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Abstract:

This paper deals with the traffic signal control using
fuzzy logic controller and multi-object genetic algorithm
(MOGA). It is not needed to build the traffic flow model for
Signal control approach in the intersection using the method
based on the fuzzy. Multi-objective Genetic algorithms are
used to optimize the parameters in the fuzzy logic controller
according to different traffic demand. However, this method
can effectively solve the problems of stochastic and unknown
in this dynamic system. This method has the adaptive signal
timing ability, and can make adjustments to signal timing in
response to observed changes.
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1. Introduction

Traffic signal is an essential element to manage the
transportation network. A number of traffic signal control
methods have been developed in the past. Recently, a major
research focus has been on application of artificial
intelligence techniques such as expert systems, fuzzy logic,
neural networks and genetic algorithms for intersection
signal control.

The systems of fuzzy logic traffic signal control
proposed by Niitymaki and Kikuchi [2] are based on the
fuzzy extension principle used in the seminal work by
Pappis and Mandani [1]. Mohamed B. Trabia [3] designed
a fuzzy -logic-based signal controller for a four-approach
isolated intersection with through and left-turning
movements. The fuzzy controller will regularly query the
traffic conditions in order to decide whether to extend or
terminate a current green phase. Niittymaki and Pursula [4]
investigated fuzzy control to traffic signals at the individual
intersection level. Fuzzy signal group control in their case
works in the same way as the traditional control, but a
fuzzy extender adjusts the extensions, and a fuzzy selector
selects the phase sequences. More thorough reviews of the
applications of fuzzy logic to traffic signal control can be
found in Sayers [5] and Hoogendoorn et al [6],[7].
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With the continuous growth of the available
computing resources, the attention of engineers has been
directed more and more to the possible use of complex
simulations directly in the early stages of the design
process. This aspect has underlined the substantial
weakness of traditional optimization approaches, which can
usually produce only single-objective optimized solutions,
and only if the objective function satisfies continuity and
often derivability conditions. This fact, together with the
need for a multi-disciplinary approach to the design, caused
a growing interest into the use of GA as a general purpose
optimizer. ‘

This paper deals with the traffic signal control using
fuzzy logic controller and MOGA. However, this method -
can effectively solve the problems of stochastic and
unknown in this dynamic system.

2. Fuzzy Logic controller for traffic signal control at
intersection

2.1 Simulation environment
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Figure 1: An isolated intersection with lane and
vehicle detector configuration
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We study an isolated signalized intersection with four
approaches and typical vehicle detectors. Figure 1 shows an
isolated intersection with lane and vehicle detector
configuration. Each approach has through, right-turning
and left-turning movements. Inductive loops for vehicle
detection are installed on stop-lines, upstream-lines, and
right-turning corner-lines. Detectors can count the number
of vehicles through the upstream-line, stop-line and
corner-line within a given time interval. To detect
left-turning vehicles, ultrasonic detectors are placed on side
of left-turning bays. These detectors can detect the vehicle
appearance and count the number of the vehicles driven
into left-turning bays.

A four-phase signal consisting of left turns, right turns
and though is shown in figure 2. In a cycle, each approach
goes through two time intervals, the green interval during
which vehicles on this approach can proceed through the
intersection, and red interval during which vehicles on this
approach cannot do. '
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Figure 2:Phase diagram for a four-phase signal
2.2 Definition of traffic variable

We define following traffic variable:
D: the approach jointed the intersection,
D e [EAST ,WEST,SOUTH,NORTH] , is one of East,

South, West, and North four approaches;
Pouung () : the pumber
upstream-line with in the time interval [t—At,¢] for
approach D;
P gne () the number of vehicles passed through

of wvehicles passed

stop-line (not including right-turning vehicles) with in the
time interval {t — At,¢] for approach D;

P, e () the number of vehicles passed corner-line
with in the time interval (f—Af,¢], for right-turning
vehicles (East turn to North, South turn to East, West turn
to South, and North turn to West), is defined as respectively,

Pyesrcume (0) > and

PEAST,CLINE (t) > PSOUTH,CLINE (t) 4
Puorra.come () 5
Py, 44y (£) : the number of vehicle which turn left from

the bay within the time interval [f—A¢,¢] for approach D;

Qp 54y (2) : the number of vehicle staying in bay at any

time ¢ for approach D;
QOp (1) : the number of vehicles which will pass

through stop-line, but not turn right, and are waiting in a
queue at any time ¢ for approach D;
Opr(#) : the number of only turn-right vehicle,

waiting in a queue at any time ¢ for approach D ;
0Oy, (t) : the number of vehicles waiting in a queue at

any time on the left-turning lanes for approach D;
QOpr(t) : the total number of vehicle waiting in

queue at any time ¢ for approach D, Q) ,(¢) consist of

previous three parts, for approach D, Q,,,(f) can express
as

QD,T )= QD,P O+0px @+ QD,L (@) m

Qpr(¢) Can be determined by the queue length L,

and the average length / occupied by each vehicle in the
queue. L can be detected by detectors such as inductive
loop, ultrasonic sensor and CCD camera. [/ can be
approximately calculated by statistic method. However, the
proportion of each partin O, ,(¢) is difficult to determine

in prior.

