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Introduction

Adaptive W3t JovT0

Spike-Timing Dependent Plasticity for Evolved
Robots

Ezequiel A. Di Paolo
School of Cognitive and Computing Sciences

Plastic spiking neural networks are synthesized for phototactic robots using evolutionary techniques.
Synaptic plasticity asymmetrically depends on the precise relative timing between presynaptic and
postsynaptic spikes at the millisecond range and on longer-term activity-dependent regulatory scal-
ing. Comparative studies have been carried out for different kinds of plastic neural networks with low
and high levels of neural noise. In all cases, the evolved controllers are highly robust against internal
synaptic decay and other perturbations. The importance of the precise timing of spikes is demon-
strated by randomizing the spike trains. In the low neural noise scenario, weight values undergo rhyth-
mic changes at the mesoscale due to bursting, but during periods of high activity they are finely
regulated at the microscale by synchronous or entrained firing. Spike train randomization results in
loss of performance in this case. In contrast, in the high neural noise scenario, robots are robust to
loss of information in the timing of the spike trains, demonstrating the counterintuitive results that plas-
ticity, which is dependent on precise spike timing, can work even in its absence, provided the behavio-
ral strategies make use of robust longer-term invariants of sensorimotor interaction. A comparison
with a rate-based model of synaptic plasticity shows that under similarly noisy conditions, asymmetric
spike-timing dependent plasticity achieves better performance by means of efficient reduction in
weight variance over time. Performance also presents negative sensitivity to reduced levels of noise,
showing that random firing has a functional value.

Keywords evolutionary robotics - spiking neural networks - spike-timing dependent plasticity - activ-
ity-dependent synaptic scaling - neural noise - robustness

models may capture some interesting aspect of brain

Synthetic approaches to the design of autonomous robots
aim, amongt other things, at providing minimal inte-
grated models of brain mechanisms in an embodied
and situated platform. There is a vast distance between
these models and actual brains and yet simple biologi-
cally inspired controllers giving rise to adaptive, life-
like robot behavior can turn out to be very valuable
despite, or perhaps because of, their simplicity. These
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organization or, in their functioning, they may reveal
unusual or unexpected properties of known mecha-
nisms. In contrast, contemporary work in computational
neuroscience, in all its sophistication, often lacks such
a whole-agent dimension. The properties of single neu-
rons in specific subsystems are typically modeled and
studied under idealized conditions (e.g., random inputs,
uncorrelated or with known correlations, etc.) and it is
hard to see how the sensorimotor loops might ever be
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closed, valuable though this work is. Recent studies in
evolutionary robotics have aimed at harnessing the
power of automatic evolutionary design to try to cross
the gap between these two modes of research. So far,
these studies have been mainly exploratory, drawing
inspiration from neuroscience to enrich the building
blocks used for evolutionary design—but the potential
is there for feeding useful information back to neuro-
science. On this issue see a recent review by Ruppin
(2002). One example of this kind of research is the
work by Husbands and colleagues using gaseous dif-
fusion of neuromodulators as part of their evolved
robot controllers (Husbands, Smith, Jakobi, & O’Shea,
1998).

Recent work in evolutionary robotics has began to
explore the use of spike-based neural controllers (Flo-
reano & Mattiussi, 2001). Spiking neural networks
possess a number of attractive features. They have
comparatively greater computational power than simi-
lar networks of threshold sigmoidal gates (Maass,
1997). They can support a variety of functional specif-
icity from rate-based codes to structured codes based
on the timing of action potentials (Gerstner, Kreiter,
Markram, & Herz, 1997). They can perform novel
kinds of computations such as the recognition of tem-
poral patterns using transient synchrony (Hopfield &
Brody, 2001) and real-time computation without sta-
ble states in high-dimensional “liquids’” of transient
activity, (Maass, Natschldger, & Markram, 2002). Their
complexity makes evolutionary robotics an appropri-
ate tool of design and exploration.

Here the exploration continues by addressing the
evolvability and properties of plastic spiking neural net-
works where synaptic plasticity depends on the pre-
cise timing of spikes. Parameters regulating plasticity
in light-seeking robots are evolved in simulation. It is
found that not only are such controllers evolvable, but
that they also produce a rich variety of behaviors and
desirable properties such as sensorimotor and synaptic
robustness. Two series of experiments have been car-
ried out, one in which neurons are modeled with low
levels of noise, and another with significant levels of
neural noise. In both cases, the evolved controllers
produce regular patterns of neural activity. However,
despite the precise spike timing needed to activate the
plastic rules, only controllers with low neural noise
seem to rely on relative timing information. High neu-
ral noise controllers are generally quite robust to jitter
and spike train randomization, suggesting counterin-

tuitively that under certain conditions, spike-timing
dependent synaptic rules can work very well even when
spike timing is disrupted. However, these controllers
retain some unique properties even in the presence of
noise, as shown by a comparison with rate-based
evolved plastic networks.

There are two kinds of motivations for this work.
The first is, as suggested, exploratory. To the best of
our knowledge this is the first attempt to control an
integrated robot using spike-timing dependent plastic-
ity in combination with an evolutionary strategy for
design. It is questionable whether there are any bene-
fits in the use of these mechanisms, either in terms of
better adaptability or complexity of performance. We
will try to answer these questions at least partially by
the end of the article. Such motivation runs in parallel
with another, which is less clearly realized in the cur-
rent article because of its preliminary nature: to inform
computational neuroscience not with a model that is
detailed in its microstructure but grossly simplified in
terms of its relevance to whole behaving agents, but
the other way around; that is, a model simple in design
where sensory stimuli correlate to motor activity
through environmental coupling in a situated robot.

2 Spike-Timing Dependent Plasticity
(STDP)

Experimental neuroscientific evidence suggests that
the degree and direction of change in the strength of a
synapse subjected to repeated pairings of pre- and post-
synaptic action potentials depend on their relative tim-
ing (Markram, Lubke, Frotscher, & Sakmann, 1997,
Bi & Poo, 1998). See Bi and Poo (2001) for a review.
Synaptic modification depends on whether the pre-
and postsynaptic spikes are separated in time in less
than a critical window of the order of a few tens of mil-
liseconds. In most cases studied, if a presynaptic spike
precedes the postsynaptic spike the synapse is potenti-
ated, whereas the opposite relation leads to depression
of the synapse. This results in a temporally asymmet-
ric plasticity rule (Figure 1) that deserves the name
Hebbian because of its tendency to strengthen causal
correlations between spikes. There is empirical evi-
dence, however, for non-Hebbian plasticity of this
kind (Abbott & Nelson, 2000; Bi & Poo, 2001). Many
theoretical studies have concerned themselves with
this rule of plasticity and its desirable properties such
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Figure 1 Time window for spike-timing dependent plas-
ticity. The percentage and direction of synaptic change is
given by time difference between presynaptic (ti) and
postsynaptic (to) spikes.

as a trend toward inherent stability in weight distribu-
tion and neural activity, unlike purely rate-based Heb-
bian rules that often require additional constraints
(Kempter, Gerstner, & van Hemmen, 1999; Song,
Miller, & Abbott, 2000; Rubin, Lee, & Sompolinsky,
2001). One possible expression for this rule is

WA exp(=s/T) if >0

Aw =
WA exp(s/7) if s<0

where s = to — ti is the time difference between a post-
synaptic and presynaptic spike and A* and A~ are posi-
tive constants. Other filters may be used instead of the
exponential decay, but this form is particularly suita-
ble for implementation in an evolutionary robotics
context as will be shown in the next section.

