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Spike timing-dependent plasticity (STDP) is a learning rule that modifies
the strength of a neuron’s synapses as a function of the precise temporal
relations between input and output spikes. In many brains areas, tem-
poral aspects of spike trains have been found to be highly reproducible.
How will STDP affect aneuron’s behavior when it is repeatedly presented
with the same input spike pattern? We show in this theoretical study that
repeated inputs systematically lead to a shaping of the neuron’s selec-
tivity, emphasizing its very first input spikes, while steadily decreasing
the postsynaptic response latency. This was obtained under various con-
ditions of background noise, and even under conditions where spiking
latencies and firing rates, or synchrony, provided conflicting informations.
The key role of first spikes demonstrated here provides further support
for models using a single wave of spikes to implement rapid neural pro-
cessing.

1 Introduction

Activity-dependent learning at the systems level relies on dynamical mod-
ifications of synaptic strength at the cellular level. Experimental data have
shown that these modifications depend on temporal pairing between a pre-
and a postsynaptic spike: an excitatory synapse receiving a spike before
a postsynaptic one is emitted potentiates while it weakens the other way
around (Markram, Lubke, Frotscher, & Sakmann, 1997). The amount of mod-
ification depends on the delay between these two events: maximal when pre-
and postsynaptic spikes are close together, the effects gradually decrease
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and disappear with intervals in excess of a few tens of milliseconds (Bi &
Poo, 1998; Zhang, Tao, Holt, Harris, & Poo, 1998; Feldman, 2000). Learn-
ing at the neuronal level thus heavily depends on the temporal structure of
neuronal responses.

Interestingly, in many brain areas, the temporal precision of spikes dur-
ing stimulus-locked responses can be in the millisecond range. The evi-
dence is clear in both the auditory cortex (Heil, 1997) and the somatosen-
sory system (Petersen, Panzeri, & Diamond, 2001). Reproducible temporal
structure can also be found in the visual system, such as in MT (Bair &
Koch, 1996), and from retinal ganglion cells to the inferotemporal cortex
(Sestokas, Lehmkuhle, & Kratz, 1991; Meister & Berry, 1999; Liu, Tzonev,
Rebrik, & Miller, 2001; Richmond & Optican, 1990; Victor & Purpura, 1996;
Nakamura, 1998).

This raises the question of how a neuron with STDP will respond when
repeatedly stimulated with the same pattern of input spikes. Let us con-
sider a simple case where a neuron is exposed to an input spike pattern

Figure 1: Facing page. Single wave experiment. For a repeated spike wave under
realistic conditions, a neuron learns to react faster to its target. Synaptic weights
converge onto the earliest firing afferents, even with 25 ms jitter or 50 Hz back-
ground activity. (A) Typical incoming activity. Bottom: raster plot of a jittered
spike wave amid spontaneous activity. At each presentation, 5 ms jitter and 5 Hz
background activity are regenerated; the resulting pattern is presented to the
postsynaptic neuron (with initial potential set to 0); when it spikes, the STDP
learning rule is applied and its potential reset to 0 before going to the next pre-
sentation. Prior to presentation, the presynaptic neurons do not fire any spike.
Top: the corresponding poststimulus time histogram (PSTH): the gaussian form
in the left-most part corresponds to the reproduced spike wave. (B) Dynamics of
repeated STDP. Top: sum of all synaptic weights at each presentation (the dashed
line represents the output neuron threshold). The sum of the synaptic weights
stored in the afferents stabilizes at threshold value. Bottom: the horizontal axis
corresponds to the number of presentations (i.e., the learning step). The black
line refers to the left axis and shows the reduction of postsynaptic latency during
the course of learning. The background image refers to the right axis where each
synapse weight is mapped by a gray-level index (see the corresponding bar on
the right). Synapses are ordered by spiking latency of the corresponding neuron
within the original reproducible input pattern (here, a wave), more precisely
before superimposing spontaneous activity or adding some jitter. This order is
decided a priori and stays fixed for the whole simulation. During learning, ear-
liest synapses become fully potentiated and later ones are weakened. (C) Effect
of jitter. Jitter is generated by a gaussian distribution. Increasing its standard de-
viation does not affect convergence until about 10 ms. From there, it slows the
system roughly quadratically. (D) Effect of spontaneous firing rate. Increasing
background activity slows convergence approximatively linearly.
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consisting of one input spike on each afferent synapse, with arbitrary but
fixed (e.g., gaussian distributed, as in latencies. For one given input pattern
presentation, the input spikes elicit a postsynaptic response, triggering the
STDP rule. Synapses carrying input spikes just preceding the postsynaptic
one are potentiated, while later ones are weakened. The next time this in-
put pattern is re-presented, firing threshold will be reached sooner, which
implies a slight decrease of the postsynaptic spike latency. Consequently,
the learning process, while depressing some synapses it had previously po-
tentiated, will now reinforce different synapses carrying even earlier spikes
than the preceding time. By iteration, it follows that when the presentation
of the same input spike pattern is repeated, the postsynaptic spike latency
will tend to stabilize at a minimal value while the first synapses become
fully potentiated and later ones fully depressed (see Figure 4 in Song, et al.,
2000, as well as Gerstner and Kistler, 2002a, for related demonstrations; see
also Figures 1A and 1B).

