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Abstract  

The purpose of this paper is to investigate the applica- 
tion of Non- dominated Sorting Genetic Algorithm in 
solving the multi-objective signal timing optimization 
problem (MOSTOP). Three n-objective signal timing 
Optimization problems with m-constraint, which cover 
both deterministic and stochastic trafic patterns, are 
defined and solved in this study. Mathematical approx- 
imations of the resulting Pareto, h n t i e r s  are presented 
to evaluate the tmde-off among .various objectives and 
thus provide the most appropriate altematives for all 
potential situations of the intersection trafic signal de- 
sign. 

1 Introduction 

In most real-world problems, several goals must be sat- 
isfied simultaneously in order to obtain the preferred 
solution. A common difficulty with the multi-objective 
optimization problem is the appearance of an objec- 
tive conflict - none of the feasible soIutions allow si- 
multaneous optimality for all objectives. Signal timing 
planning is  a typical multi-objective optimization prob- 
lem! because for a signalized system, an optimal timing 
plan is  usually required to meet four typical objectives 
(Leonard, 1998): 

minimizing delay; 

minimizing stops; 

a minimizing fuel consumption; 

maximizing progression. 

Current traffic signal optimization methods account for 
some of these objectives but not all. Most of previous 
work has focused on capturing a design cycle length and 
green time split which take into account only the min- 
imization of system delay. Although singleobjective 
optimization methods prevail in signal timing design, 

the optimized cycle lengths and green splits are subject 
to change caused by different single objective. While 
some computer tools account for multiple objectives to 
obtain the cycle length, this is accomplished by simply 
combining the objectives through a weighted sum into 
a single objective in nature. Therefore, their optimiza- 
tion strategies are still characterized as singleobjective 
in nature. Obviously, the single-objective optimization 
provides an easy way to handle some applications with 
Paretofrontier solutions. However, the weighting coef- 
ficients need to be assumed beforehand in this method. 
In addition, the weighting coefficients may not corre- 
spond accurately to the relative importance of the ob- 
jectives or allow tradeoffs between the objectives to be 
expressed. In fact, we may not know this weighting, 
and decisions might only be truly informed if we first 
know all the Paret*optimal solutions. 

Many of the past research effort were conducted to 
examine various signal timing optimization methods 
with different single Objective. For instance, Saka et 
al. (1986) investigated two innovative stochastic traf- 
fic signal optimization techniques on isolated intersec- 
tions. The optimum cycle and green-phase lengths were 
determined by minimizing the average delay at  the in- 
tersection within a given period of observation. Foy 
and Benekohal et  al. (1992) implemented a genetic 
algorithm to generate optimal or near-optimal inter- 
section traffic signal timing strategies which yield the 
smoothest traffic flow with the least average automo- 
bile delay. Park et al. (1999) developed a genetic 
algorithm-based signal optimization program which 
consists of a genetic algorithm (GA) optimizer and a 
mesoscopic traffic simulator to handle oversaturated 
signalized intersections. Abu-Lebdeh and Benekohal 
(2000) & Girianna and Benekohal (2001) proposed dy- 
namic signal control optimization algorithms. Their al- 
gorithms were structured to find optimal control with 
robust queue management for oversaturated arterial 
and integrated multiple criteria into one objective func- 
tion. All of these signal optimization research used only 
one objective function, but provided a basis for investi- 
gating the implementation of multi-objective optimiza- 
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tion technologies in traffic signal timing design. 

Some classical optiinization methods are widely used 
in multi-objective optimization problem, such as the 
method of objective weighting, method of distance 
functions, and min-max formulation etc. They takead- 
vantage of some problem-specific knowledge and thus 
combine multiple objectives into one objective so that 
the resulting solution depends mainly on the under- 
lying weight vector or demand level (Srinivas & Deb, 
1994). As a result, the same problem have to  be solved 
a number of times in different situations. 

Since GAS search for the optimal solutions based on 
a population of points instead of a single point, mul- 
tiple Paret+optimal solutions can he found in a sin- 
gle run. Multi-objective GAS provide more efficient 
approaches for simultaneous multiple Paretwoptimal 
solutions, from which to  choose the most appropriate 
solution in all possible situations. 