One of the key concerns when studying rules for
synaptic plasticity is their regulatory properties. Heb-
bian learning on its own leads to runaway processes of
potentiation and cannot account for the stability of neu-
ral function. Additional elements, such as the direc-
tional damping of synaptic change (Rubin et al., 2001)
or longer-term stabilizing regulation based on postsy-
naptic activity (Horn, Levy, & Ruppin, 1998; Turrigiano,
1999) may come to the rescue. These can lead to
unsaturated distributions of synaptic strengths in the
first case and to regulated neuronal firing in the sec-
ond and will also be investigated in this work.

Although spike-timing dependent plasticity (STDP)
is a topic that has drawn much attention recently, most

theoretical studies have concerned themselves with the
properties of the temporally asymmetric plastic rule.
There are, however, a few hypotheses about its func-
tional role. For instance, Abbott and Blum (1996) show
in a general model how firing patterns in a neural array
(such as a receptive field), where neurons fire prefera-
bly at certain input values in a sequence of inputs, can
by means of temporal asymmetry in plasticity lead to
prediction of the inputs in a sequence through repeated
presentation. This is because the synapses between
neurons that fire in succession are strengthened from
those that fire first to those that fire later (and are
depressed in the opposite direction). Empirical evi-
dence in the experience-dependent change in skew-
ness in place fields in the rat hippocampus supports
the findings of this model (Mehta, Barnes, &
McNaughton, 1997; Mehta, Quirk, & Wilson, 2000).
Related to this, Yao and Dan (2001) have found that
repetitive pairing of visual stimuli at two different ori-
entations induced a shift in orientation tuning in cat
cortical neurons depending on the relative timing of
presentation and compatible with STDP.

Other related functional implications have also
been suggested. Rao and Sejnowski (2001) suggest
that STDP could be involved in implementing some
form of temporal difference learning (Sutton, 1988)
and show this in a model of input spike prediction;
and Chechik (2002) has recently compared theoretical
rules of plasticity derived from the principle of infor-
mation maximization of relevant input with empirical
rules to conclude that temporal asymmetry can increase
input information to nearly optimal levels.

This kind of functionality is hard to compare with
the results obtainable from the present work on a sim-
ple robotic task, as it is more likely to play a signifi-
cant role when sensory surfaces or arrays are included
in the robot model as well as something equivalent to
receptive fields. Because of the constraints inherent in
the number of evolutionary evaluations, such ele-
ments are not included in this initial study but will be
of central importance in the future.

3 Methods

3.1 Robots and Task

Since we are interested in exploring a novel mecha-
nism for robot control, the chosen task is at this stage
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deliberately simple to facilitate comparisons with alter-
native approaches. Simulated robots are evolved to
perform phototaxis on a series of light sources. Robots
have circular bodies of radius R, = 4 with two motors
and two light sensors. The angle between sensors is
120° but a small random displacement between —5°
and 5° is added at the start of each evaluation. Motors
can drive the robot backward and forward in a two-
dimensional unlimited arena.

The neural network consists of six nodes, fully
connected except for self-connections. Neurons can
be either excitatory or inhibitory and this is set geneti-
cally. Trials with larger number of neurons have been
carried out successfully, but not systematically studied.

The whole system is simulated using an Euler
integration method with a time step of 1 ms (25% of
the minimum time scale). Robots are run for two inde-
pendent evaluations, each consisting on the sequential
presentation of two distant light sources. Only one
source is presented at a time for a relatively long
period T chosen randomly for each source from the
interval [7.5 s, 12.5 s], (each evaluation consists there-
fore of an average of 2 x 10* update cycles). The ini-
tial distance between robot and new source is
randomly chosen from [60, 80], the angle from [0, 27)
and the source intensity from [3,000, 5,000]. The
intensity decays in inverse proportion to the square of
the distance to the source.

The simulated robots use photoreceptors that are
activated by the light intensity corresponding to their
current position if the light source is directly visible
(i.e., an angle of acceptance of 180°). This intensity is
multiplied by the sensor gain equal for both sensors
(genetically set from range [0.1, 50]) and clipped for
values beyond a maximum of 20. A spike train is gen-
erated using a Poisson process with variable rate (max-
imum 200 Hz) by linearly transforming the sensor
value into the instantaneous firing frequency. The Pois-
son spike trains coming from the left and right sensors
are fed into neurons n2 and n3 respectively. Addition-
ally, uniform noise is present in the sensors (and
motors) with range 0.2 (before scaling by gains)—this
results in spikes that fire randomly with very low
probability when the sensor is not stimulated.

Two motors control the robot wheels. Each motor
is controlled by two neurons, one that drives it forward
and the other one backward, using a spike-based leaky
integrator. The left motor is controlled by neurons n0

(forward) and n4 (backward), and the right by neurons
nl (forward) and n5 (backward).

A population of 30 robots is evolved using a gen-
erational genetic algorithm (GA) with truncation selec-
tion. In the plastic scenarios described below initial
weights are randomly chosen at the start of each eval-
uation from the interval [0, w,, ] while the parame-
ters for the plasticity windows and scaling constants
are evolved. In the nonplastic scenario, synaptic
strengths are encoded genetically. Other genetically
set parameters include sensor and motor gains, motor
decay constant, and whether neurons are inhibitory or
excitatory. All parameters are encoded in a real-valued
genotype, each gene assuming a value within [0, 1];
each parameter is linearly scaled to the corresponding
range of values, except for sensor and motor gains,
which are scaled exponentially. Only vector mutation
(Beer, 1996) is used with a standard deviation of vec-
tor displacement of 0.5 (maximum genotype length is
220); genetic boundaries are reflective. Fitness is cal-
culated according to

(1-M?) J d

F =~——|fds; =1-—

T ! ! D,

if the current distance to the source d is less than the

initial distance D, otherwise f = 0. M measures the

average difference in activity between the motors
divided by the motor gain:

_ 0. 125J(M MR)

Near optimal fitness will be obtained by robots approach-
ing a source of light rapidly and with minimal inte-
grated angular movement.

3.2 Neural Controller

An integrate-and-fire model with reversal is used for
the neural controller. The time evolution of the mem-
brane potential V of a neuron is given by

dVV

TmE = View = V+8ex(D)(Eex = V) + 8in () (Ei, = V)

where 7, is the membrane time constant (range
[10 ms, 40 ms]), V.., = =70 mV is the rest potential,
and the excitatory and inhibitory reversal potentials
are respectively £, =0mV and E,, =-70 mV.
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A noisy threshold value, V.., is given by a nor-
mal distribution with a genetically set mean value
(range [-65 mV, —-50 mV]) and a deviation of 1 mV.
When the membrane potential reaches this threshold,
an action potential is fired and V is reset to V. An
absolute refractory time of 4 ms prevents the neuron
from firing another spike within this period.

Every time a spike arrives at neuron j from an
excitatory presynaptic neuron i the excitatory con-
ductance of j is increased by the current value of the
synaptic strength (w; (1): gex(1) = gex() + w;; (7). The
inhibitory conductance g;, is similarly affected by
spikes coming from inhibitory neurons. Conductances
otherwise decay exponentially:

= —8ex> Tin dt

with 7, and 7,, genetically set for each neuron from
the range [4 ms, 8 ms].

The current motor value is stored in variables
M,  which is directly translated into the left and right
velocities respectively.

dM; ¢

Tmot dt = —Mp R

+ Mo(Y 8t — 1) = 8(1 — tie)

with 7, genetically set from the range [40 ms,
100 ms] and M from [0.1, 50]. Both motors have the
same value for their gains and decay constants. This
approach marks a difference from previous work on
the evolution of spiking controllers that have used a
neural rate estimation method for driving the motor
(Floreano & Mattiussi, 2001).

