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Abstract: 
This paper deals with the traffic signal control using 

fuzzy logic controller and multi-object genetic algorithm 
(MOGA). It is not needed to build the traffic flow model for 
Signal control approach in the intersection using the method 
based on the fuzzy. Multi-objective Genetic algorithms are 
used to optimize the parameters in the fuzzy logic controller 
according to different traffk demand. However, this method 
can effectively solve the problems of stochastic and unknown 
in this dynamic system. This method has the adaptive signal 
timing ability, and can make adjustments to signal timing in 
response to observed changes. 
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1. Introduction 

Traffic signal is an essential element to manage the 
transportation network. A number of traffic signal control 
methods have been developed in the past. Recently, a major 
research focus has been on application of artificial 
intelligence techniques such as expert systems, fuzzy logic, 
neural networks and genetic algorithms for intersection 
signal control. 

The systems of fuzzy logic traffic signal .control 
proposed by Niitymaki and Kikuchi [2] are based on the 
fuzzy extension principle used in the seminal work by 
Pappis and Mandani [l]. Mohamed B. Trabia [3] designed 
a fuzzy .logic-based signal controller for a four-approach 
isolated intersection with through and left-turning 
movements. The fuzzy controller will regularly query the 
traffic conditions in order to decide whether to extend or 
terminate a current green phase. Niittymaki and Pursula [4] 
investigated fuzzy control to traffic signals at the individual 
intersection level. Fuzzy signal group control in their case 
works in the same way as the traditional control, but a 
fuzzy extender adjusts the extensions, and a fuzzy selector 
selects the phase sequences. More thorough reviews of the 
applications of fuzzy logic to traffic signal control can be 
found in Sayers [5] and Hoogendoorn et a1 [6],[7]. 

With the continuous growth of the available 
computing resources, the attention of engineers has been 
directed more and more to the possible use of complex 
simulations directly in the early stages of the design 
process. This aspect has underlined the substantial 
weakness of traditional optimization approaches, which can 
usually produce only single-objective optimized solutions, 
and only if the objective function satisfies continuity and 
often derivability conditions. This fact, together with the 
need for a multi-disciplinary approach to the design, caused 
a growing interest into the use of GA as a general purpose 
optimizer. 

This paper deals with the traffic signal control using 
fuzzy logic controller and MOGA. However, this method 
can effectively solve the problems of stochastic and 
unknown in this dynamic system. 

2. Fuzzy Logic controller for traffic signal control at 
intersection 

2.1 Simulation environment 

Figure 1: An isolated intersection with lane and 
vehicle detector configuration 
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We study an isolated signalized intersection with four 
approaches and typical vehicle detectors. Figure 1 shows an 
isolated intersection with lane and vehicle detector 
configuration. Each approach has through, right-turning 
and left-turning movements. Inductive loops for vehicle 
detection are installed on stop-lines, upstream-lines, and 
right-wing comer-lines. Detectors can count the number 
of vehicles through the upstream-line, stop-line and 
comer-line within a given time interval. To detect 
left-turning vehicles, ultrasonic detectors are placed on side 
of left-turning bays. These detectors can detect the vehicle 
appearance and count the number of the vehicles driven 
into left-turning bays. 

A four-phase signal consisting of left turns, right turns 
and though is shown in figure 2. In a cycle, each approach 
goes through two time intervals, the green interval during 
which vehicles on this approach can proceed through the 
intersection, and red interval during which vehicles on this 
approach cannot do. 