2.3 Traffic signal control based on a competitive fuzzy
logic

In the case of traffic signal control, the resource in
question is green time, and the problem is made more
complex by its temporal aspect and the ever-changing and
stochastic nature of the demand. This means that the
allocation of green time must be constantly reviewed as
time passes and the traffic situation changes, in order to
distribute it in the desired manner.

An approach to this problem is to derive a value for
each user, which reflects their claim on the limited resource,
and to use these values to determine the appropriate
balance of distribution of the resource. We call this value as
the urgency, meaning the urgency with which the stream
requires green. .

We divided the whole processes into three levels,
which are low, middle and high level.  The details refer
figure 3.
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Figure 3: Three levels of Traffic signal control

We divided the whole processes of traffic signal control
into three levels (see figure 3), which are low, middle and
high level. The low level deals with the traffic variables
called input data in which some dates are detected by
sensors and others are predicted. The middie level consists
of urgency values (or “Urgency degrees”), which are
calculated by fuzzy inference system. The high level
determines the traffic signal timing strategy called
decision-making level. ‘

2.4 The Derivation of Urgency Values

The Urgency degrees depended on traffic variables
calculated or predicted, and also depend on traffic date
detected by detectors such as inductive loop, infrared,
ultrasonic and video image processing detectors.

For a, b, ¢, and d (see figure 2) four phases, we define
urgency degrees as respectively U(a), U(b), U{c) and
U(d). In same phase, the urgency consists of two parts
which reflect different “urgency degree” on two approaches
whose relationships are described as : a) U(a):{U(a)_East,
U(a)_West}; b) Ub):{U(b)_South, U(b)_North}; «¢)
U(¢):{U(c)_South, U(c)_North}; and d) U(d):{U(d)_East,
U(d)_West}. -

In our research, the traffic variables P, (0) ,

Py guine ®) s Pocune@ s Pogay® s Qpar® s Opp(t)
and Q,,(¢) are described using Trapezoidal fuzzy
memberships set (see figure 4). These fuzzy sets provide an
analogy to human characterization by assigning
truthfulness value, 4, to linguistic terms. These terms are
“Small”, “Medium” and “Big”. For example, in fuzzy
membership function 4y, (Prysr o), “Big” is a fuzzy

set and Pp,or e (2) is a universe of discourse. In figure

4, for each traffic variable, we use four parameters a, b, ¢
and d to describe Trapezoidal shape. The four parameters
can be determined by expert knowledge, or optimized by
Genetic Algorithms. In this paper, fuzzy neural networks
are used to update and optimize these parameters.
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Figure 4: Trapezoidal fuzzy memberships sets for
traffic variables

The “urgency degrees” of four phases can be
determined by fuzzy inference system. In this paper, we
adopt fuzzy inference system. In our fuzzy inference
system, 36 fuzzy rules are adopted. Fuzzy rules are divided
to three groups with respective to “Big”, “Medium”, and
“Small” for urgency degree of each phase. .As examples,
for “a” phase, the fuzzy rules can be described as follows.

If {{ PEAST,ULINE (t) is big} and {{ Pyysr cume @ is
small} and { Py gy (£) is small}}} or { Opyer p (1) is big},
then {U{(a)_East is big} ‘

2
If {{ Pygsr yume (@) is big} and {{ Pypsr come () IS
small} and { Pyper g4y (8) is small}}} or { Qpper »(2) is big},

then {U(a)_West is big} 3)
If {{U(a)_East is big} or {U(a)_West is big} }, then
{{U(a) is big}} 4

In expression (2)-(4), we define the operation method
of each symbol. “and” means “Min”, “or” means “Max”.

3 The multi-objective optimization of parameters for
fuzzy logic controller

The GA is an optimization technique inspired by the
evolution process of natural life. The GA provides a very
flexible framework and, recently, has been expected to be
not only a global optimization method but also a
multi-objective optimization method in various areas.