3.2.1 STDP The properties of plastic windows (Fig-
ure 1) are evolved for each synapse in the neural net-
work controller. Following (Song et al., 2000), synaptic
change is implemented using two recording functions
per synapse P (f) and P*(¢). Every time a spike arrives
at the synapse the corresponding P *(¢) is incremented
by A, and every time the postsynaptic neuron fires
the corresponding P (¢) is decremented by A™. Other-
wise, these functions decay exponentially with time
constants 7~ and 7, respectively. P7(¢) is used to decrease
the synaptic strength every time the presynaptic neu-
ron fires: Wy H — wy () + w,, P (). Analogously,
P*(¢) is used to increase the synaptic strength every

time the postsynaptic neuron fires: w; (£) — w; (1) +
Wi P T(9). In all cases of the first series of experiments
the maximum synaptic strength is w,,, = 1. This method
facilitates the computational implementation of STDP
by eliminating the need to keep track of spike trains or
calculate other response functions that could be more
costly.

The values for A* and A-, and 7% and 7~ are genet-
ically set per synapse from the ranges [0.0001, 0.05]
and [10 ms, 40 ms], respectively. In all the experiments
reported here the plastic windows are Hebbian, that is,
spikes arriving before a postsynaptic action potential
always potentiate a synapse and those arriving after
always depress it. Experiments relaxing this constraint,
that is, allowing anti-Hebbian or purely potentiating
or depressing windows, have also been carried out suc-
cessfully but are not reported here.

3.2.2 Activity-Dependent Synaptic Scaling (ADS)
Some of the mechanisms used by neurons to regulate
their firing rate homeostatically are thought to affect
all incoming synapses, scaling them up or down inde-
pendent of the presynaptic activity (Turrigiano, 1999).
If the postsynaptic activity is above a certain target,
excitatory synapses are scaled down. Otherwise, they
are scaled up, thus preventing sustained levels of activ-
ity that are too high or too low. Following van Rossum
et al. (2000) excitatory synapses are modified accord-
ing to
dw;
TadsE_

= Wij(zgoal - Zj)

where z,,, = 50 Hz and 7,4 is genetically set from the
range [1 s, 10 s]. The firing rate z; of a neuron is esti-
mated by a leaky integration of the spike train:

dz;
7,— =

g =Gt Y ot — 1)

where #/) are the times when the neuron emits a spike
(the sum runs over all previous spikes) and 7, =
100 ms.

In real neurons, this is a mechanism that acts over
long time scales (over hundreds to thousands of sec-
onds) (Turrigiano, Leslie, Desai, Rutherford, & Nel-
son, 1998), but due to computational limitations (the
very long evaluation runs that would be required) the
chosen time scale (~ T,) is faster than this but still
significantly slower than the rest of the time scales in
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the system. Even though the above mechanism acts on
excitatory synapses, in the current context it has also
been applied when the presynaptic neuron is inhibi-
tory by multiplying the right-hand side above by —1. A
similar homeostatic mechanism has been successfully
implemented in robots capable of adapting to sensori-
motor disruptions not previously experienced (Di
Paolo, 2000).

3.2.3 Directional Damping Synaptic weights are con-
strained within the range [0, 1]. This can be achieved
simply by a stop condition at the boundaries or by
means of damping factors that vanish as the weight
value approaches a boundary. The choice can have
important consequences. No damping leads to a bimo-
dal distribution of weights under random stimulation
(Song et al., 2000), where most weights adopt the
minimum or maximum values in the range, but few
values in between. This also happens with purely posi-
tional damping, that is, factors that slow down weight
change near the boundaries but only depend on the
current weight value. A biologically plausible alterna-
tive is directional damping whereby if a weight value
is near a boundary, changes that push this value toward
the boundary are slowed down, but changes that push
it away from the boundary are not. The equilibrium
weight distribution in this case tends to be unimodal
and centered around the point where potentiation and
depression equilibrate (Rubin et al., 2001). Directional
damping is supported empirically by the observation
that spike-driven potentiation is more pronounced than
the expected linear variation at synapses of relatively
low initial strength in cultured hippocampal cells (Bi
& Poo, 1998). It was also observed that the mean frac-
tional negative change was constant over a wide range
of initial weights, corresponding to the linear damping
factor for absolute depression equal to the current
weight value.

Linear directional, or multiplicative damping is
simply implemented by transforming a weight change
[as resulting from STDP or activity-dependent synap-
tic scaling (ADS) or both]: Aw,-j = (1 —w;)Aw; if Aw,-j
> (0 and Awij - w,.jAwl.j if Aw,.j <0 for w; € [0,1].

3.2.4 Neural Noise Different sources of neural noise
have been modeled. At any given time, Gaussian noise
with zero mean and 1 mV deviation is applied to the

value of the firing threshold. This is the only source of
neural noise in the first set of experiments. Addition-
ally, for the second set, the refractory period is ran-
domly set every time step using a uniform distribution
([2 ms, 4 ms] for cases of short refractory period, [4 ms,
8 ms] for long refractory period). Background noise is
modeled as an incoming Poisson train to every neuron
with a frequency of 10 Hz, and spontaneous firing has
also been modeled using a baseline 10 Hz Poisson proc-
ess for each neuron, but subject to refraction.

3.2.5 Synaptic Decay To test the robustness of the
evolved controllers to perturbations in their internal
configuration, synaptic weights are allowed to decay
exponentially to 0 with a time constant that can be as
fast as 100 ms. Synaptic decay is not affected by direc-
tional damping and is not applied during evolution but
only during behavioral tests.

3.2.6 Poisson Filters and Randomized Delays To
test the reliability of the evolved controllers on the
precise timing of spikes, the simple expedient of fil-
tering the output of a neuron with a Poisson process
emitting random spikes at the same instantaneous rate
has been used. Information about firing rate is con-
served, but precise spike timing is disrupted. Because
the rate z is estimated using only previous spikes, it is
only possible to approximate the instantaneous firing
rate of the neuron in this manner. It is expected, how-
ever, that if controllers rely heavily on firing rates, the
disruption in performance should not be too strong. A
more sophisticated method consists of introducing arti-
ficial random delays in the firing time of single or
multiple neurons. This is done by keeping a short sub-
train corresponding to the last T ms of activity and
swapping the current fire state of a neuron with a ran-
domly selected state in the sub-train, thus conserving
the number of spikes. This is similar in objective to
tests in vivo on honeybee odor discrimination demon-
strating the role of synchronized neural assemblies
(Stopfer, Bhagavan, Smith, & Laurent, 1997). These
tests are applied only after evolution.

3.2.7 CTRNN Control runs using rate-based continu-
ous-time, recurrent neural networks (CTRNN; Beer,
1990) have been performed. These are defined by

Downloaded from http://adb.sagepub.com at Brestskij gosudarstvennyj on March 29, 2009


http://adb.sagepub.com

Di Paolo Spike-Timing Dependent Plasticity for Evolved Robots 249

dV,' = _V.+ +1; = :
= -V ijizj PU T Taexpl(V;+ bl
J

i

where V, represents the membrane potential of neu-
ron i, 7, the decay constant (range [0.4 s, 4 s]), b, the
bias (range [-3, 3]), z, the firing rate, w; the strength
of synaptic connection from node i to node j (range
[-8, 8]), and [, the degree of sensory perturbation for
sensory nodes. A plastic version of this controller
has also been used and is described in more detail
later.