Figure 2:Phase diagram for a four-phase signal 

2.2 Definition of traffic variable 

We define following traffic variable: 
D: the approach jointed the intersection, 

D E [EAST, WEST,SOUTH, NORTH] , is one of East, 
South, West, and North four approaches; 

PD,LIL,NE ( t )  : the number of vehicles passed 
upstream-line with in the time interval [ t - A t , t ]  for 
approach D; 

PDaSLINE (t) : the number of vehicles passed through 
stop-line (not including right-turning vehicles) with in the 
time interval [t - At, t ]  for approach D; 

PD,cLINE (t) : the number of vehicles passed comer-line 
with in the time interval [ t - A t , t ]  , for right-turning 
vehicles (East turn to North, South turn to East, West turn 
to South, and North turn to West), is defined as respectively, 

PNoRTH,cL,NE ( t )  ; 

'EAST,CLINE(') 9 pSOUTH,CLINE ( t )  pWEST,CLINE ('1 ? and 

PD,,Ay ( t )  : the number of vehicle which turn left Erom 
the bay within the time interval [ t  - At, t ]  for approach D; 

QD,BAy ( t )  : the number of vehicle staying in bay at any 
time t for approach D; 

&(t) : the number of vehicles which will pass 
through stop-line, but not tum right, and are waiting in a 
queue at any time t for approach D; 

QD,R(t) : the number of only turn-right vehicle, 
waiting in a queue at any time t for approach D ; 

Q,,, ( t )  : the number of vehicles waiting in a queue at 
any time on the left-turning lanes for approach D; 

QD,T(t)  : the total number of vehicle waiting in 

queue at any time t for approach D, QD,T(t) consist of 

previous three parts, for approach D, Qn,r(t) can express 
as 

(1) 
Q,,,(t) Can be determined by the queue length L , 

and the average length 1 occupied by each vehicle in the 
queue. L can be detected by detectors such as inductive 
loop, ultrasonic sensor and CCD camera. I can be 
approximately calculated by statistic method. However, the 
proportion of each part in ( t )  is difficult to determine 
in prior. 

QD,T ( t )  = QD,, ( t )  + QD.R ( t )  + QD,L ( t )  

2.3 Traffic signal control based on a competitive fuzzy 
logic 

In the case of traffic signal control, the resource in 
question is green time, and the problem is made more 
complex by its temporal aspect and the ever-changing and 
stochastic nature of the demand. This means that the 
allocation of green time must be constantly reviewed as 
time passes and the traffic situation changes, in order to 
distribute it in the desired manner. 

An approach to this problem is to derive a value for 
each user, which reflects their claim on the limited resource, 
and to use these values to determine the appropriate 
balance of distribution of the resource. We call this value as 
the urgency, meaning the urgency with which the stream 
requires green. 

We divided the whole processes into three levels, 
which are low, middle and high level. The details refer 
figure 3. 
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Figure 3: Three levels of Traffic signal control 
We divided the whole processes of traffic signal control 

into three levels (see figure 3),  which are low, middle and 
high level. The low level deals with the traffic variables 
called input data in which some dates are detected by 
sensors and others are predicted. The middle level consists 
of urgency values (or “Urgency degrees”), which are 
calculated by fuzzy inference system. The high level 
determines the traffic signal timing strategy called 
decision-making level. 

2.4 The Derivation of Urgency Values . 

The Urgency degrees depended on traffic variables 
calculated or predicted, and also depend on traffic date 
detected by detectors such as inductive loop, infrared, 
ultrasonic and video image processing detectors. 

For a, b, c, and d (see figure 2) four phases, we define 
urgency degrees as respectively U(a), U(b), U(c) and 
U(d). In same phase, the urgency consists of two parts 
which reflect different “urgency degree” on two approaches 
whose relationships are described as : a) U(a): { U(a)-East, 
U(a)-West}; b) U@): { U@)-South, U@)-North} ; c) 
U(&( U(c)-South, U(c)-North}; and d) U(d):{ U(d)-East, 
U(d)-West}. 

In our research, the traffic variables PD,ULINE(t) , 

and &(t) are described using Trapezoidal fuzzy 
f‘D,sLiNE ( t )  9 P D , c L i N E  ( t )  2 f‘D,BAY ( t )  3 Q,,,A, ( t )  9 e,,, ( t )  

memberships set (see figure 4). These fuzzy sets provide an 
analogy to human characterization by assigning 
truthfulness value, p , to linguistic terms. These terms are 
“Small”, “Medium” and “Big”. For example, in fuzzy 
membership function pBiz (PEA,,,,,,,) , “Big” is a fuzzy 