Under these simplistic conditions, neurons can learn to react faster to
a given stimulus pattern by emphasizing the role of the earliest firing in-
puts. However, input spike patterns in the brain do not consist of one-
spike-per-neuron waves of infinite precision. Not only do stimulus-locked
responses occur with a jitter on the order of 1 or more milliseconds (Mainen
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& Sejnowski, 1995), neocortical cells also spontaneously fire at rates up to
20 Hz in awake animals (Evarts, 1964; Hubel, 1959; Steriade, Oakson, &
Kitsikis, 1978). Finally, temporal structure in spike trains is often distributed
over numerous consecutive spikes in long time windows. With realistic con-
ditions, would the effect of STDP still emphasize the very first afferents?
Would this be the case even when other types of neural codes (firing rate,
synchrony) are present within the spike trains? This would have critical
implications for our understanding of neural information coding and pro-
cessing. In this theoretical study, we seek to answer these questions through
a range of simulations using biologically plausible neuron models.

2 Spike Waves

A target neuron is repeatedly presented with an input spike pattern. In a first
example, it consists of a single asynchronous spike wave: one spike for each
synapse with gaussian-distributed latencies (50 ms mean, 20 ms width). At
each presentation, spike times are jittered, and Poisson spontaneous activity
is added to the spike trains. We varied the amount of jitter and spontaneous
firing and investigated their effect on the target neuron learning behavior.

2.1 Methods.

2.1.1 Integrate and Fire. The postsynaptic neuron is connected to a thou-
sand afferent neurons via as many synapses and integrates spikes across
time (in all simulations except one, no leakage was involved). Systemati-
cally starting at a resting level of 0 before presentation, it sums the weight
of the synapses that carry each incoming spike. The presynaptic neurons
are assumed to be quiet prior to presentation; they do not fire any spike.
When reaching its threshold (100 for all simulations), the postsynaptic neu-
ron fires, triggers an STDP-inspired learning rule for its first action potential
only, and then sets its potential back to a resting level of 0.

2.1.2 STDP Model. The learning function F has the prototypical form
of STDP according to electrophysiological results in cultured hippocampal
neurons (Bi & Poo, 1998). The amount of synaptic modification arising from a
single pair of pre- and postsynaptic spikes separated by time At is expressed
as follows:

if 7, <At <0, F(At) = A;. (1 - (At/t4)
if O0<At<t., F(A)=-A_.(0-(At/t-))
otherwise F(At) =0,

where A, and A_ determine the maximum amounts of synaptic modifica-
tion that occur when At is close to zero (A; = A =1 in all simulations).
74 and t_ are the temporal windows for, respectively, potentiation and
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depression, expressed in milliseconds (here, 7. = —20 ms and 7_ = 22 ms).
Synaptic growth from learning step n to n + 1 is computed as follows:

win+1) =w;(n) + F(tpre - tpost)s

where w;(n) is the “free” weight of synapse i at nth presentation step, #y0st
the postsynaptic spike timing, and f,. the presynaptic spike timing. Under
these conditions, synaptic weights may grow to infinitely large values. To
address this obstacle, we implemented a sigmoidal saturation function g:

W = g(w;),

where g(x) = ((/2) + atan(x))/m. The “free” weight, labeled w;, corre-
sponds to the unconstrained weight of the synapse, which connects input
neuroni to the postsynaptic one. It ranges from —oco to +oc0 and is the tar-
get of the strengthening/weakening process. The “effective” weights, W,
lie in the Jwmin, Wmax[ interval (here wmin = 0, Wmax = 1). These “effective”
weights are the ones that are considered for calculating the excitatory post-
synaptic potential.!

2.1.3 Jitter. When needed, each reproducible spike was displaced in time
by a value chosen randomly at each presentation from a gaussian distribu-
tion of mean 0 and standard deviation set to the expected jitter.

2.1.4 Spontaneous Activity. Spontaneous activity is generated using a
Poisson process as described in section 3.1. It is redrawn for each affer-
ent neuron, at each presentation, before being superimposed on the jittered
reproducible structure to constitute the incoming activity.

