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We studied the self-organization of memory-related activity
through spike-timing-dependentplasticity (STDP).Relatively short
time windows (B10ms) for the plasticity rule give rise to asyn-
chronous persistent activity of lowrates (20^30Hz), which is typi-
cally observed in delay periods of working memory task. We
demonstrate some network level e¡ects on the activity regulation
that cannot be addressed in single-neuron studies.For longer time

windows (B20ms), the layered cell assemblies thatpropagate syn-
chronized spikes (syn¢re chain) are self-organized. Synchronous
spike propagation was suggested to underlie the precisely timed
spikes in themonkeyprefrontal cortex.Thepresentresults suggest
that the two networks for sustained activity are di¡erent realiza-
tions of the same principle for synaptic wiring. NeuroReport 13:
795–798 �c 2002 Lippincott Williams & Wilkins.
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INTRODUCTION
In cerebral cortex, a pyramidal-to-pyramidal synapse is
potentiated (depressed) if a postsynaptic spike follows
(precedes) a presynaptic spike mediated by that synapse
[1,2]. In this study, we address how spike-timing-dependent
plasticity (STDP) organizes the synaptic connections to
achieve persistent activity of low rates in a network of
reciprocally connected neurons.

The delay period activity in prefrontal working memory
shows low firing rates, typically 20–50 Hz [3–6], which is not
currently understood. The role of long-lasting currents,
typically persistent Naþ currents and Ca2þ-dependent
currents, in the maintenance of the delay period activity
has been studied [7,8]. The role of the synaptic connectivity,
however, remains to be investigated. Another observation in
the monkey prefrontal cortex suggests that some task-
related information is retained by the synfire chain, a packet
of synchronous spikes traveling through a feed-forward
neural network [9–11].

Using Hodgkin–Huxley neurons, we here demonstrate
that the self-organization of a recurrent network by STDP
results in either a reciprocally connected network showing
asynchronous activity or a chain of cell assemblies [12,13],
dependent on the timing windows for plasticity. In our
model, the asynchronous activity can be retained at low
rates (20–30 Hz) not by slow ionic currents, as usually
modeled, but solely by the activity regulation induced by
STDP. Moreover, this study extends the results of a previous
study with integrate-and-fire neurons [13] so that the
synfire-like activity can be self-organized for a physiologi-
cally realistic range of the timing windows.

MATERIALS AND METHODS
Our model comprises 200 excitatory and 50 inhibitory
neurons. STDP is introduced at the recurrent excitatory
connections. To elucidate essential roles of STDP, we do not
include persistent Naþ and Ca2þ-dependent currents in the
excitatory neurons. Thus, the dynamics of each neuron is
described by the following Hodgkin–Huxley-like equation:

Cm dV=dt ¼ �gL ðV� ELÞ � INa � IK �SjIsyn;j � Iapp � Inoise:

Here Cm¼ 3.0 mF/cm2 (excitatory) or 1.2 mF/cm2 (inhibi-
tory), gL¼ 0.14 mS/cm2, and EL¼�70 mV. The kinetics of
the spike-generating sodium and potassium currents follow
those of the Traub model [14] with gNa¼ 100 mS/cm2,
gK¼ 40 mS/cm2, ENa¼ 45 mV, and EK¼�80 mV. The inten-
sity of Gaussian white noise, Inoise, is adjusted to give a
spontaneous firing of 0.5–1.5 Hz. For glutamatergic
(EAMPA¼ 0 mV) and GABAergic (EGABA¼�70 mV) sy-
napses, the synaptic current Isyn is described by the first-
order kinetics of gating variables [15] with the activation
rate a¼ 19.8 ms�1 and the inactivation rate b¼ 0.2 ms�1.
Initial excitatory-to-excitatory connections are all-to-all and
are set at a maximum value gMAX (¼ 0.04 in a unit of gL). We
can adapt random initial weights as well, as far as each
neuron receives a sufficiently strong input from other
neurons to sustain activity. Other types of connections have
the fixed connectivity of 10% and the fixed conductance of
0.04 (AMPA) or 0.05 (GABA) in the same unit.