4, for each traffic variable, we use four parameters a, b, c 
and d to describe Trapezoidal shape. The four parameters 
can be determined by expert knowledge, or optimized by 
Genetic Algorithms. In this paper, fuzzy neural networks 
are used to update and optimize these parameters. 

set and PEAST,uLINE ( t )  is a universe of discourse. In figure 

647 

c d  

........... . Small 
Medium 

Figure 4: Trapezoidal fuzzy memberships sets for 
traffic variables 

The “urgency degrees” of four phases can be 
determined by fuzzy inference system. In this paper, we 
adopt fuzzy inference system. In our fuzzy inference 
system, 36 fuzzy rules are adopted. Fuzzy rules are divided 
to three groups with respective to “Big”, “Medium”, and 
“Small” for urgency degree of each phase. .As examples, 
for “a” phase, the fuzzy rules can be described as follows. 

If { { PEAST,ULINE ( t )  is big1 and { { P E A S T , C L I N E  ( t )  is 

small} and { P E A s T , m y  ( t )  is small) } 1 or { Q E A s T , p  ( t )  is big13 

(2) 
If { { PW€ST,LILINE ( t )  is big1 and { { P“CLIhE (0 is 

(3) 

{{U@> is big1 1 (4) 

then { U(a)-East is big} 

and { pW€ST,BAY (l) is Or { QFW,ST,P( t )  is big), 
then { U(a)-West is big} 
If { { U(u)-East is big} or { U(a)-West is big}}, then 

In expression (2)-(4), we define the operation method 
of each symbol. ‘‘and” means “Min”, “or” means ‘‘Max”. 

3 The multi-objective optimization of parameters for 
fuzzy logic controller 

The GA is an optimization technique inspired by the 
evolution process of natural life. The CA provides a very 
flexible framework and, recently, has been expected to be 
not only a global optimization method but also a 
multi-objective optimization method in various areas. 

The process of designing a GA consists of two parts: 
(1) designing a representation and a crossover operator, and 
(2) designing a generation-alternation model. In designing a 
representation and a crossover operator, we determine how 
to represent a solution on the computer and how to generate 
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Objective 1 

Objective 2 

a new solution from two or more solutions. The 
performance of GAS heavily depends on a representation 
and a crossover operator. It is important to consider 
characteristics of problem domain when designing a 
representation and a crossover operator. In designing a 
generation-altemation model, we design the way of 
choosing pairs of parents for generating children by 
crossover and the way of selecting individuals to survive in 
the next generation. By devising a generation-alternation 
model, we can allow a GA to effectively search on a 
multi-modal search space or to find a set of non-dominated 
solutions in a single run by explicitly handling multiple 
criteria. 

In traffic signal control, there are a number of diverse 
criteria or control objectives, such as maximize safety, 
minimize delays and minimize environment disadvantage 
et al. The problem is that the optimum of each objective is 
achieved in different cycle times. These objectives are not 
completely coincident. We use the three objectives as an 
example to explain the relationship among different criteria. 
If the minimizing of delays is the main goal, the effects to 
other goals are little negative. The only positive effect is 
between the environment and safety. In other words, the 
environmentally effective traffic signal control can also be 
safe, because the cycle times of the environmentally 
effective traffic signals are quite long. The long average 
cycle time means that the number of amber intervals is 
smaller, and the risk of rear-end collisions is smaller. The 
biggest problem is that environmental or safe control 
strategy does not give a good delay result. The average 
delay can be even 40% bigger than the optimum delay. 

In order to achieve the desired flexibility, the 
parameters of the signal controller must be optimized with 
respect to different objectives or criteria. The 
multi-objective genetic algorithms (MOGA) can effectively 
solve this problem. 

Each optimal solution reflects a different trade-off 
between the desired objectives. When implementing the 
controller in a particular context, the solution that performs 
best with respect to the desired objectives for that context 
may be chosen from the optimal set by the user. The 
MOGA uses the Pareto ranking method to rank the 
solutions of each generation by the number of other 
solutions which dominate them. This technique is described 
more fully in Horn et a1 [SI. 