2.1.5 Convergence Criterion. Convergence is met when the local average
of postsynaptic latencies, in a +5-step window, remains within 1 ms for 100
consecutive steps (reported convergence is the first of these 100 steps). We
also checked that the synaptic weights were indeed selected on the basis of
their earliest inputs.

INote that here, contrary to other update rules (Rubin, Lee, & Sompolinsky, 2001),
when the effective weight approaches the upper and lower bounds, both the expected
amounts of reward and punishment (in the “effective” weight domain) tend toward 0.
In the multiplicative update case (Song et al., 2000), these amounts stay balanced one
compared to the other: when the weight reaches a bound, for example, wnax, then reward
goes to 0, whereas punition is maximal and inversely. For the additive update rule (Cateau
& Fukai, 2003), both potentiation and depression are independent of the weight. If the
update results in a synaptic weight outside the bounds, the weight is clipped to the
boundary values.
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2.2 Resistance to Jitter and Spontaneous Activity. A typical exam-
ple with 5 ms jitter and 5 Hz spontaneous activity (see Figure 1A) shows
that the target neuron learns to react faster to the input pattern—in the
case here, a spike wave—Dby selectively reinforcing the earliest firing af-
ferents (see Figure 1B). Initially, synaptic weights are set so as to evoke
the first postsynaptic response when the entire reproducible pattern, the
spike wave, has been integrated (in the present case, around 120 ms af-
ter stimulus onset). Synapses are then progressively reinforced and then
weakened, shortening the postsynaptic neuron latency from one step to the
following. This is especially visible between steps 20 and 100, where this
codependent dynamic appears as a “bright crest” going from the latest to
the earliest afferences. When the postsynaptic neuron latency stabilizes,
the STDP rule is systematically applied at approximately the same time:
its rewarding part constantly affects the same synapses, those receiving
the earliest of the reproducible spikes, thus driving them to their maximal
strengths. Symmetrically, later spikes invariably arrive in the weakening
part of the STDP window: the corresponding synapses are continuously
depressed.

This trend can also be observed in the evolution of the total amount
of synaptic weight of the neuron at a given step (see Figure 1B, top). It
corresponds to the potential the model neuron would reach if each of its
synapses was hit by one spike only. Initially, it starts from a value well below
the threshold needed for the postsynaptic neuron to fire a spike. Here, the
presence of spontaneous activity allows the neuron to reach its threshold
and trigger the STDP rule for the first time. As the learning process goes
on, the sum of synaptic weights increases due to the increasing number of
spikes, thus of synapses, falling in the rewarded part of the STDP window;
tends toward the neuron’s threshold value; and stabilizes around this level.
Since the maximum synaptic weight is fixed at 1.0, the neuron can reach a
state where the first N spikes suffice to make it fire (where N is the output
neuron’s threshold).

The neuron will fire early only if it receives more or less the same pattern
as the one learned during the first moments of incoming activity. In fact,
it responds increasingly faster to a precise sequence of spikes than to any
other (see Figure 5).

Simulations showed that the convergent behavior of this trend is very
robust. When jitter is increased (with spontaneous activity set to 0), the
number of presentations needed for convergence stays the same until the
amount of jitter reaches 10 ms; then it increases roughly quadratically (see
Figure 1C). Thus, jitter has little or no effect on the consequences of repeated
STDP for plausible values. Moreover, convergence of the synaptic weights
onto the earliest afferents could even be obtained with jitter in the range of
20 to 25 ms, that is, as wide as the input spike times distribution itself.

When increasing spontaneous activity (in the 5-50 Hz range without any
jitter), the convergence is also slowed but is nonetheless obtained even at
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the highest rate (see Figure 1D). Note that in this case, the input spike wave
represents less than 15% of the total spikes. As only the 10% of synapses
carrying the earliest spikes are selected, this result implies that the STDP
rule is able to focus exclusively on less than 2% of the spikes, those whose
timing is reproducible and early, while discarding the rest.

3 Spike Trains

When a single wave of spikes is the reproducible structure, it is clear that
convergence to a state in which weights are heavily concentrated on the
earliest firing inputs is very robust. However, it could be argued that the
STDP rule focuses on the left-most part of the train only because it is the only
part that contains information from one pattern presentation to the next
(indeed, the right-most part contains only randomly generated spikes).

