
STDP, Oscillations, and Network Architectures

E.V.Lubenov

April 17, 2003

1 Introduction

Information processing in biological networks occurs through interactions
between discrete spatially distributed processing elements—neurons. The
biophysical study of neurons suggests that the basic computation neurons
implement consists of integrate and fire steps. In the integration step the
neuron weighs and sums its inputs and if the result exceeds a fixed threshold
generates, i.e. fires, a discrete unitary output event called an action poten-
tial or spike. In this simplified framework the nature of the computation
is determined by the structure of the weights through which individual el-
ements communicate. The modification of the connection weight matrix as
a function of experience is believed to be the physical basis for learning and
memory. Recent evidence suggests that the rules for weight modification are
determined by the timing of the input and output spikes, a discovery that
launched the field of spike timing dependent plasticity (STDP). Another line
of research has shown that the excitability of individual elements is modu-
lated by various oscillatory modes of different spatio-temporal structure.

2 Project Description

2.1 Motivating Idea

Over small timescales (ms) oscillatory modes might act to impose struc-
ture in the polling of individual elements, thus directing information flow
in the network and determining computation. Over longer timescales (hrs)
the interaction between oscillatory modes and STDP learning rules might
impose structure in the connection weight matrix, thus establishing specific
computing architectures co-embedded in the recurrent network.

1



STDP, Oscillations, and Network Architectures E.V.Lubenov

2.2 Project Objectives

1. Implementation of a parallel distributed integrate and fire neural net-
work simulator supporting oscillatory modes and connection weight
modification through STDP rules.

The network dynamics can be expressed as a set of ordinary differential
equations (ODE) and therefore the core ingredient of the network sim-
ulator is an ODE solver. Essentially all methods for numerically solv-
ing initial value problems rely on successive evaluations of the deriva-
tive y′ = F (t,y). The function F (·) is the obvious target for exploiting
parallelism. How well F (·) lends itself to parallel evaluation will de-
pend on the extent to which some form of domain decomposition can
be applied to the problem at hand. Therefore the first step in meeting
the project objectives involves formulating the ODEs governing the
evolution of the network and exploring their suitable decomposition.

The next step involves the choice of implementation platform. The
possibilities include using Matlab*P with mm mode and compiling
C/MPI code taking advantage of available parallel libraries.

2. Investigation of the network architectures emerging in the interactions
between oscillatory modes and STDP rules.

The first order effect to be characterized is the structure in the connec-
tion weight matrix that emerges under oscillatory modes of different
frequencies and intensities. Higher order effects include sensitivity
analysis of the emergent structure to model parameter variations and
overall model complexity.

3 Methods

3.1 Pyramidal Cell Models

Neural cells posses both passive and active properties that affect the dy-
namics of the membrane potantial. The morphology of the neuron and
the magnitude of the membrane capacitance and leak conductance deter-
mine the passive properties, while the distribution and characteristics of the
different voltage-gated channels account for the active properties. For the
purposes of the present study we explore two classes of models: a passive
single compartment integrate-and-fire model and an active two compart-
mental Pinsky-Rinzel model. The latter represents a minimal biophysical
model capable of displaying the phenomenon of complex bursting, a regime

18.337 Final Project 2 Progress Report



STDP, Oscillations, and Network Architectures E.V.Lubenov

of action potential generation thought to play a key role in synaptic weight
modification.

3.1.1 Passive Integrate-and-Fire Model

Each neuron j is modeled as a single compartment with membrane potential
V . Each compartment has an excitatory gex and an inhibitory gin conduc-
tance expressed relative to the the leak conductance. The evolution of the
membrane potential is given by

τm
dV

dt
= Vrest − V + gex(t)(Eex − V ) + gin(t)(Ein − V ) (1)

τex
dgex

dt
= − gex (2)

τin
dgin

dt
= − gin (3)

Three special cases arise in the evolution of the equations above. When
the membrane voltage reaches threshold Vth at times τji an action potential
is generated and V is reset to Vreset. When the lth action potential arrives
at the kth synapse at time tkl the corresponding excitatory or inhibitory
conductance is incremented by the peak synaptic conductance gjk.

