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Abstract—Our research deals with the design of a training
system to support decision-making in the preparation and the
management of maintenance interventions in high-risk industries
namely SEVESO sites. The proposed system incorporates virtual
reality and artificial intelligence to simulate virtual autonomous
characters and their cognitive processes in dangerous working
situations. It generates behaviour-based errors to support
learning and risk prevention. It uses new mechanisms taking into
account human factors with respect to cognitive modelling of
human behaviour regarding risky situations. In the simulated
environment the trainee can visualize the risks incurred during
his work with the virtual agents. The emergent risks depend on
the cognitive characteristics of the virtual operators and on the
expertise of the trainee. We propose a multi-agent system to
support the control of virtual operators represented by virtual
cognitive agents. The difference with a classic MAS is that our
cognitive agents are enriched with a planner for selecting actions
according to goals, the environment and to the personal
characteristics of the agents (time pressure, caution, tiredness,
hunger).

Index Terms—Cognitive planning, intelligent
environment, multi-agent system, risk prevention.

virtual

I. INTRODUCTION

1.1. Research context

The combination of virtual reality with multi-agent systems
gives the opportunity to offer virtual environments for
improving training and decision-making with avatars and
virtual autonomous agents in hazardous surroundings, on
high-risk so-called SEVESO plant. The context of our research
is to model collaborative and cooperative work to improve
training, decision-making and risk avoidance and to show the
results of the activity in a hazardous environment [1]. As a
supplementary benefit, these combination enable introduce
unexpected variations so that training scenarios are no longer
predefined and ideal. This feature is particularly interesting
when training objectives are not only to acquire the correct
procedure, but also to highlight the difficulty of cooperative
work and the constraints linked to hazardous professional
activities. This paper addresses the design and the
implementation of a system to simulate autonomous behaviour
of virtual operators interacting with real operators in a virtual
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environment for training/learning. The system aims to take into
account various situational constraints and human-factors
issues to support the generation of the subsequent variations in
the way virtual operators are behaving and applying the
procedures to achieve their task. Such constraints could be the
result of the combination of cognitive and physical parameters
such as tiredness, stress, expertise, hunger, motivation, etc.
They can also come from time pressure, missing tools, etc.
Taking these human factors into account we are able to
simulate erroneous behaviours and some deviations. These
deviations could be: errors, failure, indiscipline and botching.

Virtual reality is useful for training people but systems based
only on this technology are rather reductive and deterministic.
We want to let our virtual characters react to the changes of the
environment, take their own decisions and work together with
the real operator. We want them to react in an autonomous way.
We therefore propose coupling virtual reality with multi-agent
systems.

Our work is based on cognitive modelling, errors modelling,
multi-agent planning and activity modelling. We propose an
ontological and knowledge-based model to describe the
operator’s activity (HAWAI-DL?), a related risk model, a
model of the environment (COLOMBO?) and a decision-maker
module based on a multi-agent system (MASVER®) to interpret
the models and to simulate the operators’ behaviour. A
challenge is to develop an intelligent virtual environment that
will be connected to MASVERP that will support the control of
virtual operators represented by cognitive agents.

1.2. Our Assumptions

Our work is based on two assumptions: (i) there is a need for
such systems; and (ii) such systems can be implemented with
MAS.

The first assumption is that virtual reality can improve safety
training for industrial interventions [2]. Real working situations
on SEVESO site can be costly and dangerous; therefore virtual
reality will be a knowledge and know-how cheaper vector. The
potentials offered by VR are offering new perspectives to
training: virtual presentation of the working situation, of the
installation, the tools function, learning of how to detect the
defaults while playing a scenario, etc. Indeed, virtual
environment might favour learning by doing since the user is in
constant interactivity with the environment (perception-
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decision-action loop) [3, 4, 5]. Training and decision making
related to safety management can be improved when operators
and managers see the impact of their decisions and actions on
the technical and human system they have in charge.