The process of designing a GA consists of two parts:
(1) designing a representation and a crossover operator, and
(2) designing a generation-alternation model. In designing a
representation and a crossover operator, we determine how
to represent a solution on the computer and how to generate
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a new solution from two or more solutions. The
performance of GAs heavily depends on a representation
and a crossover operator. It is important to consider
characteristics of problem domain when designing a
representation and a crossover operator. In designing a
generation-alternation model, we design the way of
choosing pairs of parents for generating children by
crossover and the way of selecting individuals to survive in
the next generation. By devising a generation-alternation
model, we can_ allow a GA to effectively search on a
multi-modal search space or to find a set of non-dominated
solutions in a single run by explicitly handling multiple
criteria.

In traffic signal control, there are a number of diverse
criteria or control objectives, such as maximize safety,
minimize delays and minimize environment disadvantage
et al. The problem is that the optimum of each objective is
achieved in different cycle times. These objectives are not
completely coincident. We use the three objectives as an

example to explain the relationship among different criteria.

If the minimizing of delays is the main goal, the effects to
other goals are little negative. The only positive effect is
between the environment and safety. In other words, the
environmentally effective traffic signal control can also be
safe, because the cycle times of the environmentaily
effective traffic signals are quite long. The long average
cycle time means that the number of amber intervals is
smaller, and the risk of rear-end collisions is smaller. The
biggest problem is that environmental or safe control
strategy does not give a good delay result. The average
delay can be even 40% bigger than the optimum delay.

In order to achieve the desired flexibility, the
parameters of the signal controller must be optimized with
respect to different objectives or criteria. The
muiti-objective genetic algorithms (MOGA) can effectively
solve this problem.

Each optimal solution reflects a different trade-off
between the desired objectives. When implementing the
controller in a particular context, the solution that performs
best with respect to the desired objectives for that context
may be chosen from the optimal set by the user. The
MOGA uses the Pareto ranking method to rank the
solutions of each generation by the number of other
solutions which dominate them. This technique is described
more fully in Horn et al [8].

In our proposed method, 7 types of traffic variables

PD,ULJNE (t) » PD,SLINE (t) > PD,CLINE (t) > PD,BAY (t) »

QD,BAy(t) s QD’P(t) and QD)L(t) are described

using Trapezoidal fuzzy memberships set, and for each
traffic variable, we use four parameters a, b, ¢ and d to
describe Trapezoidal shape, therefore, the total number of

parameters are 7*4=28. In most case, the value of traffic
variable is integer, so the parameters optimized are suitably
described using integers. To reduce the range of parameter
space, and decrease the computational cost, expert
knowledge is often adopted so that the range of each
parameter is in a smaller interval.

Classical optimization algorithms are capable, under
strict continuity and derivability hypothesis, of finding the
optimal value only in the single objective case and
therefore the problem of finding the group of
non-dominated solutions (the Pareto set) is reduced to
several single objective optimizations.

While traditional optimization algorithms do need
the use of a utility function, the particular structureof GA
can face the multi-objective optimization problem in a
more direct way, developing populations in which the
diversity follows the conflicting objectives.

Pareto-GA algorithms mainly differ from classical GA
in the selection process, even though other specific
operators might be constructed. In particular in this paper a
novel crossover operator is introduced, together with a
quick review of several other Pareto-GA techniques.

Pareto tournament selection: the tournament selection
can consider the Pareto concept as a basis for the
tournament: the selected individual is the one that
dominates the individuals taking part to the tournament.
Most profitable implementations of this method are usually
coupled with sharing.

Local Pareto selection. As shown in [10] an effective
way of maintaining diversity in the population able to
follow the conflicting objectives, can be the use of local
selection schema based on the Pareto dominance concept.
In this case the population is placed on a toroidal grid and
the members of the local tournament are chosen by means
of a random walk in the neighborhoods of the given grid
point.

Objective 1 MOGA || Optimized
solutions:
. i sobject],
Objective 2 Controller’ sobject2,
. parameters S
: space sobjectN
Objective N ;
Select best
solution
according to
. user’
Fuzzy logic controller jg¢—— requirement

Figure 5: Procedure of fuzzy logic controller
parameter optimization
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Ranking-based selection (non-dominated sorting GA).
With this approach, the classical fitness function - is
substituted by a ranking value. To all the non-dominated
members a rank of one is assigned, and then removed from
the population. The non-dominated members in the
remaining part of the population are then assigned a rank of
two and this process is continued until the entire population
is ranked. To each individual is then assigned a fitness
value based on its non-domination ranking,.

Vector evaluated genetic algorithm. In this approach,
proposed by Schaffer and referred to as VEGA algorithm,
the population of size P is subdivided into N
sub-populations, with each of them addressing one of N
criteria. Typically, as done in {9}, the different criteria are
expressed as different utility functions with N different
weighting. Multi-directional crossover. While usually one
or two point classical cross-over operator is employed, in
this work a new cross-over operator first introduced in [11],
called multi-directional crossover, suitable both for single
and multi-objective optimization is presented.

