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Abstract

The purpose of this paper is to investigate the applica-
tion of Non- dominated Sorting Genetic Algorithm in
solving the multi-objective signal timing optimization
problem (MOSTOP). Three n-objective signal timing
opiimization problems with m-constraint, which cover
both deterministic and stochastic traffic potterns, are
defined and solved in this study. Mathematical approz-
imations of the resulting Pareto Frontiers are presented

to evaluate the trade-off among various objectives and:

thus provide the most appropriate alternatives for all
potential situations of the intersection traffic signal de-
sign. ’

1 Introduction

In most real-world problems, several goals must be sat-
isfied simultaneously in order to obtain the preferred
solution. A common difficulty with the multi-objective
optimization problem is the appearance of an objec-
tive conflict - none of the feasible solutions allow si-
multaneous optimality for all objectives. Signal timing
planning is a typical multi-objective optimization prob-
lem, because for a signalized system, an optimal timing

plan is usually required to meet four typical objectives
(Leonard, 1998):

e minimizing delay;

e minimizing stops;

¢ minimizing fuel consumption;

e maximizing progressiom.
Current traffic signal optimization methods account for
some of these objectives but not all. Mast of previous
work has focused an capturing a design cycle length and
green time split which take into account only the min-

imization of system delay. Although single-objective
optimization methods prevail in signal timing design,
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the optimized cycle lengths and green splits are subject
to change caused by different single objective. While
some computer tools account for multiple objectives to
obtain the cycle length, this is accomplished by simply
combining the objectives through a weighted sum into
a single objective in nature. Therefore, their optimiza-
tion strategies are still characterized as single-objective
in nature. Obviously, the single-objective optimization
provides an easy way to handle some applications with
Pareto-frontier solutions. However, the weighting coef-
ficients need to be assumed beforehand in this method.
In addition, the weighting coefficients may not corre-
spond accurately to the relative importance of the ob-
jectives or allow tradeoffs between the objectives to be
expressed. In fact, we may not know this weighting,
and decisions might only be truly informed if we first
know all the Pareto-optimal solutions.

Many of the past research effort were conducted to
examine various signal timing optimization methods
with different single objective. For instance, Saka et
al. (1986) investigated two innovative stochastic traf-
fic signal optimization techniques on isolated intersec-
tions. The optimum cycle and green-phase lengths were
determined by minimizing the average delay at the in-
tersection within a given period of observation. Foy
and Benekohal et al. (1992) implemented a genetic
algorithm to generate optimal or near-optimal inter-
section traffic signal timing strategies which yield the
smoothest traffic flow with the least average automo-
bile delay. Park et al. (1999) developed a genetic
algorithm-based signal optimization program which
consists of a genetic algorithm (GA) optimizer and a
mesoscopic traffic simulator to handle oversaturated
signalized intersections. Abu-Lebdeh and Benekohal
(2000) & Girianna and Benekohal (2001) proposed dy-
namic signal control optimization algorithms. Their al-
gorithms were structured to find optimal control with
robust queue management for oversaturated arterial
and integrated multiple criteria into one objective func-
tion. All of these signal optimization research used only
one objective function, but provided a basis for investi-
gating the implementation of multi-objective optimiza-
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tion technologies in traffic signal timing design.

Some classical optimization methods are widely used
in multi-objective optimization probiem, such as the
method of obhjective weighting, methed of distance
functions, and min-max formulation etc. They take ad-
vantage of some problem-specific knowledge and thus
combine multiple objectives into one objective so that
the resulting solution depends mainly on the under-
lying weight vector or demand level (Srinivas & Deb,
1994). As a result, the same problem have to be solved
a number of times in different situations.

Since GAs search for the optimal solutions based on
a population of points instead of a single point, mul-
tiple Pareto-optimal solutions can be found in a sin-
gle run. Muiti-objective GAs provide more efficient
approaches for simultaneous multiple Pareto-optimal
solutions, from which te choose the most appropriate
solution in all possible situations.

