile robots to avoid obstacles using

ultrasonic sensory signals. Detailed structure and implementation of the controller are discussed. In the controller the integrated-and-

firing model is used and the SNN is trained by the Hebbian learning algorithm. Under the framework of SNNs, fewer neurons are

employed in the controller than those of the classical neural networks (NNs). Experimental results show that the proposed controller is

effective and is easy to implement.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Spiking neural networks; Mobile robot; Obstacle avoidance; Hebbian learning; Ultrasonic data
1. Introduction

Nowadays autonomous navigation for robots has
become one of the most active research areas. The
autonomy of robots depends on the capability of the
robots to explore unknown environments. The controller is
a key issue for realization of the robot’s autonomy. Soft
computing methods have played important roles in the
design of robot controllers. The commonly used soft
computing methods include fuzzy logic methods, neural
networks (NNs), neuro-fuzzy control and genetic algo-
rithms (GA).

Fuzzy logic control has been widely used in robot
navigations [5,35,36]. The evolutionary robots based on
GA have strong adaptability and show great prospects
[25,26]. Since NN controllers do not rely on the system
model, they are suitable for uncertain and highly nonlinear
situations. Moreover, NNs have strong parallel processing,
adaptive and learning capabilities; thus they are popular in
the design of robot controllers. Neuro-fuzzy controllers
have the advantages of neural controllers as well as fuzzy
e front matter r 2007 Elsevier B.V. All rights reserved.

ucom.2007.08.025

ing author. Tel.: +8610 82614502; fax: +86 10 62650912.

ess: zengguang.hou@ia.ac.cn (Z.-G. Hou).
logic’s knowledge representation, and fuzzy deduction
[12,31]. Reinforcement learning is also a good choice for
the design of robot controllers [38].
Now artificial neural networks (ANNs) are in the third

generation. The above mentioned neural controllers and
the neuro-fuzzy controllers are all based on the first two
generations of NNs. The first generation of ANNs consists
of McCulloch–Pitts threshold neurons, and the second
generation neurons use continuous activation functions to
compute their output signals. The third generation of NNs
is spiking neural networks (SNNs) [37]. The spiking
neurons use pulse codings to incorporate spatial-temporal
information in communication and computation, like real
neurons do. SNNs represent more plausible models of real
biological neurons than classical ones do.
SNNs, which convey information by individual spike

times, have stronger computational power than other types
of NNs. It has been proven that the networks of spiking
neurons can simulate arbitrary feedforward sigmoidal
neural nets and can thus approximate any continuous
function [11,20].
Besides the computation capability, SNNs also show

their capabilities in pattern recognition and classification.
SNNs have been applied to solving high-dimensional

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2007.08.025
mailto:zengguang.hou@ia.ac.cn

ARTICLE IN PRESS
X. Wang et al. / Neurocomputing 71 (2008) 655–666656
cluster and nonlinear classifying problems successfully
[4,15,24,30,32].

Though a lot of work have been done on SNNs,
compared with the first two generations of ANNs, SNNs
are still in their preliminary stage because of their relatively
short history. The structure and the training rules are
premature. There are few toolboxes for SNNs. But more
and more people are paying attention to SNNs and trying
to use them in different areas.

Researchers have tried to employ SNNs in the robotic
area. GA is also applied in SNNs to find the optimal
parameters. It has been proven that GA is an effective
method for SNNs. Floreano et al. [8,9] have done a lot of
work on evolution of spiking neural controllers for
autonomous vision-based robots. They used the controller
based on SNNs not only for wheeled robots but also for
flying robots. Hagras et al. [14] presented an adaptive
genetic algorithm to evolve the weights of the SNNs for the
controller. Paolo [27] controlled a light-seeking robot using
spike-timing dependent plasticity (STDP) in combination
with an evolutionary strategy. Florian developed SNNs
that implemented a seeking-push-release drive for a simple
simulated agent to interact with objects [10].

Moreover, Soula et al. [34] used visual flow to train a
recurrent SNN for a robot to avoid obstacles. Alamdari
applied a model of self-organizing SNNs to environment
representation and path planning for mobile robots [1].
Kubota and Nishida [19] proposed a prediction-based
SNN controller using visual perception.

In recent years, a rigorous computational model, i.e. the
liquid state machine (LSM), appeared, and neural micro-
circuits for the implementation of LSMs have become a
new trend for SNNs to be used in reality [13,22].
Burgsteiner et al. used an LSM to predict ball trajectories
by a supervised learning algorithm, with input data from a
video camera mounted on a robot participating in the
robocup [6].

SNNs use temporal and spatial information, so they can
be used for ‘‘real’’ dynamic environments. Spiking neurons
can transmit and receive information through spikes’ time.
This leads to the possibility of fast and efficient imple-
mentations. Compared with the classical NNs, spikes are
conveyed in SNNs, so SNNs have better robustness to
noise. Moreover, spikes can be modeled relatively easily by
digital circuits. As mentioned earlier, SNNs can compute
any function that a second generation network can and
usually with fewer neurons, so the neuro-chip based on
SNNs has smaller size and consumes less power.

Since SNNs’ output is pulses rather than continuous
functions, the classical learning rules based on gradient
decent methods cannot be applied to SNNs directly.

Because of the advantages of SNNs, they are suitable for
robot controller design. In this study an obstacle avoidance
controller based on an SNN is designed for mobile robots.
The input information comes from ultrasonic sensors. In
the proposed controller, the structure of SNN and training
rules are not only effective but also easy to implement.
This paper is organized as follows: Section 2 introduces
the basics of SNNs. Section 3 discusses the principle of the
behavior controller in detail. Section 4 presents the
experimental results. The paper is concluded in Section 5.