V (t) → Vreset when V (t) = Vth at t = τji

gex(t) → gex(t) + gjk(t) upon input at exc synapse k at tkl

gin(t) → gin(t) + gjm(t) upon input at inh synapse m at tmn

Synaptic plasticity is introduced in the model through rules that modify
gjk. For a model neuron that has N e

j plastic synapses there is a correspond-
ing number of functions Pjk(t) that control the increments of gjk as well as
one function Mj(t) that controls the decrements according to

τ−
dMj

dt
= −Mj (4)

τ+
dPj1

dt
= − Pj1 (5)

... (6)

τ+

dPjNe
j

dt
= − PjNe

j
(7)

together with the rules

18.337 Final Project 3 Progress Report



STDP, Oscillations, and Network Architectures E.V.Lubenov

Mj(t) → Mj(t)−A− when neuron j fires a spike
Pjk(t) → Pjk(t) + A+ when neuron j gets input at synapse k.

Finally the peak synaptic conductances themselves are modified accord-
ing to the following rules. Notice that synapses are somewhat counterintu-
itively strengthened upon output of the postsynaptic neuron and weakened
upon presynaptic input.

gjk → max(0, gjk + gmaxMj(t)) upon input at synapse k

gjk → min(gmax, gjk + gmaxPjk(t)) upon output of neuron j.

The model parameters are as in Song, Miller, and Abbott (2000).

Vrest = − 70 (mV ) τm = 20
Vthresh = − 54 (mV ) Vpeak = 0 (mV ) Vreset = − 60 (mV )
Eex = 0 (mV ) τex = 5 gmax = 0.015
Ein = − 70 (mV ) τin = 5 gin = 0.05
A+ = 0.005 τ+ = 20
A− = 1.05 ∗A+ τ− = 20.

3.1.2 Active Pinsky-Rinzel Model

The Pinsky-Rinzel model incorporates a dendritic and a somatic compart-
ment. Each compartment is endowed with the same passive conductance
Ileak, but with different active conductances. In particular the somatic com-
partment is equiped with the standard Hodgkin-Huxley voltage-gated Na+

(INa) and K+ (IK) currents responsible for spike-generation, while the den-
dritic compartment has a persistent Na+ (INaP ) ans a slow K+ (IKS) cur-
rents that extend the single spike into a burst and terminate the burst,
respectively. The following equations control the evolution of the somatic
(Vs) and dendritic (Vd) membrane potentials.

• Compartment equivalent circuit equations

Cm
dVs

dt
= −INa − IK − Ileak −

gc

p
(Vs − Vd) + Isoma (8)

Cm
dVd

dt
= −INaP − IKS − Ileak −

gc

(1− p)
(Vd − Vs) + Idendrite (9)

With the exception of Ileak all currents in the above equations are
voltage-gated and their evolution is thus controled by the evolution of
different gate variables, as shown below.

18.337 Final Project 4 Progress Report



STDP, Oscillations, and Network Architectures E.V.Lubenov

• Current equations

INa = gNam
3
∞h(Vs − ENa) (10)

IK = gKn4(Vs − EK) (11)

INaP = gNaP l3∞(Vd − ENa) (12)
IKS = gKSq(Vd − EK) (13)
Ileak = gleak(V − Eleak) (14)

• Dynamic gate equations

dh

dt
= φh[αh(Vs)(1− h)− βh(Vs)h] (15)

dn

dt
= φn[αn(Vs)(1− n)− βn(Vs)n] (16)

dq

dt
= φq

[q∞(Vd)− q

τq(Vd)

]
(17)

• Gate steady state and time constant equations

m∞(Vs) =
Vs + 31

Vs + 31 + 40(e−
Vs+56

18 − e−
14Vs+559

90 )
(18)

l∞(Vd) =
1

1 + e−
Vd+57.7

7.7

(19)

q∞(Vd) =
1

1 + e−
Vd+35

6.5

(20)

τq(Vd) =
200

e−
Vd+55

30 + e
Vd+55

30

(21)

• Rate constant equations

αh(Vs) = 0.07e−
Vs+47

20 (22)

βh(Vs) =
1

e−
Vs+17

10 + 1
(23)

αn(Vs) = − 0.01
Vs + 34

e−
Vs+34

10 − 1
(24)

βn(Vs) = 0.125e−
Vs+44

80 (25)

The parameters in the model are as in Kepecs and Wang (2000).