This paper addresses multi-objective intersection sighal
timing design using GAs. First, an overview of some
recent research on intersection signal timing design and
multi-objective optimization is outlined, followed by
a brief introduction to non-dominated sorting genetic
algorithms- NSGA and NSGA II. Three problems of n-
objective signal timing optimization with m-constraint,
which cover both deterministic and stochastic traffic
patterns using Webster delay formulation and Akgelik
stops calculation function, are designed and solved by
NSGA 1L The experimental results are discussed, in-
cluding some regression functions for Pareto-optimal
solution set and trade-off evaluation.

2 Multi-objective Optimization Genetic
Algorithms

To find an optimal solution, decision makers often need
to consider multiple objectives. A common difficulty
with multi-objective optimization is to balance differ-
ent objective needs. Thus, a mathematically most fa-
vorable Pareto-optimum is the solution that offers that
least objective conflict. Multi-objective problems are
addressed to provide several Pareto optimal solutions,
while decision makers are concerned with the selection
of the most suitable solution from them. The search
for several non-dominated solutions is computationally
intensive and requires efficient methods and powerful
computer are desirable.

A number of GA-based multi-objective optimization
tools have been developed in recent years, includ-
ing Multi-objective Optimization Genetic Algorithm
- MOGA (Shaffer, 1985), Niched Pareto Genetic
Algorithm - NPGA (Horn et.al, 1994) and Non-
dominated Sorting Genetic Algorithms - NSGA (Srini-
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vas et.al, 1994), Strength Pareto Evolutionary Algo-
rithm - SPEA (Zitzler et.al, 2001), Pareto-Archived
Evolutionary Strategy - PAES (Knowles et.al, 1999),
and Non-dominated Sorting Genetic Algorithms IT -
NSGAII (Deb et.al, 2002) etc. All of these methods
can be divided into two categories. The first cate-
gory just converts a simple GA to a multi-objective
GA by adding some new operators, such as MOGA,
NPGA and NSGA. Nevertheless, these methods have
been criticized due to their high computational com-
plexity, non-elitist approach, and their needs for set-
ting an arbitrary sharing parameter. This results in
the development of some new elitist MOEAs, includ-
ing PAES, SPEA and NSGA I (Deb et. al 2002). In
some recent studies, NSGA II has been proved to be
one of the very promising members of MOEAs (Deb et.
al 2002 and D’Souza et. al 2002).

3 Non-dominated Sorting Genetic Algorithms

The idea underlying the non-dominated sorting method
is that a ranking selection procedure is applied to
strengthen the elite possible solutions and a niche
method is implemented to maintain the stable sub-
populations of the elite. NSGA differs from a sim-
ple genetic algorithm only in the selection operator.
The crossover and mutation operator remain as nor-
mal. The population is ranked based on the individ-
ual’s non-domination before performing a selection. In
order to preserve the diversity of the population, a
sharing method, proposed by Goldberg and Richardson
(1987), is used to share these classified individuals by
corresponding dummy fitness value. However, NSGA
has been subjected to some criticism, as mentioned ear-
lier. Deb et. al (2002) propose a upgraded elitist al-
gorithms, named NSGA IL. In NSGA II, there are sev-
eral major innovations- a fast non-dominated sorting
approach, a fast crowed distance estimation procedure
and a simple crowed comparison operator etc., which
alleviates all of these difficulties specifically. In the up-
dated version, O(MN?) computational complexity can
be achieved. The complexity is reduced by systematic
book-keeping which increase the storage size to O{N %)
from O{N). The elitism is introduced by using A + p
selection procedure and crowding factor is introduced
to eliminate the need for sharing parameter. (Deb et.
al 2002)

4 Multi-objective Traffic Signal Timing
Optimization

The average delay and the number of stops per unit of
time are considered vital in the evaluation of the traffic
signal timing plan. However, none of the feasible so-
lutions could accommodate the simultaneous optimum
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of these two objectives for an intersection with asym-
metric traffic demand. A generic multi-objective traf-
fic signal timing optimization problem for a two-phase
control strategy can be formulated as:

F(G) = [f1(G), f2(G)]

minimize

subject to

Where:
G- vector of effective green time for each phase ¢

¢!~ lower bound of effective green for phase i

g¥- upper bound of effective green for phase ¢ .
f1(G)- the first objective function with respect to delay
J2(G)- the second objective function with respect to
stops -

The delay function based on Wehster formula (Web-
ster, 1958) and stop function based on Akcelik formula
(Akgelik, 1981), which are widely used for calculating
the corresponding performance index of delay and num-
ber of stops, are modified to represent the objective
functions mentioned in equation (1).’
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TD: total rate of delay
N: number of streams at an intersection
n:  number of phases
gi: mean arrival rate of vehicles in stream i
d;:  average delay in stream 1
gi-  effective green time for phase i
s;:  saturation flow rate
L:  lost time per cycle
n
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Where:
TS: total number of stops
other variables are as defined previously

200

Because the cycle length will affect the intersection
overall effective capacity, an additional constraint on
minimum cycle length could be included in signal tim-
ing optimization, which is formulated as:

3600
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i=]

Where:
-I:  lost time each phase

other variables are as defined previously

Three signal timing optimization problems are defined
to cover both uniform and stochastic arrival pattern
and to investigate the influence of Webster minimum
cycle length constraint. In the modified Webster delay
function (2} and (3), two delay terms are emploved
that D1 denotes the uniform delay and D2 represents
the random or overflow delay.. For problem F1 and
F2, only D1 is involved in the first objective function
F1(G); for problem F3, both delay terms are computed
in f1(G}. The first problem F1 secks to minimize the
average delay and the average number of stops per unit
of time under uniform arrival pattern. The constraints,
involved in F1, define the minimum green time and the
upper bound for green phase. In case F1, the minimum
cycle length constraint is ignored.

The problem F2 and F3, compared to F1, are rein-
forced by adding some cycle length constraint, which
identifies the lower bound of design cycle length cal-
culated by Webster’s minimum cycle length function.
The third problem F3, the most complex case, copes
with a randomly distributed arrival with the Webster
minimum cycle length constraint.

5 Experiment Design and Result Analysis

To investigate the application of NSGA II to traffic sig-
nal optimization, three signal design prablems are de-
fined to minimize average delay and the average num-
ber of stops, using the effective green time at each sig-
nal phase as the design variable. Such objective con-
sideration is conflicting in traffic signal design, because
minimizing delay leads to short cycle length while min-
imizing stops indicates long cycle length. These objec-
tives are also non-commensurable. The average delay
usually has large value, while the average number of
stops is generally a small value. The designed scenario
is a two-phase isolated intersection with permissive left
turn. The critical flow ratios are 0.47 and 0.39; sat-
uration flow is 1800 pcphpl. Table 1 shows the GA
parameters used in these experiments as follows:
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Parameter | Value ] Parameter [ Value
Population 150 No. of Functions 2
Size ) '
Chromosoms] 60 No. of Constrains 3
Length
No. of 300 No. of 2
Generation Binary-coded
‘Variables
Selection Tournament|| Lower limits on 10
Strategy Selection 1st variable
X-over on Single Upper limits on 120
binary point 1st variable
string X-over
Cross-over 0.95 Lower limits on 10
Probability 2nd variable
Mutation 0.008 Upper limits on 120
Probability 2nd variable

Table 1: GA parameters used in signal optimization

5.1 Optimization Probleml — F1: Uniform
traffic pattern without Webster cycle length
constraint

Problem F1, which only includes uniform delay term
D1 in the first objective function, is the simplest design
case for intersections. It is observed that a clear frame
of actual Pareto Frontiers is located in the generation 5.
As the generation number grows, more Pareto Frontiers
are discovered and a well-fitted third degree polynomial
function is constructed to measure the tradeoff between
the objective values of the average delay and number
of stops per unit of time. In the meantime, a linear
regression function is established to reflect the multiple
Pareto-optimal solution space. Figure 1 - 3 show the
variables and objective values at generation 1, 10 and
20 of problem F1.
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Figure 1: Population and objectives of generation 1 for
problem F1