2. Spiking neural networks

2.1. Coding with spikes

Neuronal signals can be observed by placing a fine
electrode close to the soma or axon of a neuron. By this
way, the voltage trace in a typical recording shows a
sequence of short pulses, called action potentials or spikes
[21]. The variation of number and the time of spikes carries
different information.
One can imagine at least three types of coding

continuous signals with spikes [23]: (1) The frequency
coding, neurons generate different frequency of spike trains
as a response to different stimulus intensities. (2) Temporal
coincidence coding, tighter coincidence of spikes recorded
from different neurons represent higher stimulus intensity.
(3) The delay coding, different delays of the spikes
represent relative intensities of the different stimulus.

2.2. Spiking neuron and synapse models

Various spiking neuron models exist, such as the spike
response model (SRM model), dynamic firing threshold
model, and integrate-and-fire model (IAF model) [21].
There is also a new type of spiking synaptic model
investigated recently, which is the dynamic synapse (DS)
model [2]. IAF model is relatively simple and effective, so it
is used for the proposed controller in this paper. Detailed
descriptions of IAF model are presented in Section 3.6.

2.3. Training methods

The training algorithms of SNNs can be categorized as
the supervised methods and the unsupervised methods as the
classical NNs do. The unsupervised spike-based learning
methods include long-term depression (LTD) learning, long-
term potentiation (LTP) learning, STDP learning and spike-
based Hebbian learning. Spike-based learning rules has been
developed in [18,28,29,32,33]. In this study, unsupervised
spike-based Hebbian learning [18] is used for the proposed
controller. The supervised spike-based methods include
spikeprop method [3], statistical learning methods, linear
algebra methods, evolutionary methods, spike-based super-
vised-Hebbian learning and so on [17].

3. The principle of the behavior controller based on SNNs

3.1. The schematic diagram and the flow chart of the

controller

The schematic diagram and the flow chart of the
behavior controller are shown in Figs. 1 and 2 respectively.

ARTICLE IN PRESS
X. Wang et al. / Neurocomputing 71 (2008) 655–666 657
3.2. The sonar sensory model

Ultrasonic sensor has some attractive properties, e.g.
cheapness, reliability and so on, which make it widely used
in mobile robots. Ultrasonic sensor systems generally
calculate distance by the time of flight (TOF) method.
The mobile robot CASIA-I used in the simulation has a
peripheral ring of 16 evenly distributed Polaroid ultrasonic
sensors, which is shown in Fig. 3.

In the obstacle-avoidance simulation, the readings of the
sonar sensors from N. 1 to N. 9 are considered. The sensors
are divided into three groups: Group 1, including sensors
from N. 1 to N. 3; Group 2, from N. 4 to N. 6; Group 3,
from N. 7 to N. 9. In each group, the smallest reading will
be the testing result and be used as the input to the
respective sensory neuron.

In the proposed controller, discrete time is used. The
interval of sampling for the sonar sensors is the same as
the interval of updating the connection weights of SNN in
the controller and the speed of the robot. The interval is
denoted as T.

3.3. The structure of the SNN in the behavior controller

There are three groups of sonar sensory information. So
in the input layer of the SNN of the controller, there are
three sensory neurons. In the input layer, there are one
approximate neuron Nn and two turning neurons TR and
TL. In the hidden layer, there are two hidden neurons H1

and H2. The role of neuron Nn is to judge whether the
opposite obstacle is too close that the robot need to turn
around. The sonar sensors’ reading from Group 2 is fed
into the approximate neuron. When sampling, in the time
window some pulses are put into the turning neurons TR or
TL. To which turning neuron pulses are input depends on
what direction the mobile robot should turn to. If the left
direction is preferred when the controller is designed, then
some pulses are put into TL. Logically, the robot cannot
turn left and turn right at the same time. So the pulses can
not be put into TR and TL at the same time. The controller
is designed for mobile robot CASIA-I which is a wheeled
mobile robot with two driving wheels, so in the output
layer there are two motor neurons. The output spikes of
the 1st motor neuron control the rotating speed of the left
motor and the 2nd motor neuron corresponding to the
Ultrasonic

sensory

readings
Algorithm

of SNN
Motor

neurons
Driving

motors
Approximate

neuron

Turning

neurons

Spiking

sensory

neurons

Fig. 1. Schematic diagram of the controller.
right motor. The structure of the SNN for the controller is
shown in Fig. 4.
The 1st sensory neuron is an inhibiting neuron to the 2nd

motor neuron, and the 3rd sensory neuron is an inhibiting
neuron to the 1st motor neuron. The 2nd and the 3rd
sensory neurons are all activating neurons to the 2nd motor
neuron, and the 1st and the 2nd sensory neurons are all
activating neurons to the 1st motor neuron. The signs of
the connecting weights for the inhibiting neurons and
the respective motor neurons are negative and that for the
activating neurons and the respective motor neurons are
positive. The initial connecting weight matrix for the sensory
neurons and the motor neurons are set as W ¼ 1

�1
1
1
�1
1

� �
¼

½wði; jÞ�2�3, where i ¼ 1; 2, representing the ith motor
neuron; j ¼ 1; 2; 3, representing the jth sensory neuron.
The initial weights for the hidden neurons and the motor

neurons equal to 2. The initial weights for the hidden
neurons and the approximate neuron and the turning
neurons are all constant 1.

3.4. Encoding the sonar sensory information into the

frequency coding for the SNN’s sensory neurons

In the controller, readings of the sonar sensors are
encoded into spikes by frequency coding in time windows
as the inputs of the sensory neurons. Smaller reading of the
sonar sensor corresponds to fewer spikes in the time
window, and the length of the time windows are the same
for all the sensory neurons.
For example, if the reading of the sonar sensor is

400mm, then there will be a spike in the time window;
while if the reading of the sonar sensor is 4000mm, then
there will be 10 spikes in the time window. By this way, the
readings of different groups are encoded into frequency
coding. So the outputs of the sensory neurons are spikes of
different frequencies in the time windows corresponding to
the readings of three groups.