4 Results: Low Neural Noise

Robots using spiking controllers were successfully
evolved for four different scenarios: (1) No plasticity
(evolution of fixed weights); (2) STDP no damping
(evolution of STDP windows without directional
damping, random initial weights); (3) STDP (evolu-
tion of STDP windows with directional damping, ran-
dom initial weights); and (4) STDP+ADS (evolution
of STDP windows and ADS with directional damp-
ing, random initial weights).

4.1 Evolvability

Five 100-generation independent runs were made for
each of the four scenarios above. It was qualitatively
found that, contrary to expectations, the more com-
plex case (in terms of the dimensions of the search
space and the additional features of the mechanism),
that is, STDP+ADS, was easier to evolve, particu-
larly during the initial generations, than the simpler
case of no plasticity. This is observed in Figure 2
where the mean population fitness, averaged over the
five runs, is plotted for these cases (error bars indi-
cate standard deviation). There is little observable dis-
tinction between using STDP with or without damping
(not shown) but there is a significant difference
between STDP+ADS and no plasticity. However, the
long-term fitness of the best individual of the last
generation is not significantly different between the
cases (Figure 3a). These were obtained by running
for each case the best individual of five runs for 10
independent evaluations. For comparison purposes, a
CTRNN controller has been evolved and tested
under the same conditions and is also shown in the
figure.

Average Fitness
0.6

Fitness

No Plasticity :---e--
STDP+ADS L]

0 20 40 60 80 100
Generation

Figure 2 Mean population fitness averaged over five
independent runs for two of the evolutionary scenarios
(no plasticity and STDP+ADS).

0.8
g 067 w } 1 I
1) ‘ 1
=
“ o4t { J ‘
0.2 +
0
No Plas STDPnd STDP ADS CTRNN
(a)
Robustness against synaptic decay
1.2

STDP no damping ~—»---
STDP DAMPING =
STDP + ADS ++ |

Proportion of Fitness

6
M gocay [1/5]

(b)

Figure 3 Fitness and robustness. (a) Average fitness of
the best individual in the last generation; (b) robustness
against synaptic decay; .., indicates the speed with
which weights decay exponentially to 0.
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4.2 Synaptic Decay

Plastic controllers maintain their functionality dynam-
ically as a consequence of their own activity. To assess
their reliability a disruptive decay of synapses was intro-
duced as described above. Figure 3b shows results for
the three plastic set-ups (again using five independent
runs for each and testing the best individual 10 times).
It is apparent that STPD+ADS controllers are able to
perform quite reliably even for decay times of up to
250 ms, whereas controllers using STDP with or with-
out damping are unable to maintain their performance.
It is possible to explain this as a consequence of the
compensatory nature of the ADS mechanism, which is
able to alter synapses as a consequence of longer term
changes in neural activity in ways that tend to main-
tain this activity and therefore the functionality of the
controller.

4.3 Behavioral Strategies

Evolved robots show a rich variety of behavioral strat-
egies. Practically all of the observed strategies are active,
involving scanning behavior, which is not surprising
given that sensors saturate rather easily. Figure 4a shows
a trajectory for an STDP+ADS robot. Unlike what is
commonly observed using rate-based neural control-
lers, robots are often able to come to a full stop near a
source of light (but not facing it)—this can be observed
in the inset showing the distance to the light source.
During these periods there is very little neural activity,
until a random spike from the sensors triggers a round
of activity and the robot starts scanning again (see
arrow in Figure 4b, which shows the network activity
for the same controller). In the absence of light, robots
scan their surroundings using this mechanism.

4.4 Timing Dependence

Applying a Poisson filter test to all the neurons in a
controller, whereby rate information is conserved but
not spike timing, results in total loss of fitness (< 1%).
This was tested in different controllers in the four sce-
narios with the same result. A more detailed study
involves the application of random delays to single neu-
rons. As explained above, this method conserves the
number of spikes but randomizes the timing within a
sub-train of a given size corresponding to the last 7' ms
in the simulation. Figure 5 shows how fitness is affected
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Figure 4 Evolved robot using STDP+ADS. (a) Trajectory,
inset: distance to light source, (b) network activity during
a fraction of the trajectory triggered by a single spike. SL:
left sensor; SR: right sensor; n0—n5: neurons 0-5.

for the best individual in one STDP+ADS run when
random delays are applied to all the neurons and to
single neurons (similar results were obtained for the
other classes). There is a sharp reduction in fitness in
the first case for a randomization of sub-trains as short
as 2 ms, but applying the test to single neurons shows
that the controller is crucially dependent on the pre-
cise timing of only three of the six neurons (corre-
sponding in this case to one motor and the two sensor
neurons, but to different neurons in other cases).

4.5 Synaptic Dynamics and Internal
Regulation

Weight values also exhibit rich dynamical behavior.
Figure 6a shows three of the synaptic weights affecting
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Figure 5 Fitness effect of randomizing spike sub-trains
for an STDP+ADS controller. (a) All neurons; (b) individ-
ual neurons. Bars indicate maximum and minimum values.

neuron O for the same run corresponding to Figure 4
(all other weights behave similarly). The other neurons
show similar qualitative dynamics at this time scale,
consisting of rhythmic periods of activity (during which
the robot rotates left and right) punctuated by silent
periods (during which the robot gently comes to a full
stop facing away from the light). While neurons are
firing, STDP drives the weights always to a same area
within the range; the rest of the time ADS takes control
and increases the synaptic efficacies so as to compen-
sate for the lack of firing activity in the neuron. This
has the effect of hypersensitizing the whole network,
so that even a single spike arriving from the sensors is
often capable of triggering a new round of activity and
the robot starts moving again.

synaptic strength
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Figure 6 Example of weight dynamics. (a) Three syn-
apses affecting node n0 together with its firing pattern;
(b) weight regulation (synapse w,,) during a period of
network activity and sensor activations (not to scale).
Insets: firing patterns of corresponding neurons at the
onset of activity round and during highly ordered period
(left), evolved plasticity window for this synapse (right).

The dynamics of the microstructure are also inter-
esting. Figure 6b shows how a particular synaptic strength
is regulated during a period of activity lasting about 0.6 s.
Its value is maintained nearly constant. The insets show
the pattern of firing of the pre- and postsynaptic neurons
that undergoes a process of synchronization that per-
sist while at least one sensor is active and finally desyn-
chronizes and stops. The plasticity window shown in the
figure indicates that synchronous firing translates into
net potentiation that is compensated for by ADS, result-
ing in an equilibrium (just after activity stops, ADS
depresses the weight due to the inertia of the frequency
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estimation before resensitizing the network). This reg-
ulatory pattern has been observed in all of the cases
studied for the STDP+ ADS class.

The neurons that drive the left motor (n0 and n4)
fire at the same frequency, yet it is possible to observe
that their phase relation changes nonrandomly so as to
produce a peak in motor output roughly toward the
middle of the activity round. The right motor does
something similar just after the left motor peaks,
although its driving neurons (nl and n5) are not clearly
entrained (data not shown).

5 Results: Noisy Neurons

A second series of experiments using noisy neurons
were run for the cases of no plasticity, STDP (with
damping) and STDP+ADS (five 400-generation inde-
pendent runs each). In addition to small threshold noise,
each neuron included a noisy refractory period and
either 10 Hz Poisson baseline firing or 10 Hz Poisson
extra input to each neuron.