5.2 Optimization problem 2 — F2: Uniform
traffic pattern with Webster minimum cycle
length constraint

F2 involves a new minimum cycle length constraint in
order to ensure the overall intersection effective capac-
ity. The result shows that after 5 generations, there
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Figure 3: Population and objectives of generation 20 for
problem F1

are still 8 ranks of non-dominated frontiers remaining
in the population. Finally, a unique rank of frontier
is achieved at generation 13. Figure 4 and 5 show the
variables and objective values at generatior 5 and 20
of problem F2.
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Figure 4: Population and objectives of generation 5 for
problem F2
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Figure 5: Population and objectives of generation 20 for
problem F2
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5.3 Optimization problem 3 — F3: Stochastic
traffic pattern with Webster cycle length con-
straint

F3 describes a design problem with the consideration
of random or overflow delay term in the first objective
function. At the same time, minimum cycle length con-
straint is introduced to provide the adequate effective
overall capacity.

F3 yields 8 ranks:of non-dominated frontier in the pop-
ulation of generation 5. One unigue rank of PF can be
obtained at generation 11. It was found that all non-
dominated solutions located along a certain straight
line in the feasible solution space. Figure 6 and 7-show
the variables and objective values at generation 5 and
20 of problem F3. -
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Figure 7:-Population and objectives of generation 20 for
problem F3

In order to evaluate the tradeoff between objectives,
a set of well-fitted third degree polynomial regression
functions are presented in Table 3. Additionally, it is
observed that the Pareto-optimal design of variable and
is positioned along a certain straight line in the feasi-
ble space and the corresponding regression functions
are displayed in Table 2 as well. It’s indicated that cy-
cle length will take smaller value in problem F1 where
Webster cycle length constraint is ignored; however, in-
tersection overall capacity may not be able. to handle
the actual demand with too small cycle length.

Case| Pareto-optimal Solution

g1: green time 1 go:green time 2

F1 | g2 =0.6110¢; + 1.7902
91 € [10.00, 85.60]

F3 | g2 — 0.6249g, + 1.0311
g1 € [20.04, 88.63]

F3 | g; = 0.6231g, + 1.3782

g1 € 20.23,88.67]

Table 2: Regression functions for Pareto-optimal solutions

Casé Trade-off function for objectives: .
xq: delay and z3: stops

F1 | 72 = 10 5(—15.38323 1 401,697 — 3622.08z1 +
49394.79, z1 € [1.66,11.69]

F2 | zo = 10_5(-8.146m% +‘237.051:¥ —2453.80x, +
46859.89, z1 € [2.96,12.10]

T3 | 22 = 10 5(—7.44725 +221.53022 — 2348 8721 +
46670.21, z1 € {2.97,12.34]

Table 3: Trade-off between multible objectives

6 Conclusion

It can be concluded from the results of this study that
the multi-objective genetic algorithm has potential use
in intersection signal timing optimization. It has been
demonstrated that-NSGA II is efficient to solve multi-
objective signal timing design problems under uniform
and stochastic traffic arrival patterns. Further, the pro-
posed Pareto-frontier regression funections provide an
insight into the trade-off among multiple signal opti-
mization objectives. It is also observed that the Pareto-
optimal solution set is located along a certain straight
line within feasible solution space, from which practi-
tioners can easily select the most appropriate design
for particular situations.

. In addition, it shows that NSGA II can find a much
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better spread of optimal signal design plans on the true
Pareto-optimal frontiers with high convergence speed.
Therefore, the implementation of NSGA II in network
signal control system should be investigated further.
This will provide the network traffic signal control sys-
tem with the ability to simultaneously optimize of mul-
tipte ‘objectives and parameters.
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