This paper addresses multi-objective intersection signal 
timing design using GAS. First, an overview of some 
recent research on intersection signal timing design and 
multi-objective optimization is outlined, followed by 
a brief introduction to non-dominated sorting genetic 
algorithms- NSGA ,and NSGA 11. Three problems of n- 
objective signal timing optimization with m-constraint, 
which cover both deterministic and stochastic traffic 
patterns using Webster delay formulation and Akgelik 
stops calculation function, are designed and solved by 
NSGA 11. The experimental results are discussed, in- 
cluding some regression functions for Pareto-optimal 
solution set and trade-off evaluation. 

2 Multi-objective Optimizat ion Genetic 
Algori thms 

To find an optimal solution, decision makers often need 
to consider multiple objectives. A common difficulty 
with multi-objective optimization is to  balance differ- 
ent objective needs. Thus, a mathematically most fa- 
vorable Paretwoptimum is the solution that offers that 
least objective conflict. h4ulti-objective problems are 
addressed to  provide several Pareto optimal solutions, 
while decision makers are concerned with the selection 
of the most suitable solution from them. The search 
for several non-dominated solutions is computationally 
intensive and requires efficient methods and powerful 
computer are desirable. 

A number of GA-based multi-objective optimization 
tools have been developed in recent years, includ- 
ing Multi-objective Optimization Genetic Algorithm 
- MOGA (ShaRer, 1985), Niched Pareto Genetic 
Algorithm - NPGA (Horn et.al, 1991) and Non- 
dominated Sorting Genetic Algorithms - NSGA (Srini- 
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vas et.al, 1994), Strength Pareto Evolutionary Algc- 
rithm - SPEA (Zitzler et.al, 2001), ParetwArchived 
Evolutionary Strategy - PAES (Knowles et.al, 1999), 
and Non-dominated Sorting Genetic Algorithms I1 - 
NSGAII (Deb et.al, 2002) etc. All of these methods 
can be divided into two categories. The first cate- 
gory just converts a simple GA to a multi-objective 
GA by adding some new operators, such as MOGA, 
NPGA and NSGA. Nevertheless, these methods have 
been criticized due to their high computational coin- 
plexity, non-elitist approach, and their needs for set- 
ting an arbitrary sharing parameter. This results in 
the development of some new elitist MOEAs. iuclud- 
ing PAES, SPEA and NSGA I1 (Deb et. a1 2002). In 
some recent studies, NSGA I1 has been proved to be 
one of the very promising members of MOEAs (Deb et. 
al 2002 and D’Souza et. a1 2002). 

3 Non-dominated Sor t ing  Genet ic  Algori thms 

The idea underlying the non-dominated sorting method 
is that a ranking selection procedure is applied to  
strengthen the elite possible solutions and a niche 
method is implemented to  maintain the stable sub- 
populations of the elite. NSGA differs from a sim- 
ple genetic algorithm only in the selection operator. 
The crossover and mutation operator remain as nor- 
mal. The population is ranked based on the individ- 
ual’s non-domination before performing a selection. In 
order to  preserve the diversity of the population, a 
sharing method, proposed by Goldberg and Richardson 
(1987), is used to share these classified individuals by 
corresponding dummy fitness value. However, NSGA 
has been subjected to some criticism, as mentioned ear- 
lier. Deb et. al (200’2) propose a upgraded elitist al- 
gorithms, named NSGA 11. In NSGA 11, there are sev- 
eral major innovations- a fast non-dominated sorting 
approach, a fast crowed distance estimation procedure 
and a simple crowed comparison operator etc., which 
alleviates all of these difficulties specifically. In the u p  
dated version, O ( M N e )  computational complexity can 
be achieved. The complexity is reduced by systematic 
book-keeping which increase the storage size to  O ( N 2 )  
from O(N). The elitism is introduced by using X + p 
selection procedure and crowding factor is introduced 
to  eliminate the need for sharing parameter. (Deb et. 
al 2002) 