18.337 Final Project 5 Progress Report



STDP, Oscillations, and Network Architectures E.V.Lubenov

• Membrane capacitance and compartment coupling parameter

Cm = 1 (µF/cm2) p = 0.15

• Equilibrium potentials and conductances

Eleak = − 65 (mV ) gleak = 0.18 (mS/cm2) gc = 1 (mS/cm2)
ENa = + 55 (mV ) gNa = 55 (mS/cm2) gNaP = 0.12 (mS/cm2)
EK = − 90 (mV ) gK = 20 (mS/cm2) gKS = 0.7 (mS/cm2)

• Dynamic gate temperature scaling factors

φh = 3.33 φn = 3.33 φq = 1

3.2 Model Implementation Prototypes

So far we have implemented and explored several model prototypes. They
have all been coded in serial Matlab. The goal was to identify and contrast
the strengths and weaknesses of several possible approaches before commit-
ting to a full blown implementation. All but one prototypes use the matlab
ode suite to solve an intial value problem (IVP). The algorithmic variations
we have explored so far concern the type of ode solver used and absolute
error tolerances.

3.2.1 Piecewise Integration

As described in the previous section at times of input and output the deriva-
tives of the integrate-and-fire variables transiently become unbounded (as
the variables get instantaneously reset). This means that the system cannot
be continuously integrated over the entire period of interest. Instead the
system is integrated up until a given singular point, then the final state of
the system is updated to reflect the instantantaneous variable change, and
the system is integrated again with initial conditions equal to the last up-
dated state. In this piecewise fashion the system can be integrated over the
entire time span of interest.

3.2.2 System Order

If we are interested in the behavior of N neurons each receiving Nm inputs
via plastic synapses what is the order of the system we need to integrate?
A first look at the integrate-and-fire model equations would suggest that for

18.337 Final Project 6 Progress Report



STDP, Oscillations, and Network Architectures E.V.Lubenov

each neuron j we will need V , gex, gin, Mj , Pji, . . . , PjNm for a total of
4+Nm variables, yielding a grand total of N(Nm +4). Of course except for
V all other equations are trivial to solve between singular points, since the
variables simply decay exponentially from the initial condition with their
corresponding time constant. Thus if u represents any such variable, then
for a period of time starting at a singular point t0 up until the next singular
point we can write

u(t) = u(t0)e
− t−t0

τu .

This together with the addative nature of the update rules yields closed
form solutions. These solutions can also be derived by rewriting the original
unforced differential equations with a forcing term consisting of a sum of
weighted impulses at the appropriate singular points. In both cases

gex(t) =
Nm∑
k=1

∑
tkl<t

gjk(tkl)e
− t−tkl

τex (26)

Mj(t) = −A−
∑
τji<t

e
−

t−τji
τ− (27)

Pjk(t) = A+

∑
tkl<t

e
− t−tkl

τ+ . (28)

Using the above relations we can also write an approximate closed for-
mula for the synaptic weights. The equation below is only approximately
correct because it assumes that all inputs and outputs result in actual mod-
ification, while the update rules state that no modifications are made when
the synaptic weights are at gmax and are to be increased, or are at 0 and
are to be decreased

gjk(t) ≈ gmax

[
A+

∑
τji<t

∑
tkl<τji

e
−

τji−tkl
τ+ −A−

∑
tkl<t

∑
τji<tkl

e
−

tkl−τji
τ−

]
.

So for each neuron, starting at singular point t0 up until singular point
t1, we integrate a single equation

τm
dV

dt
= Vrest − V + gex(t0)e

− t−t0
τex (Eex − V ) + gin(t0)e

− t−t0
τin (Ein − V ).

3.2.3 Outer Loop Iterations

As described earlier the system is intergrated in a piecewise fashion between
singular points. The routines of the ode solver thus constitute an inner

18.337 Final Project 7 Progress Report



STDP, Oscillations, and Network Architectures E.V.Lubenov

loop that is inside an outer loop iterating over all singuler points, i.e. times
of inputs and outputs. If there are Ne = 1000 external inputs coming at
a mean rate of Re = 40 (Hz) and N = 100 neurons producing outputs
at a mean rate of R = 40 (Hz) then a period of t = 100 (s) will require
t(NeRe+NR) = 4, 400, 000 outer loop iterations. This number will multiply
the time taken by the inner loop and therefore it becomes crucial to optimize
the performance of the ode solver.