3.1 Uniform Spike Distribution. The main simulation uses an input
spike pattern in the form of 500 ms-long spike trains where the temporal
structure and the amount of information is statistically homogeneous across
time and across afferent neurons. More specifically, spike trains were gen-
erated according to a Poisson process. Each of the 1000 excitatory afferents
emits a given spike train where each interspike interval, isi, was determined
according to a Poisson rule process depending on the expected rate of the
train, u:

1s1(r) = In(r)/—u,

where r is a random value chosen from a uniform distribution on the in-
terval ]0.0, 1.0[. The reproducible structure for the simulation illustrated in
Figure 2 is defined once and for all using this method (1 = 20 Hz for all
afferent neurons). Note that we are not suggesting that neuronal responses
are completely stochastic, since reproducibility implies the contrary (see,
e.g., Meister & Berry, 1999). We need this only to ensure that no a priori
assumptions are made as to how neural information is encoded, thanks to
the homogeneous nature of Poisson processes. This basic pattern is repro-
duced on each presentation, undergoing 5 ms jitter and mixed with 5 Hz
spontaneous activity (see Figure 2A).

The initial synaptic weights are set so as to elicit the first postsynaptic
response after approximately 400 ms. As in the previous simulation, latency
decreases steadily from this initial value to stabilize after 1500 presentations.
Conjointly, synapses carrying the first spikes become fully potentiated and
later ones are fully depressed (see Figure 2B, bottom). The sum of synaptic
weights displays the same dynamic as in the spike wave experiment (see
section 2.2): going from a very low level, it rises until it reaches the minimal
value needed to make the postsynaptic neuron fire on a single volley of
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Figure2: Spike trains experiment. (A) Typical incoming activity. The input spike
pattern consists of arbitrary 500 ms-long spike trains, where the amount of
information is equally distributed over time. At each presentation, this repro-
ducible structure is modified using 5 ms jitter and 5 Hz spontaneous activity,
then presented to the postsynaptic neuron, whose potential is set to 0. Prior to
presentation, the presynaptic neurons do not fire any spike. Due to the random
aspect of the input design (Poisson-inspired process; see section 3.1), latencies
and firing rates in the reproducible input structure were quite variable, rang-
ing, respectively, from 0 to ~350 ms (mean of ~52 + 51 ms, standard deviation)
and from 4 to 44 Hz (mean 19.6 &+ 6.3 Hz, standard deviation). (B) Dynamics
of repeated STDP. Here again, latency decreases and stabilizes. Synapses are
selected on the basis of their first-spike timings: the earliest ones are fully po-
tentiated and the latest are weakened. The sum of synaptic weights follows the
same behavior as in the spike wave experiment: it stabilizes around the output
neuron’s threshold value (see Figure 1B).

spikes. At this point, the system has converged: synaptic potential flattens
around a value corresponding to the postsynaptic neuron’s threshold (see
Figure 2B, top).

Thus, the selection of the earliest spikes through STDP is obtained even
when late parts of the spike trains carry the same amount of information.

3.2 Latency versus Firing Rates and Synchrony. Note that no assump-
tions were made in the previous simulation as to how neurons encode in-
formation within the spike trains. Firing rates (Gerstner, Kreiter, Markram,
& Herz, 1997; Shadlen & Newsome, 1998) or synchrony (Abeles, 1991) are
widely believed to support the neural code. In this regard, one may think
that these principles should drive the effects of STDP. Indeed, it has been
argued that competition for control of the postsynaptic response would thus
be won by the most correlated inputs (Song, Miller, & Abbott, 2000), or by



Neurons Tune to the Earliest Spikes Through STDP 867

€
3
o
o
]
=
& w
n 1
3
S‘I = I 5
s | g ag
S ¢
$Ee g =83
K1)
s2¢8 < 8¢y 1
™y 3 [
- g 820
S§E£G 2 53 9
£ ]
583 < agg
3§¢ o S B9
cfo =] S 3o ol
w O E 1% T3 .
S8 g Sz
14 S <
2 g
4
< 3
i o .001
0 100 200 300 400 500 1000 1500 2000

Time (ms) # presentations

Figure 3: Latency versus rate. (A) Typical incoming activity. The shorter the
latency, the fewer spikes the input neuron emits. According to the spike train
design, the tail of the PSTH contains more spikes than its head. A jitter of 5 msis
applied to each spike timing, and no spontaneous activity is superimposed on
the reproducible input structure so as to rigorously control the rates of afferents.
Activity is then presented to the postsynaptic neuron, whose potential is set
to 0. Prior to presentation, the presynaptic neurons do not fire any spike. (B)
Dynamics of repeated STDP. The same trend emerges: although receiving fewer
spikes, synapses hit by the earliest trains are finally fully potentiated. Inversely,
strongly firing inputs will be neglected because they fire late.

the most vigorously firing ones (Gerstner & Kistler, 2002b). However, this
study points toward first-spike timing as a determining factor, emphasiz-
ing the role of temporal asynchrony in neural information coding (Gautrais
& Thorpe, 1998). In the brain, short latencies are generally associated with
highest firing rates, which also often result in high temporal correlations.
This would make it difficult to disentangle the respective influences of these
aspects of the spike train on neuronal learning. In our simulations, however,
we can ask how these different aspects fare, one compared to the other, by
artificially defining input spike patterns where first-spike timing is pitted
against average firing rate or amount of synchrony.