3.5. Coincidence detection for the approximate neuron and

the turning neurons

The reading of the 2nd Group sonar is input to the
approximate neuron Nn. The approximate neurons’ coding
is given by

Inear ¼ 1�
x

snear
, (1)

where x is the reading of the 2nd Group sonar sensor, and
snear is a constant. The firing threshold for the approximate
spiking neuron Nn is WNn

. If InearXWNn
, the approximate

neuron is fired and a spike is output.
Temporal coincidence coding is used for the approx-

imate neuron Nn, the turning neurons TR and TL. That is,
if TR and Nn are fired at the same time, H1 is fired and a
spike is output, which is shown in Fig. 5(a); if TR and Nn

are fired at the same time, H2 is fired and a spike is output
from H2, which is shown in Fig. 5(b).

ARTICLE IN PRESS

Collect the ultrasonic
sensory data

Start when t=t0

Hebbian
learning for the

SNN

Calculate the
activating potential

from the ith
(i=1,2,3) sensory
neurons to the jth

motor neuron

Calculate the total membrane potential of
the jth (j=1,2) motor neuron

Calculate the time and the number of the
emitting spikes of the jth (j=1,2) motor

neuron by using the IAF model with
leakage and refractory period

Decide the angular velocities of
the mobile robot's driving wheels
according to the emitting spikes of

the motor neurons

Calculate the trajectory of the
mobile robot from t to t+1

Modify the
synaptic

weights of the
SNN

t=t+1

Calculate the
activating potential

from the kth (k
=1,2) hidden

neurons to the jth
motor neuron

Encode sensory
information from

Group 2 in spiking
approximate neuron

Encode sensory
information in
spiking sensory

neurons by frequency
code

Set the connecting
weights of the SNN

Coincidence detection
for the approximate

neuron and the turning
neurons

Fig. 2. Flow chart of the mobile robot behavior controller.

X. Wang et al. / Neurocomputing 71 (2008) 655–666658
3.6. Integrated-and-firing model with refractory period in

the SNN of the controller

The IAF model is an important example in the
class of ‘‘threshold-fire models’’ [7,21]. In the SNN
of the behavior controller, IAF model with refractory
period as the spiking neuron model for the motor
neurons is used. t in this section denotes time in the time
window and the length of the time window is 100ms
in the designed controller. The details of the model
used in the controller are in the following subsections:

3.6.1. The activating potential of incoming spikes

The activating potential of incoming spikes for the
motor neurons includes two parts: U1

i ðtÞ and U2
i ðtÞ. U1

i ðtÞ

represents the total activating potential of incoming spikes

ARTICLE IN PRESS

X’

Y’

1

2

3

4

5

6

7

8
9

10

12

13

14

15

16

11

O’

Fig. 3. Layout of the sonar sensors of CASIA-I.

Input layer

Output layer

Motor

neuron 1
Motor

neuron 2

Sensory

neuron 3

Sensory

neuron 2

Sensory

neuron 1

TR TLNn

H1 H2

Fig. 4. Structure of SNN in the controller.

X. Wang et al. / Neurocomputing 71 (2008) 655–666 659
from the sensory neurons to the ith motor neuron at time t

through the connecting weight wij , and U2
i ðtÞ represents the

activating potential of incoming spikes from the hidden
neurons to the ith motor neuron at time t through the
connecting weight w2
ik:

U1
i ðtÞ ¼

P
j

P
t
ðf Þ
j

wij�ðt� t
ðf Þ
j Þ;

U2
i ðtÞ ¼

P
k

P
t
ðf Þ

k

w2
ik�ðt� t

ðf Þ
k Þ;

8><
>: (2)

where t
ðf Þ
j represents the spikes’ emitting time of the jth

sensory neuron in the time window, and t
ðf Þ
k represents the

spikes’ emitting time of the kth hidden neuron in the time
window.

�ðtÞ ¼
t

ts
exp �

t

ts

� �
, (3)

where ts is a time constant.

3.6.2. The membrane potential of the motor neuron

V iðtÞ, the membrane potential of the ith motor neuron, is
updated by the activating potential of incoming spikes as
follows:

ViðtÞ ¼
U1

i ðtÞ þU2
i ðtÞ if U1

i ðtÞ þU2
i ðtÞXV rest;

V rest otherwise:

(
(4)

If the sum of U1
i ðtÞ and U2

i ðtÞ is lower than the resting
potential V rest (where V rest ¼ 0Þ, the membrane potential is
set to the resting potential V rest.

3.6.3. Generation of spike for the motor neuron

OiðtÞ represents the output of the ith motor neuron. If
the membrane potential of the motor neuron is larger than,
or equal to, a threshold W, the motor neuron is fired and
emits a spike. At this time OiðtÞ ¼ 1 and the membrane
potential is set to V rest; otherwise OiðtÞ is set to 0 (there is
no spike) and the membrane potential remains as same as
the previous.