If the interval Dt from a presynaptic spike to
a postsynaptic spike is positive, the conductance of
the excitatory-to-excitatory synapse is potentiated as
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g-gþ gMAXApexp(�Dt/tp) with Aptp¼ 0.2 ms. If Dt is
negative, the conductance is depressed as g-
g�gMAXAdexp(�|Dt|/td) with Adtd¼ 0.21 ms. The con-
ductance is kept in the range 0rgrgMAX. To achieve
competition among synapses, the area law Adtd/Aptp4 1 is
imposed [16–18]. During learning, we let the network run
autonomously without external stimuli. Numerical integra-
tion is performed by the fourth-order Runge–Kutta algorithm.

RESULTS
Hereafter, excitatory neurons and excitatory-to-excitatory
synapses are simply called neurons and synapses, respec-

tively. In self-organization, the majority of synapses are
weakened due to the area law. Except for extremely short tp

and td (o 10 ms) or for large Ap and Ad (4 0.03), persistent
activity of low rates is achieved in simulations. Owing to the
activity regulation [17], the postsynaptic firing rate lout

grows more gradually than the presynaptic firing rate, lin.
The rate of persistent activity is approximately given as an
intersection of the curve and the line lout¼ lin (Fig. 1a).

For a timing window with td¼ tp ¼ 10 ms, a depolarizing
step current applied to 30% of excitatory neurons induces
persistent activity of 20–30 Hz in the self-organized network
(Fig. 1b). A hyperpolarizing step current terminates the
activity. The persistent firing state is asynchronous (Fig. 1c),
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Fig.1. Asynchronous persistent activity. (a) A self-consistency condition on the average rates of input and output spikes determines the rate of persis-
tent activity. The input^output curve was calculated for an integrate-and-¢re neuron with the equilibrium synaptic distribution [16], but a similar
relationship should hold for a Hodgkin^Huxley-like neuron. (b) Bi-stability of the self-organized network.The insets display raster plots of spontaneous
¢ring state and thepersistent ¢ring state. (c) The spike auto- and cross-correlograms showno characteristic structure. (d) The distribution of ¢ringrates
(left) and the bimodal distribution of synaptic weights on a neuron (right). (e) The relationship between the ¢ring rates and the averaged weights of the
out-going ¢bers.Eachdotcorresponds to an excitatory neuron.The correlation coe⁄cient is�0.327 0.08, where the errormeans the s.d. over repeated
simulations. (f ) The distributions of ¢ring rates over the two neural populations classi¢ed according to the signature of correlations between presynaptic
¢ring rates and theweights of in-coming excitatory ¢bers.The solid (dashed) curve is for the neurons with positive (negative) correlations.
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involves a broad range of firing rates, and gives a bimodal
distribution of synaptic weights on each neuron (Fig. 1d), as
in the single-neuron case [16–18,23]. There exists a negative
correlation between the firing rate and the average weight of
out-going fibers (Fig. 1e), which promotes the activity
regulation at the network level. Moreover, STDP enhances
(suppresses) the impact of presynaptic spikes on the
neurons firing at low (high) rates to stabilize the network
activity. In fact, the neurons showing negative (positive)
correlations between presynaptic firing rates and the
average weights of in-coming fibers tend to fire at high
(low) rates (Fig. 1f).

For a timing window with td¼ tp¼ 20 ms, synchronized
cell assemblies emerge. Initially, the response pattern
evoked by a brief stimulus is unstructured (Fig. 2a). In the
self-organized network, a synchronized activity can be
evoked by a brief stimulus either to neurons in a self-
organized layer or to those distributed in the entire network
(Fig. 2b). Three assemblies can be defined from the temporal
pattern of synchrony. The assembly structure manifests
itself in the synaptic connections. On a group-III neuron, for
instance, the synapses from a precedent assembly (in this
case, II) are strong, while the intra-assembly synapses and
those delivered by a subsequent assembly (i.e. I) are weak
(Fig. 2c). The weight distribution of the synapses shows
sharp bimodal peaks (Fig. 2d) that reflect the chain
structure. It is noted that the intra-assembly synaptic
connections are essential for propagating a synchronous
activity in this network (Fig. 2e), unlike in previous studies
for a purely feed-forward model [10,11].