In the next simulation, latencies and rates have been artificially opposed:
the afferent neuron with the shortest latency fires at the slowest rate over
the entire window, the latest one at the highest rate, and neurons inbetween
display a gradual latency-to-rate trade-off. As in the main experiment, spike
times are jittered at each presentation (but spontaneous activity has been
removed so as to rigorously control the firing rate of each input neuron,
ranging from 4 to 44 Hz; (see Figure 3A). The result is clear as the same
trend emerges (see Figure 3B). This means that a synapse receiving a very
high firing rate will not be retained by STDP if it does not also correspond
to one of the shortest latencies.
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Figure 4: Latency versus synchrony. (A) Typical incoming activity. The spike
pattern was designed so as to oppose latency to synchrony: the shorter the
latency, the shorter the synfire chain. Spontaneous activity of 5 Hz has been
superimposed on the reproducible input structure and no jitter is simulated
so as to rigorously keep the synchrony within the spike trains. Activity is then
presented to the postsynaptic neuron whose potential is set to 0. Prior to presen-
tation, the presynaptic neurons do not fire any spike. (B) Dynamics of repeated
STDP. Once again, postsynaptic latency decreases before stabilizing, and the ear-
liest synapses become fully potentiated while later ones are weakened. Thus,
being highly correlated is not sufficient for inputs to be selected by STDP; they
also have to fire with one of the shortest latencies.

In the final simulation, latency and amount of synchrony are artificially
opposed: the longer the latency, the more neurons are made to share the
same spike train (hence, defining longer synfire chains; Abeles, 1991). The
size of these correlated groups gradually extends from 1 to 54 synchronously
firing units. Here, 5 Hz spontaneous activity is added as usual, while jitter
is removed so as to obtain truly synchronous waves (see Figure 4A). Once
again, the results are clear: synapses carrying the very first input spikes are
selected by STDP, whereas highly correlated inputs having late latencies are
depressed (see Figure 4B). Note the small and eventually vanishing streaks
of synaptic potential, a necessary consequence of the fact that synchronous
inputs are always reinforced or depressed together by the STDP rule.

Conclusively, when latency and synchrony are inversely correlated, the
selection of the potentiated synapses still depends on the timing of the first
reproducible spikes alone.

3.3 Selectivity Measures. Convergence of synaptic weights onto earli-
est afferents through STDP is now established, underlining the importance
of first-spikes timing. But why do synaptic weights distribute in such a
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remarkable way? The first obvious answer is the postsynaptic spike la-
tency reduction, as displayed in all the simulations. But having a neu-
ron responding fast to a given event is not an interesting feature if it is
not also selective to it. STDP has been shown to explain the develop-
ment of direction selectivity in recurrent cortical networks, where excitatory
and inhibitory synapses were modified according to their spiking activity
(Rao & Sejnowski, 2000). Selectivity measures were based on whether the
postsynaptic neuron fires. How should one define selectivity within the
present, inhibition-less framework? Any conventional measure based on
the postsynaptic firing rate is ruled out since the postsynaptic response
is limited to its first spike (see sections 2.1 and 4). Under these condi-
tions, we propose to use firing latency as a viable measure of selectivity:
if a neuron spikes faster to the input pattern it learned than to any other
one, it would de facto behave if not selectively, at least differentially to
it.

First, we generated 50,000 distractor spike trains using the same method
(Poisson-inspired spike trains at 20 Hz; see section 3.1) as for the target pat-
tern (see Figure 2A); a priori, these can be considered as equivalent to the
target in terms of average latency of the spike trains, spike count, correla-
tions, and so forth.

At each learning step of the main simulation (see Figure 2B), these dis-
tractor patterns were tested for postsynaptic latency on the learning neuron
and compared to 1000 responses to the target pattern, using the same con-
ditions of background noise (5 ms jitter and 5 Hz spontaneous activity).
These distractors and target presentations did not trigger the learning rule:
the postsynaptic latency was measured but did not give rise to any synap-
tic modifications. A threshold was set around the mean response time to
targets. Target spike trains yielding responses before the threshold were
considered as hits and distractor ones as false alarms. Selectivity (d’) was
computed as follows:

d’ = z (hit rate) — z (false alarm rate),

where z(p) stands for the inverse of the normal cumulative distribution
function of p (Green & Swets, 1966). The expected maximum was computed
using an expected hit rate of 50% and a false alarm rate of 1/2n, where n is
the number of distractor patterns (here, n = 50, 000).