OiðtÞ ¼
1 if V iðtÞXW;

0 otherwise:

�
(5)

Suppose n1 and n2 are the numbers of the emitting spikes
of the motor neurons 1 and 2 in the time windows. n1 and
n2 can determine the angular velocities of the driving
wheels of the wheeled mobile robot respectively.
After the motor neuron emitting a spike, its membrane

potential remains as V rest and will not change during the
refractory period dabs.
How the IAF model with refractory period is used in the

spiking motor neuron is explained next. The following data
are obtained from the process of the robot’s roam and
obstacle-avoiding simulation: the connecting weights
W ¼ 2:643

�2:656
1:802
3:737

�1:420
3:009

� �
, the readings of the three groups

of sonar sensors are 3752.9, 1758.2, 1729.8mm and these
data are encoded into pulse frequency codings for the
spiking sensory neurons. The incoming activating potential
for the motor neuron 2 can be calculated according to
Eqs. (2), (4), and the results are shown in Fig. 6(a). The
membrane potential and the output pulse of the motor
neuron 2 are illustrated in Fig. 6(b), (c). In Fig. 6(b), when
t ¼ 29ms the incoming activating potential reached the

ARTICLE IN PRESS

t

t

TR

Nn

H1

TR

Nn

H1

t

t

t

t

Fig. 5. Coincidence detection coding in the controller.

X. Wang et al. / Neurocomputing 71 (2008) 655–666660
firing threshold, the motor neuron output one spike and
entered into the refractory period. In the simulation the
refractory period is 20ms, so the period during t ¼

29�49ms is the refractory period, and the membrane
potential of the motor neuron 2 is resting potential V rest

(here V rest ¼ 0). After the refractory period, the membrane
potential of the motor neuron is also calculated by Eq. (4).
By calculation, when t ¼ 50; 72; 95ms the membrane
potential of the motor neuron reached the firing threshold,
and one spike was output, later the membrane potential of
the motor neuron entered into the refractory period, all
these are shown in Fig. 6.

3.7. Tuning the synaptic weights of the proposed controller

by the unsupervised spike-based Hebbian rule

The Hebbian learning algorithm, which is correlation-
based, is an important mechanism for the tuning of neural
connections during development and thereafter. The
Hebbian learning rule has been widely used in many
NNs. In the behavior controller the connecting weights for
the sensory neurons and motor neurons are updated by the
spike-based Hebbian learning rules. Here the formula that
Richard Kempter used in SNNs [18] is adopted. The
formula is simplified as

DwijðtÞ ¼ l �
X
t
f
j
;tn

i

W ðs; tÞ, (6)

where l is the learning rate; t is the sampling time of the
sonar sensory information and is also the time when
synaptic weights are updated; s is the delay between
presynaptic spike arrival and postsynaptic firing, and

s ¼ t
f
j ðkjÞ � tn

i ðkiÞ, (7)

Where t
f
j ðkjÞ is the time of the kjth spike of the jth sensory

neuron in the given time window; tn
i ðkiÞ is the time of the

kith spike of the ith motor neuron in the given time
window.
W ðs; tÞ is used as a learning window function [18], and

W ðs; tÞ

¼

exp
s

tsyn

� �
Aþ 1�

s

~tþ

� �
þ A� 1�

s

~t�

� �	

for sX0;

Aþ exp �
s

tþ

� �
þ A� exp

�s

t�

� �

for so0

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

where tþ; t�; tsyn are time constants. ~tþ and ~t� are
also time constants, and ~tþ ¼ tsyntþ=ðtsyn þ tþÞ, ~t� ¼
tsynt�=ðtsyn þ t�Þ. The dimensionless constants Aþ and
A� determine the strength of synaptic potentiation and
depression respectively. A detailed explanation of the
choice of the learning window of the Hebbian learning
algorithm can be found in [18] and its related references.
At last the connecting weights are updated by

wij ¼ rdis � wijðtÞ þ DwijðtÞ, (9)

where rdis ðrdis 2 ð0; 1ÞÞ is a discount rate for the connecting
weights.

3.8. The kinematic model of the mobile robot

In this study, the mobile robot shown in Fig. 7 is a system
subject to nonholonomic constraints. In a 2-dimensional
Cartesian space, its pose is represented by

q ¼ ðx; y; yÞT, (10)

where ðx; yÞT is the position of the robot in the reference
coordinate system XOY, and the heading direction y is
taken counterclockwise from the positive direction of
X -axis. X 0O0Y 0 is the coordinate for the robot system.
The rectangle in solid line represents the camera, and the
rectangles in dashed line represents the wheels.
If Dt is small enough, the mobile robot’s trajectory

can be approximated by the following equation from

ARTICLE IN PRESS

0

1

-1

2

-2

3

-3

4

-4

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

ms

0 10 20 30 40 50 60 70 80 90 100

ms

0 10 20 30 40 50 60 70 80 90 100

ms

Fig. 6. Membrane potential and outputting pulses for the motor neuron.

(a) Activating potential of incoming spikes. (b) Membrane potential of the

motor neuron 2. (c) Outputting pulses of the motor neuron 2.

X

Y

v

�

O'(x,y)

X'

Y'

O

Fig. 7. Illustration of the mobile robot’s pose.

X. Wang et al. / Neurocomputing 71 (2008) 655–666 661
t to t+kDt:

xðk þ 1Þ ¼ xðkÞ þ v cosðyðkÞÞDt;

yðk þ 1Þ ¼ yðkÞ þ v sinðyðkÞÞDt;

yðk þ 1Þ ¼ yðkÞ þ oðkÞDt;

8><
>: (11)

where k is an integer and k ¼ 1; 2; . . . ; ½1=Dt�.

v

o

� �
¼

1

r

b

r
1

r
�

b

r

0
BB@

1
CCA
�1

�
or

ol

 !
, (12)
where v and o are the linear and angular velocities of the
mobile robot. or and ol are the angular velocities of the
right wheel and the left wheel respectively. r is the radius of
the wheel, and b is the half distance between the two
driving wheels.