In our proposed method, 7 types of traffic variables 

PD,uL /NE ( t )  , PD,sLINE ( t )  , pD,cL /NE ( t )  3 f ' D , m y  ( t )  
QD,BAy  ( t>  9 Q D , p  ( t> and Q,,L ( t>  are described 
using Trapezoidal fuzzy memberships set, and for each 
traffic variable, we use four parameters a, b, c and d to 
describe Trapezoidal shape, therefore, the total number of 

Optimized 
solutions: 
sobject 1, 
sobject2, 

sobjectN 
. . .) 

parameters are 7*4=28. In most case, the value of traffic 
variable is integer, so the parameters optimized are suitably 
described using integers. To reduce the range of parameter 
space, and decrease the computational cost, expert 
knowledge is often adopted so that the range of each 
parameter is in a smaller interval. 

Classical optimization algorithms are capable, under 
strict continuity and derivability hypothesis, of finding the 
optimal value only in the single objective case and 
therefore the problem of finding the group of 
non-dominated solutions (the Pareto set) is reduced to 
several single objective optimizations. 

While traditional optimization algorithms do need 
the use of a utility function, the particular structureof GA 
can face the multi-objective optimization problem in a 
more direct way, developing populations in which the 
diversity follows the conflicting objectives. 

Pareto-GA algorithms mainly differ from classical GA 
in the selection process, even though other specific 
operators might be constructed. In particular in this paper a 
novel crossover operator is introduced, together with a 
quick review of several other Pareto-GA techniques. 

Pareto toumament selection: the toumament selection 
can consider the Pareto concept as a basis for the 
tournament: the selected individual is the one that 
dominates the individuals taking part to the toumament. 
Most profitable implementations of this method are usually 
coupled with sharing. 

Local Pareto selection. As shown in [lo] an effective 
way of maintaining diversity in the population able to 
follow the conflicting objectives, can be the use of local 
selection schema based on the Pareto dominance concept. 
In this case the population is placed on a toroidal grid and 
the members of the local tournament are chosen by means 
of a random walk in the neighborhoods of the given grid 
point. 

I user' 
Fuzzy logic controller requirement 

1 I L I 

Figure 5: Procedure of fuzzy logic controller 
parameter optimization 
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Ranking-based selection (non-dominated sorting GA). 
With this approach, the classical fitness function is 
substituted by a ranking value. To all the non-dominated 
members a rank of one is assigned, and then removed from 
the population. The non-dominated members in the 
remaining part of the population are then assigned a rank of 
two and this process is continued until the entire population 
is ranked. To each individual is then assigned a fitness 
value based on its non-domination ranking. 

Vector evaluated genetic algorithm. In this approach, 
proposed by Schaffer and referred to as VEGA algorithm, 
the population of size P is subdivided into N 
sub-populations, with each of them addressing one of N 
criteria. Typically, as done in [9], the different criteria are 
expressed as different utility functions with N different 
weighting. Multi-directional crossover. While usually one 
or two point classical cross-over operator is employed, in 
this work a new cross-over operator first introduced in [I  11, 
called multi-directional crossover, suitable both for single 
and multi-objective optimization is presented. 

In our research, the following parameters goveming 
the operation of the MOGA are suitable: 

A chromosome consists of 28 integers; ’ each 
constrained to lie between the range which is estimated 
using the expert’s knowledge; 

The population size is 150; 
Two-point crossover is used to create two new 

chromosomes from two parent chromosomes; 
The mutation rate is 0.08 meaning that mutation has a 

0.08 chance of occurring in each new chromosome created 
by crossover; 

The MOGA is run for at least 30 generations; 
Elitism is enabled, permitting solutions of high rank 

(cut-off point can be specified) to pass directly into the next 
generation without modification; 