In our research, the following parameters governing
the operation of the MOGA are suitable: '

A chromosome consists of 28 integers; each
constrained to lie between the range which is estimated
using the expert’s knowledge;

The population size is 150;

Two-point crossover is used to create two new
chromosomes from two parent chromosomes;

The mutation rate is 0.08 meaning that mutation has a
0.08 chance of occurring in each new chromosome created
by crossover;

The MOGA is run for at least 30 generations;

Elitism is enabled, permitting solutions of high rank
(cut-off point can be specified) to pass directly into the next
generation without modification;

Primary criteria: minimize delays;

Secondary criteria: minimize the number of vehicle
stop; -

The parameters in fuzzy logic controller should be
optimized to satisfy user demand. In traffic signal control,
there are a number of diverse criteria or control objectives,
such as maximize safety, minimize delays and minimize
environment disadvantage et al. The problem is that the
optimum of each objective is achieved in different cycle
times. These objectives are not completely coincident. We
use the three objectives as an example to explain the
relationship among different criteria. If the minimizing of
delays is the main goal, the effects to other goals are little
negative. The only positive effect is between the
environment and safety. . In other words, the
environmentally effective traffic signal control can also be
safe, because the cycle times of the environmentally

effective traffic signals are quite long. The long average
cycle time means that the number of amber intervals is
smaller, and the risk of rear-end collisions is smaller. The
biggest problem is that environmental or safe control
strategy does not give a good delay result. The average
delay can be even 40% bigger than the optimum delay.

In order to achieve the desired flexibility, the
parameters of the signal controller must be optimized with
respect to different objectives or criteria. The
multi-objective genetic algorithms (MOGA) can effectively
solve this problem.

Each optimal solution reflects a different trade-off
between the desired objectives. When implementing the
controller in a particular context, the solution that performs
best with respect to the desired objectives for that context
may be chosen from the optimal set by the user. The
MOGA uses the Pareto ranking method to rank the
solutions of each generation by the number of other
solutions which dominate them. This technique is described
more fully in Horn et al (14].

Classical optimization algorithms are capable, under
strict continuity and derivability hypothesis, of finding the
optimal value only in the single objective case and
therefore the problem of finding the group of
non-dominated solutions (the Pareto set) is reduced to’
several single objective optimizations.

While traditional optimization algorithms do need
the use of an utility function, the particular structure of GA
can face the multi-objective optimization problem in-a -
more direct way, developing populations in which the
diversity follows the conflicting objectives.

Pareto-GA algorithms mainly differ from classical GA
in the selection process, even though other specific
operators might be constructed. In particular in this paper a
novel crossover operator is introduced, together with a
quick review of several other Pareto-GA techniques. Pareto
tournament selection: As shown in [15] the tournament
selection can consider the Pareto concept as a basis for the
tournament: the selected individual is the one that
dominates the individuals taking part to the tournament.
Most profitable implementations of this method are usually
coupled with sharing. Local Pareto selection. An effective
way of maintaining diversity in the population able to
follow the conflicting objectives, can be the use of local
selection [16] schema based on the Pareto dominance
concept. In this case the population is placed on a toroidal
grid and the members of the local tournament are chosen by
means of a random walk in the neighborhoods of the given
grid point.

Multi-directional crossover. While usually one or two
point classical cross-over operator is employed, in this
work a new cross-over operator first introduced in [21],
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called multi-directional crossover, suitable both for single
and multi-objective optimization is presented.

4 Simulation and conclusions

The situations of simulation for the effects of the
fuzzy controller are described in the previous section in an
intersection with four approaches, which uses four-phase
signal with leading left turns. The intersection has two
through lanes and one left turn bay on each approach.

The simulation results show that the percentage of
stops of our algorithms is smaller 15-25% than the
traditional extension principle, and using our proposed
algorithm, the average delay is also 15-30smallerthan the
extension principle in the test area 100-1500vph. The
results also indicate that the application area of our
proposed algorithm is wide including saturated/un saturated
traffic volumes, however the extension principle only fits to
traffic signal mode in the area of very low traffic volumes.

In our simulation, to optimize the performance of the
controller, “minimize delays” is used as the primary criteria
for multi-objective genetic algorithms (MOGA), and “to
minimize the number of vehicle stops” is used as secondary
criteria for MOGA. To evaluate the performance of the
controller, average vehicle delays and percentage of
stopped vehicles are compared with those of a
traffic-actuated controller. These resuits show that the fuzzy
controller has the ability to adjust its signal timing in
response to changing traffic conditions on a real-time basis.
Our proposed controller produces lower vehicle delays and
percentage of stopped vehicles than the traffic-actuated
controller
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