One undesirable feature of the first set of experi-
ments is the high frequencies of firing utilized, reach-
ing up to 200 Hz. Although this is unrealistically high,
it was not expected that with a very small network all
the evolved properties would be equally plausible
biologically. There may be, however, a problem in
that the low-noise networks often seem to fire at the
maximum possible frequency, that is, a typical inter-
spike interval equal to the absolute refractory period.
This feature may indeed be undesirable, so the follow-
ing modifications were made. In the case of ADS, z,.,
was lowered from 50 Hz to 40 Hz. The range for fir-
ing threshold was reduced from [-65 mV, =50 mV] to
[-60 mV, -50 mV], the maximum frequency of the sen-
sor input trains was reduced from 200 Hz to 100 Hz,
and the range of synaptic strengths was reduced from
[0, 1] to [0, 0.5] (synaptic scaling was modified accord-
ingly). The inhibitory reversal potential E;, was changed
from —70 mV to —80 mV. The average refractory period
(now uniformly distributed) was 6 ms (instead of
4 ms) although successful trials were also performed
for shorter average refractory periods. The average
duration of single light source presentation was
changed from 10 s to 20 s and the range of possible
motor gains from [0.1, 50] to [1, 20]. These modifica-
tions succeeded in producing networks with more
plausible frequencies (range 10 Hz to 80 Hz).

5.1 Robustness

Again test were carried out for robustness against syn-
aptic decay. Figure 7 shows that these results are not
significantly altered by the addition of neural noise.
Controllers can also cope with sensorimotor distur-
bances such as asymmetric modification of sensor and
motor gains (not shown). Networks seem to be a bit
less robust against synaptic decay, but still STDP+
ADS controllers cope better than STDP-only control-
lers (Figure 7b).

5.2 Neural Noise

Figure 8 shows the response of three independently
evolved individuals for each set to variations in the
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Figure 7 Fitness and robustness. (a) Average fitness of
the best individual in the last generation for noisy neu-
rons; (b) robustness against synaptic decay; i, indi-
cates the speed with which weights decay exponentially
to 0.
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Figure 8 Effect of increased and decreased spontane-
ous random neural firing on network performance on
three independently evolved individuals for each condi-
tion (each line corresponds to one individual robot). (a)
No plasticity; (b) STDP; and (c) STDP+ADS. All networks
were evolved with a background random firing of 10 Hz
(vertical lines) and performance in normalized at this
point. Each point is the average of 20 runs.

amount of spontaneous background firing. In all these
cases, controllers were evolved with a Poisson back-
ground firing for each neuron of 10 Hz (corresponding
to the vertical line). Fitness values have been obtained
for 20 runs per point and normalized for 10 Hz. The
response to increased levels of random firing is, as
expected, a decreased level of performance. Some con-
trollers are more robust than others but the trend is
clear in all of them. Interestingly, decreasing the level
of neural noise also results in worse controllers (again
with different degrees of sensitivity). This implies that
random firing is being used functionally. Similar results
were observed for controllers evolved with a 10 Hz
Poisson input.

5.3 Spike Timing

The introduction of different sources of neural noise
disrupts the highly regular firing patterns obtained in
the first series of experiments. Still, it is possible to
observe in some cases that during periods of activity,
the noisy controllers still seem to fire with some regu-
larity. To observe this more clearly, some paired patterns
and their covariograms (cross-correlograms corrected
for time-dependent shifts in frequency) are shown in
Figure 9 for two STDP+ADS controllers, one of them
exhibiting bursting behavior. Covariograms are roughly
proportional to the probability of the two neurons fir-
ing after the corresponding shift in time. Around 40 s
of data are used in their calculation (see Appendix). In
both cases it is possible to observe distinct peaks and
valleys in the covariation of the two spike trains for
some values of the time shift (x-axis). The peaks corre-
spond to very short shifts (a few milliseconds) in time
even though there are no peaks corresponding to zero
shift (synchrony). The smooth lines give an idea of the
interval of significance (+0,) given the variance of
each spike train (see Appendix). Some of the peaks
and valleys clearly cross this interval implying that the
timing regularity in the patterns is significant. Still,
the question remains whether such regularity has a
functional value or whether it is epiphenomenal.

5.4 Disruption of Spike Timing

To answer the last question we repeated the experiments
on disruption of spike trains done in the first series. On
application of a Poisson filter, performance in the first
series dropped to almost, 0%. Figure 10a shows the
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Figure 9 Covariograms and sample activity for two STDP controllers. The controller at the top shows rather constant
activity while the controller at the bottom shows evidence of bursting. In both cases there is a peak in the covariograms
for a small negative time shift. Careful inspection of the spike trains shows a tendency of one train to fire just after the
other. Smooth bands in covariograms show the estimated interval of significance.

effect of applying the same filters to noisy controllers
for each case (five independent runs, 20 evaluations,
each). It is clear that even though there is a reduction
in performance, the effect is not nearly as dramatic as
before. The case of STDP+ADS is even quite robust.
On observation, it was found that the disrupted robots
did perform phototaxis, only less efficiently.

These results are supported by the randomization
of spike trains (Figure 10b). In sharp contrast to Fig-
ure 5 there is a considerable degree of robustness for
disruption corresponding to randomizing the sub-
trains of up to 10 ms, and then a slow decay for longer
sub-trains. The average result for STDP+ADS means
that up to 60 ms of spike-timing information can be
shuffled without significant loss of fitness. This indi-

cates that noisy controllers are very unlikely to be
using any information contained in the precise timing
of spikes. Covariograms and sample trains for the same
controllers and neurons shown in Figure 9 can be seen
in Figure 11 corresponding to spike-train randomiza-
tion with a sub-train size of 40 ms. No noticeable peak
stands out of the estimated interval of significance.

5.5 Analysis of One Strategy

A series of different behavioral strategies have been
observed. Most of them involved periods of high neu-
ronal activity in the whole network, punctuated by
periods of low activity and random background firing.
Figure 12 shows one strategy for an STDP bursting
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Figure 10 Disruption of spike timing. (a) Effect on per-
formance of applying a Poisson filter to the output of each
neuron, (average of 20 evaluations for five independent
runs in each case); (b) effect of spike-train randomization
for all neurons, also averaged over five runs for each
case. In contrast to Figure 5 noisy controllers do not
degrade in performance when spike timing is altered,
despite the nature of the synaptic rules of plasticity.

controller. The robot performs an unusual approach to
the light source by traveling “‘backward’’ and avoid-
ing sensor activation by occluding the light with its
own body. As long as the occlusion persists and the
source is within sensor range, the robot will travel in
the general direction of the source. This situation cor-
responds to periods of low and random firing and is
marked by the thin segments in the trajectory. Eventu-
ally, one of the sensors comes into contact with the
light—no matter which sensor it is, effectively the
same round of neural activity is triggered by this

event. This causes the robot to start moving at a higher
speed in an arc that lasts until light is occluded once
again (thick segments in the trajectory). The strategy
works by taking advantage of an invariant geometrical
relation: If the robot travels backward (or alternatively
if the sensors are at the back of an occluding volume)
then, as long as the periods of sensor activation are
minimized, the robot will eventually reach the source
of light. The robot approaches the light by keeping its
sensors oriented within the cone of shadow caused by
its own body.

All neurons in this particular case are excitatory
(although typically controllers are composed of a
combination of neural types) and similar in their prop-
erties except neuron n0, corresponding to the left
motor forward control, which has a longer membrane
decay constant 7,. As a result, when the all the neu-
rons are firing, this neuron is firing at a significantly
lower rate, resulting in faster speed on the left side in
the backward direction, and thus the robot is able to
describe the arc that will eventually produce a shadow
on both sensors.