4 Multi-objective Tkaffic Signal Timing  
Opt imiza t ion  

The average delay and the number of stops per unit of 
time are considered vital in the evaluation of the traffic 
signal timing plan. However, none of the feasible so- 
lutions could accommodate the simultaneous optimum 
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of these two objectives for an intersection with asym- 
metric traffic demand. A generic multi-objective traf- 
fic signal timing optimization problem for a tw+phase 
control stratem can be formulated as: 

Because the cycle length will affect the intersection 
overall effective capacity, an additional constraint on 
minimum cycle length could be included in signal tim- 
ing optimization, which is formulated as: 

minimize F(G)  = [fl(G), fg(G)] / \ 
subject to 

g j i G i < g y  k=1,2 (1) 

Where: 
G- vector of effective green time for each phase i 
gl- lower bound of effective green for phase i 
gr- upper bound of effective green for phase i 
fl(G)- the first objective function with respect to delay 
fZ(G)- the second objective function with respect to 
stops 

The delay function based on Wehster formula (Web- 
ster, 19.58) and stop function based on Akselik formula 
(Akselik, 1981), which are widely used for calculating 
the corresponding performance index of delay and num- 
ber of stops, are modified to represent the objective 
functions mentioned in equation (1): 

Where: 

d, = 0.9(Dil +&) 

(3) 

i= l  
T D :  total rate of delay 

N :  
n: number of phases 
qi: 

d,: 
9,: 
s i :  saturation flow rate 
L: lost time per cycle 

nuniber of streams at  an intersection 

mean arrival rate of vehicles in stream i 
average delay in stream i 
effective green h i e  for phase i 

n 

~ i ( l - ~ i ) ( C g i + ~ )  

(4) 
i= 1 f z ( G ) = T S = C  

i=l 

Where: 
T S :  total number of st.oDs 
other variables are as defined previously 

Where: 
1 :  lost time each phase 
other variables are as defined previously 

Three signal timing optimization problems are defined 
to cover both uniform and stochastic arrival pattern 
and to investigate the influence of Webster minimum 
cycle length constraint. In the modified Webster delay 
function (2) and (3), two delay terms are employed 
that D1 denotes the uniform delay and 0 2  represents 
the random or overflow delay. For problem F1 and 
F2, only D1 is involved in the first objective function 
fl(G); for problem F3, both delay terms are computed 
in ji(G). The first problem F1 seeks to minimize the 
average delay and the average number of stops per unit 
of time under uniform arrival pattern. The constraints, 
involved in F1, define the minimum green time and the 
upper bound for green phase. In case F1, the minimum 
cycle length constraint is ignored. 

The problem F2 and F3, compared to F1, are rein- 
forced by adding some cycle length constraint, which 
identifies the lower bound of design cycle length cal- 
culated by Webster’s minimum cycle length function. 
The third problem F3, the most complex case, copes 
with a randomly distributed arrival with the Webster 
minimum cycle length constraint. 

. 

5 Experiment Design a n d  Result  Analysis 

To investigate the application of NSGA I1 to traffic sig- 
nal optimization, three signal design problems are de- 
fined to minimize average delay and the average num- 
ber of stops, using the effective green time at  each sig- 
nal phase as the design variable. Such objective con- 
sideration is conflicting in traffic signal design, because 
minimizing delay leads to short cycle length while min- 
imizing stops indicates long cycle length. These objec- 
tives are also non-commensurable. The average delay 
usually has large value, while the average number of 
stops is generally a small value. The designed scenario 
is a twwphase isolated intersection with permissive left 
turn. The critical flow ratios are 0.47 and 0.39; sat- 
uration flow is 1800 pcphpl. Table 1 shows the GA 
parameters used in these experiments as follows: 
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Table 1: GA parameters used in signal optimization 

5.1 Optimization Problem1 - F1: Uniform 
traffic pattern without  Webster cycle length 
constraint 
Problem F1, which only includes uniform delay term 
D1 in the first objective function, is the simplest design 
case for intersections. It is observed that a clear frame 
of actual Pareto Frontiers is located in the generation 5. 
As the generation number grows, more Pareto Frontiers 
are discovered and a well-fitted third degree polynomial 
function is constructed to  measure the tradeoff between 
the objective values of the average delay and number 
of stops per unit of time. In the meantime, a linear 
regression function is established to reflect the multiple 
Paretwoptimal solution space. Figure 1 - 3 show the 
variables and objective values at generation 1, 10 and 
20 of problem F1. 