3.9. Discussion about the robot’s velocity

From Eq. (12) the following equation can be derived:

v

o

� �
¼

r

2

r

2
r

2b
�

r

2b

0
B@

1
CA� or

ol

 !
,

where or ¼ n2 � p, ol ¼ n1 � p, n1, n2 are the number of
the outputting pulses from the motor neuron 1 and 2.
p represents the angular velocity per outputting pulse and
its unit is rad/s.

T is the time interval for updating the robot’s velocities
according to the motor neurons’ outputting pulse. During
each T, the maximum linear velocity of the robot should
satisfy the following inequality:

vmax ¼
r

2
ormax

þ olmax

� �
o

dobstmin
� dsafe

T
, (13)

where vmax is the maximum linear velocity of the robot
during the time interval T, dobstmin

is the minimum distance
between the robot and obstacles, and dsafe is the safe
threshold for the distance between the robot and the
obstacle.
ormax

and olmax
are as follows:

ormax
¼ n2max

� p;

olmax
¼ n1max

� p:

(
(14)

n1max
, n2max

satisfy the following inequalities:

n1max
p

tw

dabs

n2max
p

tw

dabs
:

8>><
>>: (15)

According to Eqs. (13)–(15), the following inequality can
be obtained:

r
tw

dabs
po

dobstmin
� dsafe

T
, (16)

ARTICLE IN PRESS
X. Wang et al. / Neurocomputing 71 (2008) 655–666662
where tw is the length of the time window and tw ¼ 100ms
in the designed controller. In each T, Eq. (16) and v ¼

r=2ðn1 þ n2Þpovmax should be met to ensure that the robot
roam with obstacle free.

In the experiment, p ¼ 0:5 rad=s, or ¼ n2 � 0:5 rad=s,
ol ¼ n1 � 0:5 rad=s.

4. Experiments

4.1. The parameters of the robot and the controller in the

simulation

In the simulation, the parameters of the robot are:
b ¼ 225mm, r ¼ 50mm.

The length of the time windows for pulse encoding of the
sensory neurons and the motor neurons is 100ms. The
initial connecting weights W ¼ 1

�1
1
1
�1
1

� �
. T, the interval
0 1000 2000 3000 4000 5000

1000

2000

3000

4000

5000

X (mm)

Y
 (

m
m

)
Y

 (
m

m
)

-5000 -4000 -3000 -2000 -1000

-5000

-4000

-3000

-2000

-1000

-5000 -4000 -3000 -2000 -1000

-5000

-4000

-3000

-2000

-1000

0

0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

X (mm)

Fig. 8. Experimental results for various initial poses and locations of the robo

(2500, 0, 1801). (d) Zooming in for (c).
time of the sensors’ sampling, the update of the weights and
the speed of the simulated robot is 1 s. The resting potential
V rest ¼ 0. The learning rate l ¼ 0:1, the discount rate
rdis ¼ 0:8, Dt for calculating the trajectory of the robot is
10ms. The constants for the Hebbian learning window
functions W ðsÞ are: Aþ ¼ 1, A� ¼ �1, tþ ¼ 1ms,
t� ¼ 20ms, tsyn ¼ 5ms. The time constant ts for � function
is 8ms.

4.2. Experimental results

4.2.1. Experimental results for different initial locations and

poses

The obstacle avoidance and roam simulations are
performed for the mobile robot. By using the designed
controller described in Section 3, 20 different starting
positions are selected for the robot with various initial
Y
 (

m
m

)
Y

 (
m

m
)

0 1000 2000 3000 4000 5000-5000

-5000

-4000

-4000

-3000

-3000

-2000

-2000

-1000

-1000 -500

-1000

-2000

-1500

-500

-1000

0

1000

2000

3000

4000

5000

X (mm)

0 500 1000 1500 2000 2500 3000 3500

0

500

1000

1500

2000

2500

X (mm)

t. (a) Initial q is ð0;�2400; 90�Þ. (b) Initial q is ð�3000; 0; 0�Þ. (c) Initial q is

ARTICLE IN PRESS
X. Wang et al. / Neurocomputing 71 (2008) 655–666 663
poses. The robot can avoid the obstacle successfully for all
the starting situations. The simulation environment is a
square area with walls, and the size of the square area is
7070� 7070mm2. dabs represents the refractory period, W
represents the firing threshold, and l is the learning rate for
tuning the connecting weights. Fig. 8 shows some of those
trajectories when the robot has different initial poses and
l ¼ 0:1; dabs ¼ 20ms, W ¼ 1:5. In Fig. 8 the small circles
represent the locations of the robot at the sampling time
and the sampling interval is 1ms. The thin lines represent
the trajectories of the robot and ‘‘*’’ stands for the initial
position of the robot. In the square area, the thick lines
stand for the obstacles and the walls around. From the
simulation it can be seen that the obstacle-avoiding
controller based on SNNs is effectively.
0 1000 2000 3000 4000 5000

1000

2000

3000

4000

5000

X (mm)

Y
 (

m
m

)
Y

 (
m

m
)

-5000 -4000 -3000 -2000 -1000

-5000

-4000

-3000

-2000

-1000

-5000 -4000 -3000 -2000 -1000

-5000

-4000

-3000

-2000

-1000

0

0 1000 2000 3000 4000 5000

0

1000

2000

3000

4000

5000

X (mm)

Fig. 9. Experimental results for the controller with and without Hebbian

(b) Experimental result after 140 steps with Hebbian learning. (c) Experimental

140 steps without Hebbian learning.
4.2.2. Experimental results for the controller with and

without Hebbian learning

NNs have learning ability and can improve their
properties by learning. In the proposed controller, the
unsupervised spike-based Hebbian learning algorithm is
used and the controller can be trained on line. To illustrate
the role of the Hebbian learning algorithm in the
controller, the simulations are carried out under the two
conditions: (1) The connecting weights are tuned by the
Hebbian learning algorithm. (2) The connecting weights
are not tuned and just remain the same.
In this simulation the initial pose of the robot is