The explanation is supported by a simple experi-
ment. If the sensors are positioned diametrically opposed
and at 90° to the axis of the motors (so that one sensor
will always be active), the robot fails to perform (less
than 0.1% of the original fitness). However, if one
removes the sensor pointing in the direction of move-
ment and leaves only the other sensor at equal angles
between the motors the robot is still able to perform
phototaxis, although with lower fitness (around 50%)
due to the longer time it takes to reach the position of
the source.

The strategy also explains why performance
degrades when the level of neural noise is reduced
(Figure 8). The robot relies for its approach on the low
level of noisy activity that keeps it traveling in the
direction of the source while the sensors remain inac-
tive. Given the self-correcting nature of the trajectory,
it does not matter whether such random activity causes
the robot to deviate a little, as this will only trigger
neural activation and a corrective arc trajectory that
will last until sensor readings drop once again, eventu-
ally resulting in a course regulation. It also seems plau-
sible now that even the application of Poisson filters
and jitter in the spike trains will not have a very strong
effect on the performance, as shown in Figure 10.

It must be stressed that this is one of many strate-
gies found in the second series of experiments. Other
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strategies resemble more traditional forms of photo-
o 1 taxis with an active oscillatory (but not cycloidal) ele-
6o 1 ment, particularly in the case of STDP+ADS, where
rhythmic bursting is often observed.
50 - q
40F ] . A
5.6 Synaptic Dynamics
30 q
Figure 13a shows the weight dynamics for one run in
zor 1 an STDP controller. Except for a few slow-changing
ol i weights, most of the synapses settle very rapidly into a
stable value. The distribution of values covers the whole
°or ] range. Figure 13b shows for the same run a detail of
ok ] the change in one particular weight together with the
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Figure 12 Robot trajectory for an STDP controller.
Thick segments corresponds to periods of high neural
activity when light impinges on at least one of the sensors.

pre- and postsynaptic trains. The synaptic strength is
quite stable. Both neurons fire with a very similar fre-
quency and there is almost a one-to-one correspond-
ence in the number of spikes.
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Figure 13 Synaptic dynamics for an STDP controller.
(a) Weight value for all synapses for one single run; (b)
detail for one synapse together with pre- (top) and post-
synaptic trains (bottom). Dashed line indicates period of
sensor activation.

As in the case with low neural noise, endogenous
bursting is very common for STDP+ADS controllers.
The corresponding weight dynamics are similar as
well. This is shown in Figure 14a where the bursting
of one neuron and one corresponding incoming synap-
tic strength are shown. Notice that sensor activation
(not shown to scale) does not drive the bursts of activ-
ity, but that these are endogenously generated by the
oscillatory dynamics created by the ADS balancing.
Interestingly, the pattern is altered when the sensor is
up and this produces the overall effect of a retardation
in the phase of oscillation. Figure 14b shows a detail
with both the pre- and postsynaptic spike trains for the
same synapse.
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Figure 14 Synaptic dynamics for a bursting STDP+
ADS controller. (a) A typical synapse; (b) detail for the
same synapse together with pre- (top) and postsynaptic
trains (bottom), dashed line indicates period of sensor
activation.

6 Comparison with Rate-Based
Synaptic Plasticity

It is not surprising that if spike timing is perturbed by
the presence of noise, then the controller will rely
more heavily on other network properties or sensorim-
otor invariants. However, the rules that determine weight
change remain temporally asymmetric and therefore
dependent to some extent on spike timing; this is the
paradoxical result. To investigate if there is any addi-
tional feature granted by the use of STDP in the noisy
case, a comparison is made with a rate-based model of
synaptic plasticity. A CTRNN controller is used in
which synapses undergo weight change depending on
the pre- and postsynaptic firing rates.
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Designing a fair comparison is not straightforward.
Simple Hebbian rules of the form dw,;/dt = 1, z;z; have
been unable by themselves to produce a single con-
troller that performed well over a dozen attempts.
However, extended rules or a combination of them are
known to do so with some ease (Floreano & Urzelai,
2000). A general expression for such rules is

dw;

T Nij(Ag + A1z + Ayz; + Asz;z)),
where all parameters (A,, 1);;) are subject to evolution-
ary change. Even when weights are initialized ran-
domly, if firing rates (z;) have an initial short-range
random distribution around their mean value (0.5), the
above parameters can largely determine the initial
direction of weight change, thus facilitating the task of
evolution by providing an innate bias for the develop-
ment of the neural network configuration. This is not
what happens with STDP controllers, as neurons are
randomly initialized as firing or nonfiring at ¢ = 0. In
other words, all the cases of STDP controllers studied
here start with random weight initial values and ran-
dom initial weight derivatives.

Since firing rates in the CTRNN are initialized
around the middle of the range the above condition
can be achieved by modifying the plastic rule to

dw;;
— = n,;(A(z;=-0.5) +Ay(z;-0.5)

+ As(z; - 0.5)(Zj— 0.5))

The initial direction of weight change in this case is
also random, and evolution must be able to build a
bootstrapping process whereby neural properties and
environmental interaction play a stronger role in the
shaping of the controller. These are the conditions
under which STDP controllers are evolved. Damping
factors are also applied.

Maximum weight derivatives are made of the same
order (half the weight range can be covered in 1 s of
simulated activity) and in some trials even faster than
in the STDP case. This condition results in A, € [-1, 1]
and n; € [=3/s, 3/s]. Noise is also simulated in the
rate-based model by perturbing neuron rates with the
addition of a uniformly distributed random variable of
range 0.1. Poisson input noise was simulated by mod-
ifying the input currents: I, — I, + ﬁp with p a nor-
mally distributed random variable with unit stardard
deviation and zero mean (Tuckwell, 1988). A non-

noisy scenario was also studied where these condi-
tions were not applied; the differences were not signif-
icant.

It was found that rate-based controllers evolved
under the same conditions as the STDP networks sig-
nificantly underperformed in the phototaxis task. Fig-
ure 15 shows the average fitness of five independent
runs both for noisy and non-noisy scenarios compared
with STDP controllers with neural noise, both under
normal conditions and with spike-train randomization
(20 ms).

Inspection of the synaptic dynamics shows that
the network is too slow to settle into a stable condition.
This is shown in Figure 16 where a comparison is
made for two weights representative of the fastest and
slowest convergence, for both one rate-based and one
STDP noisy controller during 10 independent runs.

STDP controllers are rapidly able to define a direc-
tion of weight change depending on the relation between
the plastic rules and the neural properties. The ran-
domness in weight derivative lasts only of a few tens
of milliseconds (it cannot be appreciated in the figure)
whereas rate-based plastic controllers take much longer
to settle into a given range (if they settle at all). Figure
17a shows the average reduction in variance across
trials for all weights in the two cases corresponding to
Figure 16. Even though this variance takes into account
all the weights (and consequently may overestimate
the variance of those with higher functional signifi-
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Figure 15 Fitness for rate-based plastic controllers with
and without noise in neurons. The fitness for STDP with
noisy neurons is included for comparison as well as the
fitness obtained with randomized spike trains (size of
subtrain 20 ms).
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Figure 16 Weight change for one STDP noisy controller (left) and one rate-based noisy controller (right). Each figure
shows the change in the same synapse for 10 independent evaluations. A fast and a slow changing weight are shown in

each case (top and bottom, respectively).

cance) it is clear that the difference, both in transient
and longer-term behavior, is significant.