Figure 3: Population and objectives of generation 20 for 
problem F1 

are still 8 ranks of non-dominated frontiers remaining 
in the population. Finally, a unique rank of frontier 
is achieved at generation 13. Figure 4 and 5 show the  
variables and objective values at generation 5 and 20 
of problem F2. 
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Figure  4: Population and objectives of generation 5 for 
problem F2 
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Figure 1: Population and objectives of generation 1 for 
problem F1 

5.2 Optimizat ion problem 2 - F2: Uniform 
traflic pattern wi th  Webster minimum cycle 
length constraint 
F2 involves a new minimum cycle length constraint in 
order to  ensure the overall intersection effective capac- 
ity. The result shows that after 5 generations, there 

G1 delay 

Figure 5: Population and objectives of generation 20 for 
problem F2 

201 

Authorized licensed use limited to: Akira  Imada. Downloaded on May 21, 2009 at 19:04 from IEEE Xplore.  Restrictions apply.



5.3 Optimization problem 3 - F3: Stochastic 
traffic p a t t e r n  wi th  Webster cycle length con- 
straint 
F3 describes a design problem with the consideration 
of random or overflow delay term in the first objective 
function. At the same time, minimum cycle length con- 
straint is introduced to provide the adequate effective 
overall capacity. 

F3 yields 8 ranks.of non-dominated frontier in the p o p  
ulation of generatioii 5. One unique rank of P F  can be 
obtained at generation 11. It was found that all non- 
dominated solutions located along. a certain straight 
line in the feasible solution space. Figure 6 and 7show 
the variables and objective values a t  generation 5 and 
20 of problem F3. 

j o . . . ~ . ~ ~  ............... : .................................. 04ji ..................................................... 

Cast 

F1 

F2 

F3 

G1 

'Ikade-off function for objectives: 
zl: delay and z2: stops 

z2 = 10-5(-15.383z~+401.69z~-3622.08z~+ 
49394.79, z1 E [1.66,11.69] 

z2 = 10-5(-8.146zy +237.05z: - 2453.80~1+ 
46859.89, ZI E [2.96,12.10] 

z2 = 10-5(-7.447z~+221.530z~-2348.87z1+ 
46670.21, 51 E [2.97,12.34] . 

delay 

Figure 6: Population and objectives of generation 5 for 
problem F3 

delay 

Figure  7: Population and objectives of generation 20 for 
problem F3 

. In order to evaluate the tradeoff ,between objectives, 
a set of well-fitted third degree polynomial regression 
functions are presented .in Table 3. Additionally, it is 
observed that the Pareteoptimal design of variable and 
is positioned along a certain straight line in the feasi- 
ble space and the corresponding regression functions 
are displayed in Table 2 as well. It's indicated that cy- 
cle 1engt.h will take smaller value in problem F1 where 
Websber cycle length constraint is ignored; however, in- 
tersection overall capacity may not be able to handle 
the actual demand with too small cycle length. 

gi E [20.23,88.67] 

Table 3: Tradeoff between multiple objectives 

6 Conclusion 

It can be concluded from the results of this study that 
the multi-objective genetic algorithm has potential use 
in intersection signal timing optimization. It has been 
demonstrated that NSGA I1 is efficient to solve multi- 
objective signal timing design problems under uniform 
and stochastic traffic arrival patterns. Further, the pro- 
posed Pareto-frontier regression functions provide an 
insight into the tradeoff among multiple signal opti- 
mization objectives. It is also observed that the Pareto- 
optimal solution set is located along a certain straight 
line within feasible solution space, from which practi- 
tioners can easily select the most appropriate design 
for particular situations. 

In addition, it shows that NSGA I1 can find a much 
better spread of optimal signal design plans on the true 
Pareto-optimal frontiers with high convergence speed. 
Therefore, the implementation of NSGA I1 in network 
signal control system should he investigated further. 
This will provide the network traffic signal control sys- 
tem with the ability to simultaneously optimize ofniul- 
tiple objectives and parameters. 
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