(0, �2400, 901), the refractory period of the spiking motor
neuron is dabs ¼ 10ms, rdis ¼ 0:9. The other parameters
are the same as the previous sections. The robot’s
Y
 (

m
m

)
Y

 (
m

m
)

0 1000 2000 3000 4000 5000-5000

-5000

-4000

-4000

-3000

-3000

-2000

-2000

-1000

0 1000 2000 3000 4000 5000-5000 -4000 -3000 -2000 -1000

-1000

0

1000

2000

3000

4000

5000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

X (mm)

X (mm)

learning. (a) Experimental result after 80 steps with Hebbian learning.

result after 80 steps without Hebbian learning. (d) Experimental result after

ARTICLE IN PRESS
X. Wang et al. / Neurocomputing 71 (2008) 655–666664
trajectories for the controller with Hebbian learning
are shown in Fig. 9(a) and (b), and those for the
controller without Hebbian learning are shown in
Fig. 9(c) and (d). When the connecting weights and the
robot’s velocity are updated, a learning step is finished.
In this simulation the interval between the two learning
steps is 1 s. Fig. 9(c), (d) are the obstacle avoidance
behavior when the controller without learning. Through
Hebbian learning the controller can make the robot find an
obstacle-free path by learning from the environment and
at last reached into an equilibrium state. When in the
equilibrium state the robot always follows the same
obstacle-free path. The controller without learning can
avoid the obstacle in some extent, but its obstacle-avoiding
effect is worse than that of the controller with Hebbian
learning.
0 1000 2000 3000 4000 5000

1000

2000

3000

4000

5000

X (mm)

Y
 (

m
m

)
Y

 (
m

m
)

-4000 -3000 -2000 -1000

-4000

-3000

-2000

-1000

0 500 1000 1500 2000

-2000

-1000

0

2500 3000 3500 4000 4500 5000

0

1000

2000

3000

4000

5000

X (mm)

Fig. 10. Experimental results for various dabs and W. (a) dabs ¼ 10ms, W ¼ 1:5.
4.2.3. Experimental results for different firing thresholds

and refractory periods

For different firing threshold and refractory period,
different trajectories for the robot are obtained when its
pose q at the starting point is (2500, �2000, 901).
In Fig. 10(a) and (b), the refractory period are 10ms, and

that for Fig. 10(c), (d) are 25ms. The firing threshold 1.5
for Fig. 10(a) and (d), and 1 for Fig. 10(b), (c).
The refractory period and the firing threshold of the

spiking neuron affect the output spikes of the SNNs
directly, while the number of emitting spikes decides the
angular velocities of the wheels of the mobile robot. Using
the same sensory information, if the threshold is smaller,
there are more emitting spikes in the time window, and the
ratio jðn1 � n2Þ=ðn1 þ n2Þj is smaller than that of the larger
threshold. So the curvature of the turning around
Y
 (

m
m

)
Y

 (
m

m
)

0 1000 2000 3000 4000 5000-5000 -4000 -3000 -2000

-2000

-1000

-1000

0

1000

2000

3000

4000

5000

-2000

-1000

0

1000

2000

3000

4000

5000

X (mm)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

X (mm)

(b) dabs ¼ 10ms, W ¼ 1. (c) dabs ¼ 25ms, W ¼ 1. (d) dabs ¼ 25ms, W ¼ 1:5.

ARTICLE IN PRESS
X. Wang et al. / Neurocomputing 71 (2008) 655–666 665
trajectory will be smaller, as shown in Fig. 10. Similarly,
the smaller refractory period, there will be more emitting
spikes in the time window, and the smaller jðn1 � n2Þ=ðn1 þ

n2Þj is. So the curvature of the trajectory will also be
smaller, as shown in Fig. 10.

5. Conclusions

A novel behavior controller for mobile robots based on
SNNs using ultrasonic sensory information is designed.
Detailed descriptions for the controller are given in this
paper. The ultrasonic information is encoded into fre-
quency codings for the sensory neurons. In the controller,
the spiking neurons adopt the IAF model with refractory
period, and the SNN is tuned by the unsupervised-spike-
based Hebbian learning algorithm. Compared with
the classical NNs, fewer spiking neurons are used in the
controller and the training method is relatively simple. The
simulation results show that the controller can be used in
obstacle avoidance successfully. The angular velocities of
the mobile robot’s driving wheels can be controlled by
the emitting spikes of the motor neurons directly. The
controller has simple structure and can be implemented
easily. Efforts are underway on how to set optimal
parameters and select the proper training methods for the
SNNs.

Acknowledgments

This work was supported in part by the National
Natural Science Foundation of China (Grants 60635010
and 60775043) and the Natural Science Foundation of
Hebei Province (Grant F2004000180).

References

[1] A.R.S.A. Alamdari, Unknown environment representation for

mobile robot using spiking neural networks, Trans. Eng. Comput.

Technol. 6 (2005) 49–52.

[2] A. Belatreche, P. Liam, M. McGinnity, Advances in design and

application of spiking neural networks, Soft Comput. 11 (3) (2007)

239–248.

[3] S.M. Bohte, J.N. Koka, H.L. Poutré, Error-backpropagation in

temporally encoded networks of spiking neurons, Neurocomputing

48 (2002) 17–37.

[4] S.M. Bohte, H.L. Poutre, J.N. Kok, Unsupervised clustering with

spiking neurons by sparse temporal coding and multi-layer spike

Neural Network, IEEE Trans. Neural Networks 13 (2) (2002)

426–435.