The results (see Figure 5) show that while the neuron was initially less
likely to respond to the target pattern than to arbitrary distractors (due
to its initially random weight distribution), it became highly selective to
its target as learning developed: after about 1500 presentations, when the
postsynaptic neuron latency and weights have indeed stabilized (see Figure
2B), not one of the distractor patterns could make this neuron fire sooner
than with the target one.
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selectivity (d')

0 500 1000 1500 2000 2500
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Figure 5: Selectivity of the efferent neuron. The dashed line is the expected
maximum value for 4’ (under the present conditions), gray dots stand for d’
values at each learning step, and the black curve is a local average of these. The
neuron becomes steadily more selective to the target pattern used for training.
Initially, it tends to fire slightly more slowly to it than to 50,000 spike trains used
as distractors. After 1500 presentations, when its response latency stabilizes
(see Figure 2B), the postsynaptic neuron reacts to its target before any of the
distractors. Note that some observations landed above the expected maximum
value for d': in certain conditions (100% hit rate and/or 0% false alarms), the
observed d’ can rise above the expected max value computed for an expected
50% hit rate and 1 for 100,000 false alarms.

Conclusively, a neuron exhibiting STDP will characteristically respond
faster and faster to a precise repeated pattern than to any comparable one,
thus becoming more selective to it, at least in the terms proposed here.

4 Discussion

The temporally asymmetric STDP rule reinforces the last synapses involved
inmaking a neuron fire. At first sight, one might think that its repeated appli-
cation invariably reinforces afferents at the tail of the spike sequence firing
a neuron. Instead, we have demonstrated that it focuses, in a remarkably
robust manner, on the head of the spike sequence: dynamical STDP tunes
a neuron to synapses transmitting reproducible spikes with the shortest la-
tencies, thus enabling the cell to respond faster and selectively to the input
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it has learned. This result is obtained for arbitrary structures of the input
spike pattern.

This STDP tuning is achieved by selecting a relatively small subset of
afferents, here fully determined by the model’s output threshold. In that
sense, it is worth noting that only 10 to 40 fully potentiated excitatory
inputs, among a possible 10,000 or so, would be enough to evoke a response
(Shadlen & Newsome, 1994).

The main assumption for the demonstration is that spike times within the
input pattern must show a certain degree of reproducibility (which can be
modulated by fairly high amounts of jitter and spontaneous activity). This
is compatible with experimental observations in numerous brain structures
(Heil, 1997; Petersen et al., 2001; Bair & Koch, 1996; Sestokas et al., 1991; Liu
etal., 2001; Richmond & Optican, 1990; Victor & Purpura, 1996; Nakamura,
1998). This repetition of similar input patterns could quite simply be the
result of multiple exposures with the same stimulus at different times in
life. Alternatively, we propose that a single stimulus exposure could result
in a sequence of similar processing waves through the rhythmic activity of
cortical oscillations (Hopfield, 1995). Note that in both situations, one would
not expect the state of the system to be the same from one step to another.
In particular, the efferent neuron potential would be unlikely to have the
same resting level every time the input pattern is presented. We have per-
formed simulations where baseline fluctuations were simulated. As usual,
the typical incoming activity was of the same kind as the one used in the
main simulation: the reproducible input structure consisted of 1000 spike
trains generated using a Poisson-inspired process (see section 3.1). At every
step, a 5 ms jitter was applied to each precise spike time; then 5 Hz sponta-
neous activity was superimposed before being presented to the neuron. But
instead of being systematically reset to 0, the postsynaptic neuron potential
was set according to a gaussian process of mean 0 and width 50. Prior to
presentation, the presynaptic neurons do not fire any spike. An identical
convergence was reached, though less rapidly (see Figure 6).