It is also interesting to compare the weight dynam-
ics for an STDP controller with neural noise both
when functioning normally and when a Poisson filter
is applied (total loss of timing information). A squared-
difference matrix Dw; () = (w;; (1) — wp;; (9)? is recorded
and averaged over 10 trials (wp; (1) correspond to the
weights for a Poisson-filtered run). Figure 17b shows
this quantity for all the weights and for the average
across all weights (thick line). It is clear that the long-
term behavior of the weight matrix does not depend
strongly on timing information as weights tend to
approach the same value as the Poisson-filtered network.
This is interesting, as it suggests that, under noisy con-
ditions, evolution is able to find networks that rely
more strongly on the timing properties of the neurons
and plastic rules to determine long-term weight distri-
bution. The performance of the rate-based plastic con-
trollers improves to levels comparable with STDP

controllers with the presentation of more light sources
per evaluation (more than five instead of the two pre-
sented in the STDP case) and if initial weight deriva-
tives are permitted to be set genetically.

7 Discussion

Despite the exploratory nature of this work, it is possi-
ble to assert that the richness of behavior in plastic
spiking neural networks, not often found in other con-
trollers, makes them extremely interesting candidates
for further testing in adaptive behavior research. It is
perhaps inevitable that a synthetic design method should
be used to approach their complexity in integrated agents
with closed sensorimotor loops. This article has shown
that it can be done successfully for a simple task. The
suitability of these mechanisms in other scenarios, and
ultimately their potential for more complex cognitive
performance, remains to be seen. In particular, it will
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Figure 17 Weight dynamics. (a) Reduction in variance
for all weights in the network averaged over 10 evalua-
tions for an STDP noisy controller (solid) and a rate-
based noisy controller (dashed); (b) squared difference in
weights between normal and Poisson-filtered conditions
for a STDP controller with neural noise. Each line corre-
sponds to one synapse and is obtained as the average of
10 runs. The thick line is the average for all weights.

be of much interest to explore more closely the func-
tionality proposed for STDP (Section 2) by using a
more appropriate neural architecture. One of the main
disadvantages of the approach is obviously the extra
computational cost involved in the longer evaluations
(roughly 200 times the equivalent of CTRNN control-
lers). But this cost has passed from being prohibitive a

few years ago to being acceptable nowadays if the
benefits justify it.

The first series of evolved controllers demonstrate
the use of some uncommon mechanisms (in a robotics
context) such as the precise timing information of spike
trains. Neural networks undergo rhythmic periods of
activity during which pairs of neurons start uncorre-
lated, then reach a highly entrained state, and finally
lose their entrainment and become inactive. Such peri-
ods can be triggered by a sensory stimulus or if the
inactivity has lasted long enough, even by single ran-
dom spikes coming from the sensors, owing to the excit-
ability that builds up thanks to the ADS mechanism
that acts as an adaptive balancer of synaptic input. Dur-
ing these periods synaptic strengths are kept nearly
constant and despite firing in strongly entrained mode
motor neurons maintain enough variety to coordinate
their relative timing and achieve functionally useful
movement. Single neuron randomization of spike trains
has revealed that not all neurons are crucial in allow-
ing the network to make use of timing information.

The second series introduced a more plausible sce-
nario with various sources of neural noise. In sharp
contrast to the first series, robot performance for noisy
controllers degraded little or nothing at all on applica-
tion of Poisson filters or randomization of spike trains,
indicating that despite the nature of the plastic rules
that drive the controllers in the STDP and STDP+
ADS cases, and despite some evidence of regularity in
spike times, these controllers do not need to make use
of precise timing information to work properly. The
dependence on precise timing in the low noise series
would indeed seem to fit with the nature of the plastic
rules. However, as most direct evidence for STDP
originates from cell culture studies (Bi & Poo, 2001),
it remains questionable how these mechanisms will
operate on a behaving animal—particularly if they
underlie learning processes that need to operate at a very
different timescale, (Mehta, Lee, & Wilson, 2002). In
the second series, the same plastic rules are at work and
yet precise timing seems not to be essential, even though
it is naturally present to some degree in the unperturbed
robot. In a sense, regularity in spike timing in this case
is epiphenomenal and STDP can function without it.

It is a well-known principle of evolutionary design
that reliable aspects of the performance evaluation may
be taken advantage of by evolution, and that making
those aspects unreliable produces solutions that are
robust to their variation. This principle guides the min-
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imal simulation design strategy (Jakobi, 1997). In the
current context, the presence of neural noise may have
made it easier for evolution to find solutions that rely
on neural firing rates while ignoring noisy spike tim-
ing. This is supported by the evidence in Figure 17b,
where the weights of STDP controllers both with and
without Poisson filters converge to a same distribution.

Although nonplastic rate-based controllers will
work optimally for this task (Beer & Gallagher, 1992),
evolving purely plastic rate-based controllers under
the same conditions results in poorer performance than
STDP controllers due to lack of efficiency in reaching
a stable weight distribution. Temporally asymmetric
plasticity is much more stable and efficient, even in
the presence of noise, and is able to “develop” a con-
troller faster (which is an implicit fitness requirement
in this case).

It is hard to draw general implications for more
complex scenarios from the nonreliance of noisy con-
trollers on spike timing. What this exploration does
show is that it is possible for STDP rules to work in an
integrated sensorimotor system even in the absence of
precise timing information (which seems paradoxical)
while still retaining advantanges over rate-based mod-
els evolved under the same conditions. The important
question is in what situations, if any, analogous robust-
ness may be found in natural systems. To answer this,
behavioral studies are needed, but for the moment auton-
omous robotics modeling may provide some initial
insights. The next step will be to approach more com-
plex tasks where the evolutionary approach has already
proved successful: Tasks requiring different levels of
memory, orientation to stimuli, and selective attention
such as visual shape discrimination (Harvey, Husbands,
& Cliff, 1994), delayed response (Jakobi, 1997), or
Beer’s minimal cognitive systems (Beer, 1996; Slo-
cum, Downey, & Beer, 2000) with the addition of sen-
sory arrays and neural fields.

Acknowledgements

Thanks to Jianfeng Feng for comments and advice and for first
suggesting STDP might be worth looking into. Many thanks
also to Eytan Ruppin’s and Gal Chechick’s comments and good
advice. The review process for this article was handled by the
Editor in Chief. The author wishes to acknowledge the support
of the Nuffield Foundation (grant no. NAL/00274/G).

References

Abbott, L. F., & Blum, K. 1. (1996). Functional significance of
long-term potentiation for sequence learning and predic-
tion. Cerebral Cortex, 6, 406—416.

Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: Tam-
ing the beast. Nature Neuroscience, 3, 1178-1183.

Beer, R. D., 1990. Intelligence as adaptive behavior: An exper-
iment in computational neuroscience. San Diego: Aca-
demic Press.

Beer, R. D. (1996). Toward the evolution of dynamical neural
networks for minimally cognitive behavior, In P. Maes, M.
J. Mataric, J,-A. Meyer, J. B. Pollack, & S. W. Wilson
(Eds.), From animals to animats 4: Proceedings of the
Fourth International Conference on Simulation of Adap-
tive Behavior (pp. 421-429). Cambridge, MA: MIT Press.

Beer, R. D., & Gallagher, J. C. (1992). Evolving dynamical neu-
ral networks for adaptive behavior. Adaptive Behavior, 1,
91-122.

Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cul-
tured hippocampal neurons: Dependence on spike timing,
synaptic strength, and postsynaptic cell type. Journal of
Neuroscience, 18, 10464—-10472.

Bi, G. Q., & Poo, M. M. (2001). Synaptic modifications by cor-
related activity: Hebb’s postulated revisited. Annual
Review of Neuroscience, 24, 139-166.