[5] A. Bonarini, G. Invernizzi, T.H. Labella, An architecture to

coordinate fuzzy behaviors to control an autonomous robot, Fuzzy

sets Syst. 134 (2003) 101–115.

[6] H. Burgsteiner, M. Kröll, A. Leopold, G. Steinbauer, Movement

prediction from real-world images using a liquid state machine,

Applied Intelligence, in: Lecture Notes in Computer Science,

vol. 3533, Springer, Berlin, 2005, pp. 121–130.

[7] D. Floreano, Y. Epars, J.C. Zufferey, C. Mattiussi, Evolution

of spiking neural circuits in autonomous mobile robots, Int.

J. Intelligent Syst. 21 (2006) 1005–1024.

[8] D. Floreano, C. Mattiussi, Evolution of spiking neural controllers

for autonomous vision-based robots, in: ER 2001, Lecture
Notes in Computer Science, vol. 2217, Springer, Berlin, 2001,

pp. 38–61.

[9] D. Floreano, J.C. Zufferey, J.D. Nicoud, From wheels to wings with

evolutionary spiking neurons, Artif. Life 11 (2005) 121–138.

[10] R.V. Florian, Spiking neural controllers for pushing objects around,

in: Lecture Notes in Computer Science, vol. 4095, Springer, Berlin,

2006, pp. 570–581.

[11] W. Gerstner, Time structure of the activity in neural network models,

Phys. Rev. E 51 (1995) 738–758.

[12] J. Godjavec, N. Steele, Neuro-fuzzy control for basic mobile robot

behaviors, in: Fuzzy Logic Techniques for Autonomous Vehicle

Navigation, Springer, 2000, pp. 97–117.

[13] A. Gupta, Y. Wang, H. Markram, Organizing principles for a

diversity of GABAergic interneurons and synapses in the neocortex,

Science 287 (2000) 273–278.

[14] H. Hagras, A. Pounds-Cornish, M. Colley, Evolving spiking neural

network controllers for autonomous robots, in: The Proceeding of

IEEE International Conference on Robotics & Automation 2004,

New Orleans, LA, USA, 2004, pp. 4620–4626.

[15] J.J. Hopfield, Pattern recognition computation using action potential

timing for stimulus representation, Nature 376 (1995) 33–36.

[17] A. Kasiski, F. Ponulak, Comparison of supervised learning methods

for spike time coding in spiking neural networks, Int. J. Appl. Math.

Comput. Sci. 16 (2006) 101–113.

[18] R. Kempter, W. Gerstner, J.L. van Hemmen, Hebbian learning and

spiking neurons, Phys. Rev. E 59 (1999) 4498–4514.

[19] N. Kubota, K. Nishida, The role of spiking neurons for visual

perception of a partner robot, in: The Proceeding of IEEE

International Conference on Fuzzy Systems 2006, Vancouver, BC,

Canada, 2006, pp. 530–537.

[20] W. Maass, Noisy spiking neurons with temporal coding have more

computational power than sigmoidal neurons, in: Advances in Neural

Information Processing Systems, vol. 9, The MIT Press, Cambridge,

MA, 1997.

[21] W. Maass, C.M. Bishop (Eds.), in: Pulsed Neural Networks, MIT-

Press, Cambridge, MA, 1999.

[22] W. Maass, T. Natschläger, T. Markram, Real-time computing

without stable states: a new framework for neural computation

based on perturbations, Neural Comput. 14 (2004) 2531–2560.

[23] Z. Nadasdy, Spatio-temporal patterns in the extracellular recording

of hippocampal pyramidal cells: from single spikes to spike

sequences, Ph.D. Thesis, Rutgers University, 1998.

[24] T. Natschläer, B. Ruf, Spatial and temporal pattern analysis via

spiking neurons, Network: Comput. Neural Syst. 9 (3) (1998)

319–332.

[25] A.L. Nelson, Competitive relative performance and fitness selection

for evolutionary robotics, Ph.D. Thesis, North Carolina State

University, USA, May, 2003.

[26] S. Nolfi, D. Floreano, O. Miglino, F. Mondada, How to evolve

autonomous robots: different approaches in evolutionary robotics,

in: Proceedings of the IV International Workshop on Artificial Life,

MIT Press, Cambridge, MA, 1994.

[27] E.A.D. Paolo, Spike timing dependent plasticity for evolved robots,

Adaptive Behav. 10 (3–4) (2002) 243–263.

[28] W.R. Ritz, J.L. van Hemmen, Why spikes? Hebbian learning and

retrieval of time-resolved excitation patterns, Biol. Cybern. 69 (1993)

503–515.

[29] P.D. Roberts, Computational consequences of temporally asym-

metric learning rules: I, Differential Hebbian learning, J. Comput.

Neurosci. 7 (1999) 235–246.

[30] B. Ruf, Computing and learning with spiking neurons—Theory and

simulations, Ph.D. Thesis, Institute for Theoretical Computer Science

Technische University at Graz, Austria, May, 1998.

[31] P. Rusu, E.M. Petriu, T.E. Whalen, Behavior-based neuro-fuzzy

controller for mobile robot navigation, IEEE Trans. Instrum. Meas.

52 (4) (2003) 1335–1340.

[32] B.M. Schmitt, Unsupervised learning in networks of spiking neurons

using temporal coding, in: Proceedings of the 7th International

ARTICLE IN PRESS
X. Wang et al. / Neurocomputing 71 (2008) 655–666666
Conference on Artificial Neural Networks (ICANN97), Springer,

Heidelberg, 1997, pp. 361–366.

[33] W. Senn, M. Tsodyks, H. Markram, An algorithm for synaptic

modification based on exact timing of pre- and postsynaptic action

potentials, in: Proceedings of the 7th International Conference on

Artificial Neural Networks (ICANN97), Springer, Heidelberg, 1997,

pp. 121–126.