For simplicity, all of the simulations so far have been conducted with a
single postsynaptic spike, no matter what the activity is afterward: a single
STDP learning rule was applied at each input pattern presentation. While
it may seem a controversial simplification, experimental evidence suggests
that the effect of the late spikes could be neglected (Froemke & Dan, 2002).
As Tsodyks (2002) commented, “The main effect of STDP is well explained
by the first pair of spikes, with the additional spike having only a marginal
contribution.” The first presynaptic spikeis also the most relevant in evoking
an excitatory postsynaptic potential (EPSP), because of synaptic depression
(Thomson & Deuchars, 1994), a trend that is reinforced by synaptic redistri-
bution, where a synapse depresses even more when potentiated (Markram
& Tsodyks, 1996; see below for more details). Nonetheless, for completeness,
we investigated the effects of having multiple postsynaptic spikes that re-
peatedly triggered the STDP mechanism. Here we implemented a potential
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Figure 6: Fluctuating potential. In this simulation, the initial efferent neuron
potential was set—just before the cell is presented with the incoming activity—
according to a gaussian distribution of mean 0 and standard deviation 50. Typical
incoming activity is of the same kind as in the main experiment: a reproducible
structure of spike trains amid 5 ms jitter and 5 Hz spontaneous activity (see
Figure 2A). Prior to presentation, the presynaptic neurons do not fire any spike.
Due to the fluctuation, postsynaptic neuron latencies were highly variable; the
black line thus depicts a smoothed version (using a moving average of width 101
steps; & standard deviation, dotted lines). Here, the fluctuation results in a delay
of the reinforcement process applied to the reproducible structure: from step 0
to 5000, the crest-ascending motion is not obvious. But once some synapses are
strong enough (i.e., displayed in white on the figure), the modification sequence
starts until only the earliest firing inputs remain with large weights and the post-
synaptic neuron latency has decreased to reach a stable, steady state. The sum
of synaptic weights follows the same behavior as in the spike wave experiment:
it stabilizes around the output neuron’s threshold value (see Figure 1B). While
convergence needs more time to be reached (about 10 times more than for the
original simulation; see Figure 2B), the repeated application of STDP leads the
neuron with a highly fluctuating potential to tune itself on its earliest afferents
and respond faster.

leak current (v = 20 ms) in the efferent neuron. Simulation parameters and
typical incoming activity were of the same kind as in the main experiment
(see Figure 2A). Again, the same trend was observed with a slowing of
convergence and the appearance of irregular second postsynaptic spikes
that did not prevent the neuron from becoming tuned to its earliest regular
afferents (see Figure 7).
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Figure 7: Leaky integrator and multiple postsynaptic responses. Here, a leak
current (r = 20 ms) is added to the neuron potential and more than one post-
synaptic spike can be elicited in the course of the presentation, triggering STDP
repeatedly. Typical incoming activity is of the same kind as in the main ex-
periment: a reproducible structure of spike trains amid 5 ms jitter and 5 Hz
spontaneous activity (see Figure 2A). It is presented to the output neuron after
setting its potential to 0. Prior to presentation, the presynaptic neurons do not
fire any spike. The black line links the first postsynaptic response latency at each
presentation. Times at which the efferent neuron has subsequent discharges are
displayed by empty circles. Except for some additional postsynaptic responses
that did not affect the dynamics of learning, convergence on the earliest affer-
ents was reached, slightly more slowly than in the comparative case without
the use of a leaky integrator (see Figure 2B, bottom). Due to the leakage current,
synapses had to be initialized at a slightly higher value than in previous simula-
tions. The sum of synaptic weights thus started from a higher value than before,
above the threshold of the postsynaptic neuron’s threshold (see Figure 2B, top).
It nonetheless acted the same way to stabilize at threshold value.

One could also address the fact that theoretical studies use the idealized
“smooth” STDP curve, while experimental data always display some noise:
the curve is also likely to be noisy in biological settings (Bi & Poo, 1998). We
thus tested this feature in a specific simulation under the same conditions as
insection 3.1, except that each single synaptic modification was affected by a
random offset taken from a gaussian distribution of mean 0 and with a stan-
dard deviation set to the noiseless amount of modification (see Figure 8A).
Even when noise affects the synaptic modifications in a biologically realistic
way, the trend emerges in a very similar manner (see Figure 8B).
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Figure 8: Noisy synaptic modifications. This simulation is identical to the main
one (see Figure 2) except that in this case, each synaptic modification is affected
by an offset taken from a gaussian distribution of mean 0 and standard deviation
set to the noiseless amount of modification. Incoming activity is of the same kind
as in the main experiment: a reproducible structure of spike trains amid 5 ms
jitter and 5 Hz spontaneous activity (see Figure 2A). It is presented to the output
neuron after setting its potential to 0. Prior to presentation, the presynaptic neu-
rons do not fire any spike. (A) Typical sample of synaptic modifications. Taken
from the modifications occurring at step 1 (only one out of two modifications
are represented for clarity), this scatter plot shows the amount of each synap-
tic modification depending on the relative timing of the corresponding spike
compared to the postsynaptic spike timing (dashed line). Notice how some ex-
pected rewards are in fact depressions and vice versa, as in the experimentally
obtained STDP graphs (Bi & Poo, 1998). (B) Dynamics of repeated STDP. The
trend emerges quite the same way as in Figure 2, illustrating the fact that STDP
is able to reach for the first spikes of a reproducible input pattern, even when
synaptic modifications are randomized.