Primary criteria: minimize delays; 
Secondary criteria: minimize the number of vehicle 

stop; 
The parameters in fuzzy logic controller should be 

optimized to satisfy user demand. In traffic signal control, 
there are a number of diverse criteria or control objectives, 
such as maximize safety, minimize delays and minimize 
environment disadvantage et ai. The problem is that the 
optimum of each objective is achieved in different cycle 
times. These objectives are not completely coincident. We 
use the three objectives as an example to explain the 
relationship among different criteria. If the minimizing of 
delays is the main goal, the effects to other goals are little 
negative. The only positive effect is between the 
environment and safety. In other words, the 
environmentally effective traffic signal control can also be 
safe, because the cycle times of the environmentally 

effective traffic signals are quite long. The long average 
cycle time means that the number of amber intervals is 
smaller, and the risk of rear-end collisions is smaller. The 
biggest problem is that environmental or safe control 
strategy does not give a good delay result. The average 
delay can be even 40% bigger than the optimum delay. 

In order to achieve the desired flexibility, the 
parameters of the signal controller must be optimized with 
respect to different objectives or criteria. The 
multi-objective genetic algorithms (MOGA) can effectively 
solve this problem. 

Each optimal solution reflects a different trade-off 
between the desired objectives. When implementing the 
controller in a particular context, the solution that performs 
best with respect to the desired objectives for that context 
may be chosen from the optimal set by the user. The 
MOGA uses the Pareto ranking method to rank the 
solutions of each generation by the number of other 
solutions which dominate them. This technique is described 
more fully in Horn et a1 [14]. 

Classical optimization algorithms are capable, under 
strict continuity and derivability hypothesis, of finding the 
optimal value only in the single objective case and 
therefore the problem of finding the group of 
non-dominated solutions (the Pareto set) is reduced to 
several single objective optimizations. 

While traditional optimization algorithms do need 
the use of an utility function, the particular structure of GA 
can face the multi-objective optimization problem in- a 
more direct way, developing populations in which the 
diversity follows the conflicting objectives. 

Pareto-CA algorithms mainly differ from classical GA 
in the selection process, even though other specific 
operators might be constructed. In particular in this paper a 
novel crossover operator is introduced, together with a 
quick review of several other Pareto-GA techniques. Pareto 
tournament selection: As shown in [ 151 the toumament 
selection can consider the Pareto concept as a basis for the 
tournament: the selected individual is the one that 
dominates the individuals taking part to the tournament. 
Most profitable implementations of this method are usually 
coupled with sharing. Local Pareto selection. An effective 
way of maintaining diversity in the population able to 
follow the conflicting objectives, can be the use of local 
selection [I61 schema based on the Pareto dominance 
concept. In this case the population is placed on a toroidal 
grid and the members of the local tournament are chosen by 
means of a random walk in the neighborhoods of the given 
grid point. 

Multi-directional crossover. While usually one or two 
point classical cross-over operator is employed, in this 
work a new cross-over operator first introduced in 1211, 
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called multi-directional crossover, suitable both for single 
and multi-objective optimization is presented. 

4 Simulation and conclusions 

The situations of simulation for the effects of the 
fuzzy controller are described in the previous section in an 
intersection with four approaches, which uses four-phase 
signal with leading left turns. The intersection has two 
through lanes and one left turn bay on each approach. 

The simulation results show that the percentage of 
stops of our algorithms is smaller 15-25% than the 
traditional extension principle, and using our proposed 
algorithm, the average delay is also 15-30smallerthan the 
extension principle in the test area 100-15OOvph. The 
results also indicate that the application area of our 
proposed algorithm is wide including saturateam saturated 
traffic volumes, however the extension principle only fits to 
traffic signal mode in the area of very low traffic volumes. 

In our simulation, to optimize the performance of the 
controller, “minimize delays” is used as the primary criteria 
for multi-objective genetic algorithms (MOGA), and “to 
minimize the number of vehicle stops” is used as secondary 
criteria for MOGA. To evaluate the performance of the 
controller, average vehicle delays and percentage of 
stopped vehicles are compared with those of a 
traffic-actuated controller. These results show that the fuzzy 
controller has the ability to adjust its signal timing in 
response to changing traffic conditions on a real-time basis. 
Our proposed controller produces lower vehicle delays and 
percentage of stopped vehicles than the traffic-actuated 
controller 
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