[34] H. Soula, A. Alwan, G. Beslon, Learning at the edge of chaos:

temporal coupling of spiking neurons controller for autonomous

robotic, in: Proceedings of American Association for Artificial

Intelligence (AAAI) Spring Symposia on Developmental Robotic

2005, Stanford, USA, 2005, p. 6.

[35] S. Thongchai, Behavior-based learning fuzzy rules for mobile robots,

in: Proceeding of American Control Conference 2002, Anchorage,

Alaska, USA, 2002, pp. 995–1000.

[36] S. Thongchai, S. Suksakulchai, D.M. Wilkes, Sonar behavior-based

fuzzy control for a mobile robot, in: Proceeding of IEEE Interna-

tional Conference on Systems, Man, and Cybernetics 2000, Nashville,

Tennessee, USA, 2000, pp. 425–430.

[37] J. Vreeken, Spiking neural networks, an introduction, Technical

Report UU-CS-2003-008, Institute for Information and Computing

Sciences, Utrecht University, 2002. hhttp://ai-lab.cs.uu.nl/pubs/

SNN_Vreeken_Introduction.pdfi.

[38] C. Ye, N.H.C. Yung, D.W. Wang, A fuzzy controller with supervised

learning assisted reinforcement learning algorithm for obstacle

avoidance, IEEE Trans. Syst. Man Cybern Part B 33 (1) (2003)

17–27.

Xiuqing Wang received the B.S. degree (with

honors) in precision instrument from Tianjin

University, Tianjin, China, in 1992, and the M.S.

degree (with honors) in control theory and

control engineering from Hebei Technology

University, Tianjin, China, in 2000. She is a

Ph.D. Candidate at the Institute of Automation,

Chinese Academy of Sciences, Beijing, China.

Her research interests are neural networks,

multisensor-fusion, and their applications to
robotics.

Zeng-Guang Hou received the B.E. and M.E.

degrees in electrical engineering from Yanshan

University, Qinhuangdao, China, in 1991 and

1993, respectively. He received the Ph.D. degree

in electrical engineering from Beijing Institute of

Technology, Beijing, China, in 1997. He is a Full

Professor at the Institute of Automation, Chinese

Academy of Sciences, Beijing, China. Dr. Hou is

currently serving as an Associate Editor for IEEE

Computational Intelligence Magazine, and an
Editorial Board Member of International Journal
of Intelligent Systems Technologies and Applications. He served as a Guest

Editor of special issues of International Journal of Vehicle Autonomous

Systems on ‘‘Computational Intelligence and Its Applications to Mobile

Robots and Autonomous Systems,’’ and of Soft Computing on ‘‘Fuzzy-

Neural Computation and Robotics’’. His research interests include neural

networks, optimization algorithms, robotics, and intelligent control

systems.

Anmin Zou received the B.S. degree (with honors)

in control engineering from Northeast Univer-

sity, Shenyang, China, in 2001. He is a Ph.D.

Candidate at the Institute of Automation,

Chinese Academy of Sciences, Beijing, China.

His research interests are robot control, neural

networks, and NNs’ application to robotics.
Min Tan received the B.S. degree in control

engineering from Tsinghua University, Beijing,

China, in 1986 and the Ph.D. degree in control

theory and control engineering from Institute of

Automation, Chinese Academy of Sciences,

Beijing, China, in 1990. He is a Full professor

at the Institute of Automation, Chinese Academy

of Sciences. Dr. Tan is an Acting Committee

Member of Robotics Technology of the National

Hi-Tech Development (863) Program. He is also
a Director of several academic societies, such as the Artificial Intelligence

Society, and Youth Automation Society of China, etc. Dr. Tan is currently

serving as an editorial board member of several journals, such as Acta

Automatica Sinica, Robot, etc. He also got several academic awards from

Chinese Academy of Sciences and the Beijing Science and Technical

Committee. His research interests include advanced robot control,

multirobot system, biomimetic robot, and manufacturing system.

Long Cheng received the B.S. degree (with

honors) in control engineering from Nankai

University, Tianjin, China, in 2004. He is a

Ph.D. Candidate at the Institute of Automation,

Chinese Academy of Sciences, Beijing, China. His

research interests include neural networks, opti-

mization, nonlinear control, and their applica-

tions to robotics.

http://ai-lab.cs.uu.nl/pubs/SNN_Vreeken_Introduction.pdf
http://ai-lab.cs.uu.nl/pubs/SNN_Vreeken_Introduction.pdf

	A behavior controller based on spiking neural networks for mobile robots
	Introduction
	Spiking neural networks
	Coding with spikes
	Spiking neuron and synapse models
	Training methods

	The principle of the behavior controller based on SNNs
	The schematic diagram and the flow chart of the controller
	The sonar sensory model
	The structure of the SNN in the behavior controller
	Encoding the sonar sensory information into the frequency coding for the SNN’s sensory neurons
	Coincidence detection for the approximate neuron and the turning neurons
	Integrated-and-firing model with refractory period in the SNN of the controller
	The activating potential of incoming spikes
	The membrane potential of the motor neuron
	Generation of spike for the motor neuron

	Tuning the synaptic weights of the proposed controller by the unsupervised spike-based Hebbian rule
	The kinematic model of the mobile robot
	Discussion about the robot’s velocity

	Experiments
	The parameters of the robot and the controller in the simulation
	Experimental results
	Experimental results for different initial locations and poses
	Experimental results for the controller with and without Hebbian learning
	Experimental results for different firing thresholds and refractory periods

	Conclusions
	Acknowledgments
	References