DISCUSSION
The two activity patterns obtained in this study resemble
two different forms of memory activity in the monkey
prefrontal cortex [3–6,9]. As concerns the synchronous
activity, our results are similar to those previously obtained
in a network of integrate-and-fire neurons [13], except that
cell assemblies emerge in our model for physiologically
realistic sizes of the timing window. In both models, there is
a difficulty in organizing long chains of assemblies. A
sustained synfire activity is most easily realized by the
shortest cyclic chain arising from an initially given network.
From an initial network with all-to-all connectivity, a chain
with three cell assemblies is most likely to emerge (a chain
with only two assemblies is forbidden in STDP). Such a
short chain, however, is biologically unrealistic. To obtain
longer chains, it is necessary to find a more realistic initial
connectivity (and to increase the network size). In our
model, packets of synchronized spikes are broad compared
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Fig. 2. Near synchronous persistent activity organizedby STDP. (a) Be-
fore learning, activity of an untrained network is not spatio-temporally
organized. (b) In a trained network, synchronized spike packets are ob-
tained from various initial states. Here, randomly chosen 30% of neurons
are activated at an initial time.Excitatory neurons can be rearranged into
three cell assemblies (I, II, III). (c) The weights of in-coming ¢bers to a
group-III neuron are shown for each presynaptic cell assembly. The
weights were normalized by gMAX. Counting the dots in each bin of the
normalized weight gives the bimodal distribution shown in (d). (e) The
synchronous activity is unstable if the intra-assembly synaptic connec-
tions are eliminated.
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with those previously demonstrated in feedforward net-
works [10,11]. This is presumably because the intra-
assembly connections, which make non-negligible contribu-
tions to synchronous spike propagation (Fig. 2e), amplify
jitters in spike timing. The packets may be narrowed [19] by
introducing short-term synaptic depression [20,21].

A remarkable result in asynchronous activity is that low
firing rates are obtained by synaptic competition alone
without the persistent Naþ current or the NMDA-receptor-
mediated current. As shown in Fig. 1e,f, the present study
also revealed some network-level effects on the activity
regulation in the entire network. The appearance of
asynchronous state for narrow timing windows may be
understood from the stochastic synaptic dynamics. In the
Fokker–Planck analysis of single neurons, the fluctuations in
synaptic weights are proportional to Ap

2tpþAd
2td

[16,18,22,23], while the average shifts of weights due to
coherent presynaptic spikes are proportional to Aptp. As the
timing window is narrowed, keeping Aptp and Adtd

unchanged, the effects of noise overwhelm those of the
coherent input. As synapses become insensitive to the
coherent input, a layered neural network is no longer
obtained. Also noted is that broad timing windows can
sense the weak coherence among temporally separated
presynaptic spikes.

For an intermediate range (10–20 ms) of the timing
windows, various mixtures of asynchronous and synchro-
nous activities are obtained (results not shown). This seems
to imply a continuous transition between the two extremes.
This situation is consistent with the following experimental
observations: while some prefrontal neuron pairs had
significant correlations, others had no significant correla-
tion, even if they showed the delay-period activity related to
the same task [3]. It is intriguing to study, from the view-
points of plasticity, whether and how the delay-period
activity is reorganized depending on the functional demand.

CONCLUSIONS
We have shown that spike-timing-dependent plasticity with
different timing windows organizes two types of neural

networks, one exhibiting asynchronous persistent firing
of low rates and one exhibiting a propagating packet
of synchronous spikes. Working memory network and
’synfire’ chain are different realizations of the single
organizing principle and may functionally compensate for
one another.
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