3.2.4 Problem Stiffness

To obtain efficiency the ode solver routine must be suited to the stiffness
of the problem. Stiffness occurs when different elements of a system evolve
with vastly different time constants. Since all neurons in the model have
the same membrane time constant τm that has the same order of magnitude
as the excitatory τex and inhibitory τin conductance time constants one
should not expect stiffness. In practice stiffness can be detected if variable
step solvers (not meant for stiff problems) make the integration step size
very small compared to the rate of change (curvature) in the solution. We
therefore explicitly integrated a model system under identical input and
initial conditions with all the ode solvers available in Matlab under three
different levels of absolute tolerance control. The results are presented in
Figure 1. As you can see both in terms of time and number of steps taken
the explicit Runge-Kutta (4,5) formula (Dormand-Prince pair) implemented
by ode45 performs worst, while explicit Runge-Kutta (2,3) pair of Bogacki
and Shampine implemented by ode23 performs best, indicating the presence
of moderate stiffness.

3.3 Model Verification

In this section we simply show the results of integrating both the passive
integrate-and-fire model and the Pinsky-Rinzel under conditions reported
in the literature. The purpose of these runs was to verify the correctness of
the equations and implementation and for later comparison with the final
version of the program.

3.4 Remainig Tasks

• Full Scale Parallel Implementation

Parallelizing a neural network simulation should be straightforward
given that the system that is being modeled is inherently parallel and

18.337 Final Project 8 Progress Report



STDP, Oscillations, and Network Architectures E.V.Lubenov

Figure 1: Model Stiffness Indicators
A system containing a single neuron receiving 1000 excitatory and 200 inhibitory
inputs firing at 20 Hz and 10 Hz respectively was integrated for a period of 100 µs
using different Matlab ode solvers. top solution times for integrating the system
and bottom number of steps taken by the solver. According to both criteria ode45
performs worst and ode23 best indicating the possible presence of moderate stiffness
in the system.

18.337 Final Project 9 Progress Report



STDP, Oscillations, and Network Architectures E.V.Lubenov

Figure 2: Integrate-and-Fire Example Output
A system containing a single neuron receiving 1000 excitatory and 200 inhibitory in-
puts firing at 20 Hz and 10 Hz respectively was integrated for a period of 500 µs. All
four panels correspond to the same input pattern received through a progressively
scaled synpatic weight matrix. Four patterns of activity are seen: subthreshold
potential fluctutations with no spiking (top left), very sparse spiking (bottom left),
denser spiking (top right), and high-rate regular spiking (bottom right).

18.337 Final Project 10 Progress Report



STDP, Oscillations, and Network Architectures E.V.Lubenov

Figure 3: Pinsky-Rinzel Model Output
A system containing a single neuron receiving a dendritic current injection was
integrated for 400 µs and 100 µs. Top two panels show the potential at the soma
(red) and the dendrite (blue) under single spike input (black) to the left and periodic
forcing (black) to the right. Notice the complex spiking that is not seen in the
passive integrate-and-fire model. The bottom panels show the same evolution ploted
in the phase plane to reveal the dynamics generating the bursts. The nullclines of
q (magenta) and Vs (green) are also shown. See Kepecs and Wang (2000) for more
details.

18.337 Final Project 11 Progress Report



STDP, Oscillations, and Network Architectures E.V.Lubenov

distributed. At the same time however there is a stringent synchro-
nization requirement, since there is “real time” cross talk between
individual neurons that will be integrated on different processors. We
plan to explore two parallel implementation options. The first involves
distributing the model neurons across the processors explicitly and
integrating, while synchronizing and exchanging messages after each
time step. This will involve writing some parallel ode solver routines
(i.e. for agreeing on a suitable step size to be used by all processors
etc.) as well as spike passing interface. The second option is close
to the approach taken for the Matlab prototype routines and involves
the use of a parallel ode solver library, such as the one provided with
SUNDIALS (formerly known as PVODE). This might be more suit-
able for the Pinsky-Rinzel model, that will likely benefit from a more
sophisticated ode solver.

• STDP in Networks of Neurons

What happens to the synaptic weight matrix of a neuronal network
whose elements obey STDP rules?

• STDP in Bursting Neurons

While the effect of STDP on the synaptic weight distribution has
been explored in the context of integrate-and-fire model, there is little
known about the interactions between spike-timing dependent plastic-
ity and complex spiking. Therefore it is worth characterizing a hybrid
model, i.e. active Pinsky-Rinzel conductances together with modifi-
able synaptic weights.

18.337 Final Project 12 Progress Report