Brody, C. D. (1999). Correlations without synchrony. Neural
Computation, 11, 1537-1551.

Chechik, G. (2002). Spike-timing dependent plasticity and rele-
vant mutual information maximization. Manuscript in
preparation.

Di Paolo, E. A. (2000). Homeostatic adaptation to inversion of
the visual field and other sensorimotor disruptions. In J.-
A. Meyer, A. Berthoz, D. Floreano, H. Roitblat, & S. Wil-
son (Eds.), From animals to animats 6: Proceedings of the
6th International Conference on the Simulation of Adap-
tive Behavior Cambridge MA: MIT Press.

Floreano, D., & Mattiussi, C. (2001). Evolution of spiking neu-
ral controllers for autonomous vision-based robots. In T.
Gomi (Ed.), Evolutionary robotics IV. Berlin: Springer.

Floreano, D., & Urzelai, J. (2000). Evolutionary robots with
on-line self-organization and behavioral fitness. Neural
Networks, 13, 431-443.

Gerstner, W., Kreiter, A. K., Markram, H., & Herz, A. V. M.
(1997). Neural codes: Firing rates and beyond. Proceed-
ings of the National Academy of Science, USA, 94, 12740—
12741.

Harvey, 1., Husbands, P., & CIliff, D. (1994). Seeing the light:
Artificial evolution, real vision. In D. Cliff, P. Husbands,
J.-A. Meyer, & S. Wilson (Eds.), From animals to animats
3: Proceedings of the 3rd International Conference on

Downloaded from http://adb.sagepub.com at Brestskij gosudarstvennyj on March 29, 2009


http://adb.sagepub.com

262 Adaptive Behavior 10(3-4)

Simulation of Adaptive Behavior (pp. 392-401). Cam-
bridge, MA: MIT Press.

Hopfield, J. J., & Brody, C. D. (2001). What is a moment?
Transient synchrony as a collective mechanism for spatio-
temporal integration. Proceedings of the National Acad-
emy of Science, USA, 98, 1282-1287.

Horn, D., Levy, N., & Ruppin, E. (1998). Memory maintenance
via neuronal regulation. Neural Computation, 10, 1-18.

Husbands, P., Smith, T., Jakobi, N., & O’Shea, M. (1998). Bet-
ter living through chemistry: Evolving GasNets for robot
control. Connection Science, 10, 185-210.

Jakobi, N. (1997). Evolutionary robotics and the radical enve-
lope-of-noise hypothesis. Adaptive Behavior, 6, 325-368.

Kempter, R., Gerstner, W., & Hemmen, J. L. van (1999). Heb-
bian learning and spiking neurons. Physical Review E, 59,
4498-4514.

Maass, W. (1997). Networks of spiking neurons: The third gen-
eration of neural network models. Neural Networks, 10,
1656-1671.

Maass, W., Natschldger, T., & Markram, H. (2002). Real-time
computing without stable states: A new framework for
neural computation based on perturbations. Neural Com-
putation, 14(11), 2531-2560.

Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. (1997).
Regulation of synaptic efficacy by coincidence of postsyn-
aptic APs and EPSPs. Science, 275, 213-215.

Mehta, M., Lee, A. K., & Wilson, M. A. (2002). Role of experi-
ence and oscillations in transforming a rate code into a
temporal code. Nature, 417, 741-746.

Mehta, M. R., Barnes, C. A., & McNaughton, B. L. (1997).
Experience-dependent asymmetric expansion of hippoc-
ampal place fields. Proceedings of the National Academy
of Science, USA, 94, 8918-8921.

Mehta, M. R., Quirk, M. C., & Wilson, M. A. (2000). Experi-
ence-dependent asymmetric shape of hippocampal recep-
tive fields. Neuron, 25, 707-715.

Rao, R. P. N., & Sejnowski, T. J. A. (2001). Spike-timing-
dependent Hebbian plasticity as temporal difference learn-
ing. Neural Computation, 13,2221-2237.

Rossum, M. C. W. van, Bi, G. Q., & Turrigiano, G. G. (2000).
Stable Hebbian learning from spike-timing dependent
plasticity. Journal of Neuroscience, 20, 8812-8821.

Rubin, J., Lee, D. D., & Sompolinsky, H. (2001). Equilibrium
properties of temporally asymmetric Hebbian plasticity.
Physical Review Letters, 86, 364-367.

Ruppin, E. (2002). Evolutionary autonomous agents: A neuro-
science perspective. Nature Reviews Neuroscience, 3,
132-141.

Slocum, A., Downey, D., & Beer, R. D. (2000). Further experi-
ments in the evolution of minimally cognitive behavior:
From perceiving affordances to selective attention. In J.

Meyer, A. Berthoz, D. Floreano, H. Roitblat, & S. Wilson
(Eds.), From animals to animats 6: Proceedings of the 6th
International Conference on Simulation of Adaptive
Behavior (pp. 430-439). Cambridge, MA: MIT Press.

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive
Hebbian learning through spike-timing-dependent synap-
tic plasticity. Nature Neuroscience, 3, 919-926.

Stopfer, M., Bhagavan, S., Smith, B. H., & Laurent, G. (1997).
Impaired odour discrimination on desynchronization of
odour-encoding neural assemblies. Nature, 390, 70-74.

Sutton, R. S. (1988). Learning to predict by the method of tem-
poral differences. Machine Learning, 3, 220-224.

Tuckwell, H. C. (1988). Introduction to theoretical neurobiol-
ogy (Vol. 2). Cambridge: Cambridge University Press.

Turrigiano, G. G. (1999). Homeostatic plasticity in neuronal
networks: The more things change, the more they stay the
same. Trends in Neurosciences, 22, 221-2217.

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C.,
& Nelson, S. B. (1998). Activity-dependent scaling of
quantal amplitude in neocortical neurons. Nature, 391,
892-896.

Yao, H., & Dan, Y. (2001). Stimulus timing-dependent plastic-
ity in cortical processing orientation. Neuron, 32, 315—
323.

Appendix: Estimation of ¢}

Here we calculate the variance oy for a covariogram
of two independent spike trains S,(f) and S,() with
respective time-dependent averages R, (f) and R,(f)
and variances 0'%(1‘) and o%(t). We follow Brody’s
(1999) development for many identical recorded trials
by adapting it to a single sufficiently long trial.

First we estimate the R (f) and R,(f) by perform-
ing simple sliding-window averages of the spike trains
with windows of size 2t,. The corresponding vari-
ances are estimated using the same windows. In our
case t; =20 ms.

The covariogram is defined as

oo

C(1) = 3 ($i()=R(D)(S,(1+ 1) = Ry(1+ 7))

t=—oo

Independence of the trains is the null hypothesis. The
expectation E(C(7)) in this case is zero. To calculate
the corresponding variance oy , we obtain the variance
of each term in the sum, yielding
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o2(1) = i o) Ot + T) + OLOR (1 +T)
+ R(1)o3(t+ 1),

where we have used the definition of a variance of a
time series x is E(x?) — E(x)% and the variance of the
product of two independent series x and y is therefore
ECHE(Y) - EQPE(y) = (07 + R)(0; + R)) - RIR.

About the Author

The bands plotted in Figures 9 and 11 correspond
to the +0), interval for each 7. To facilitate compari-
sons, all the covariograms have been normalized by a
factor that makes the value of the autocovariogram for
7= 0 equal to 1—that is, by dividing each series i by
Z(S,.(t) - R,.(t))Z. The same factor has been applied
correspondingly to the terms above in the calculation
of oy
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