Evidently, the demonstration here depends on the learning rule used in
these simulations, and in particular on its temporally asymmetrical shape.
This form was observed in several empirical studies (Markram et al., 1997;
Bi & Poo, 1998, 2001; Zhang et al., 1998; Feldman, 2000; and Sjostrom &
Nelson, 2002, for reviews) and has triggered numerous theoretical studies
of STDP (Kempter, Gerstner, & van Hemmen, 1999; Song, Miller, & Abbott,
2000; van Rossum, Bi, & Turrigiano, 2000; Gerstner & Kistler, 2002b; see
Abbott & Nelson, 2000, and Kepecs, Van Rossum, Song & Tegner, 2002, for
reviews). Other forms exist, for example, symmetric (Egger, Feldmeyer, &
Sakmann, 1999) or opposed (Bell, Han, Sugawara, & Grant, 1997), that could
give rise to radically different trends. In the latter case, for example, where
a pre-before-post pairing would induce depression and post-before-pre
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reinforcement, inhibiting the last spikes to make a cell fire might in fact
increase the postsynaptic latency from one presentation to the other.

A critical question concerns the handling of spike timing-dependent
modifications when the same synapse receives more than one input spike
that falls in the STDP window. Here we simply assumed that the effects
of spike pairs would sum linearly, as in many theoretical studies (Gerstner,
Kempter, van Hemmen, & Wagner, 1996; Song, Miller, & Abbott, 2000; Senn,
Markram, & Tsodyks, 2001), but the question extends to the problem of
synaptic modifications in natural spike trains. A recent experimental study
showed that the efficacy of each spike in modifiying synaptic strength was
suppressed by the preceding spike in the same neuron: STDP favors the
earliest of two spike pairs (Froemke & Dan, 2002), that is, in our case, rein-
forcement over depression. Besides, in a spike sequence following a period
of inactivity, each spike decreases the probability of vesicle release for the
following presynaptic action potentials, reducing the amplitude of their
respective EPSPs in the process (Thomson & Deuchars, 1994). This form
of short-term plasticity, synaptic depression, acts at the presynaptic level
through the depletion of the pool of vesicles at the synaptic release site,
where recycling is a relatively slow process compared to sustained activity.
Not only does it by itself suggest a relative importance of first spikes as
opposed to later ones, but it also interacts with long-term potentiation in a
supportive way called synaptic redistribution (Markram & Tsodyks, 1996).
While increasing, or decreasing, the probability of transmitter release, STDP
would at the same time decrease (resp. increase) the availability of readily
releasable vesicles for later spikes: when they get stronger, synapses de-
press more and vice versa (Markram & Tsodyks, 1996; Volgushev, Voronin,
Chistiakova, & Singer, 1997). As such, “synaptic redistribution can signifi-
cantly enhance the amplitude of synaptic transmission for the first spikes
in a sequence,” thus giving a predominant role to the first spikes in terms of
synaptic plasticity (Abbott & Nelson, 2000). Applied to the present frame-
work, these more realistic simulations of synaptic modifications would no
doubt reinforce the “back-in-time” dynamics of STDP, as illustrated by la-
tency reduction, a necessary consequence of its very form.

5 Conclusion

The most important implications of our work concern the way the brain
stores and uses information. Much work in neural coding assumes that in-
formation is encoded using either firing rate or synchrony. This study raises
doubts about this assumption by demonstrating the unambigous preva-
lence of the earliest firing inputs. This sensitivity to spatiotemporal spike
patterns, obviously inherent in STDP rules, emphasizes the importance of
temporal structure in neural information, as proposed and argued by several
authors (Perkel & Bullock, 1968; Bialek, Rieke, de Ruyter van Steveninck,
& Warland, 1991; Engel, Konig, Kreiter, Schillen, & Singer, 1992; de Ruyter
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van Steveninck, Lewen, Strong, Koberle, & Bialek, 1997; Bair, 1999; Panzeri,
Petersen, Schultz, Lebedev, & Diamond, 2001; Van Rullen & Thorpe, 2001).
As stated by Froemke and Dan (2002), “Timing of the first spike in each
burst is dominant in synaptic modifications.” Latencies do indeed seem to
play a distinct role in terms of neural processing, as shown throughout this
study.

We showed how spatially distributed synapses can be made to integrate
a spike wave coming from an afferent population and evoke a fast and
selective response in the postsynaptic neuron, even in the presence of back-
ground noise. As a consequence, the fact that STDP naturally leads a neuron
to respond rapidly and selectively on the basis of the first few spikes in its
afferents lends support for the idea that even complex visual recognition
tasks can be performed on the basis of a single wave of spikes (Van Rullen
& Thorpe, 2002; Thorpe & Imbert, 1989).
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