Our second assumption is that such an environment can be
fruitfully implemented by a multi-agent system. We propose a
new system, MASVERP [1] that endows the environment
(virtual characters and objects) with autonomous decisional
capacities. Three different entities share the same environment:
(i) virtual characters represented by autonomous cognitive
agents; able to make decisions using a planner that interprets
the high level task model; (ii) the behavioural objects of the
environment represented by reactive agents and finally (iii) an
avatar representing the trainee.

In our project, our goal is neither to reproduce perfect
cognitive mechanisms nor to describe the operator’s cognition.

Instead, we aim to emulate the behaviours that could occur
with a reasonable level of faithfulness dynamically, according
to a cognitive model representing the evolution of the cognitive
state of an operator and the incurred risk. This approach
requires merging three scientific domains as shown Fig. 1.
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Fig. 1. Coupling knowledge engineering and virtual reality.

We merge (i) knowledge engineering databases to provide
an industrial risk model and an ontological task model both
issued from field analysis, (ii) multi-agent systems and (iii)
virtual reality. In this article we focus only on the aspects
related to the knowledge and decisional module. We do not
consider the mere design of the 3D virtual environment, the
animation and visual rendering of the virtual characters.

We present the language HAWAI-DL specified to support
the description of human activity, the decisional architecture of
our system, the multi-agent systems MASVERP and methods
to augment the virtual agent behaviour with Al structures that
incorporate among other things behaviours, knowledge,
environment, and characteristics models. We present our
decision algorithm taking into account cognitive aspects and
we finally present some preliminary results and the virtual

environment for risk prevention.

II. RELATED WORK

2.1 Behaviour modelling and cognitive structures in
characters animation

Demitri Terzopoulos and Wei Shao [6] developed a system
representing intelligent virtual pedestrians evolving in a virtual
urban environment. Their algorithms aims at emulating not
only appearance, locomotion, and behaviour of each intelligent
character but also at generating complex collective behaviours
and actions as can be observed in urban spaces. Their system is
based on cognitive modelling [7] and a hierarchy of high data
structures integrating motor, perceptual, behavioural, and
cognitive components. Each pedestrian has a stack of goals set
by the behavioural and cognitive control components. Each one
also has an action selection mechanism that determines the
action to implement according to the mental state of the
pedestrian (physiological and psychological social needs:
tiredness, thirst, curiosity). The value of the mental state
matches a specific behaviour.

Along the same line, IRISA developed a crowd simulator
based on studies of pedestrian behaviours (Virtual Urban
Environment System) [8]. The behavioural model of
pedestrians includes social and driving rules of interaction
based on Gibson affordance theory [9] and on the perception
model proposed by Badler [10]. They proposed the HPTS++
language inspired by a cognitive theory [11] to model their
autonomous agents organised in a hierarchy of automata.

In the field of training tools using virtual reality and human
behaviour modelling, Jeff Rickel and Lewis Johnson designed
STEVE, an autonomous animated agent that lives in a virtual
world and interacts with students [12, 13]. It has been designed
to help students in learning to perform procedural tasks.
STEVE has a cognitive mono-agent architecture based on
SOAR [14], which allows it to know the state of the
environment in real time and to decide what actions to
undertake. STEVE’s technologies have been further used for
leadership training in Virtual Bosnia [15, 16].

2.2 Multi-agent systems combined with VR in VET/L

A good overview of the combination of virtual reality and
multi-agent systems can be also found in [17] and in [18]. The
GRIC-GRAAL [17] group of researchers developed a training
tool for firemen. It aims at keeping them out of danger. The
architecture is a multi-agent system composed of emotional and
reactive agents. It is based on a personality model (Five-Factor
Model) and on an advanced emotional ontological model.
Agents have a goal to achieve and use a Prolog planner to
determine their actions. In the MASCARET project [18], the
physical environment represents a plant where an exercise
takes place including physical phenomena that can appear on
the plant (fire, smoke, water spreading). The trainees play the
role of the different group managers who intervene during an
incident and the trainer participates to the simulation as a
troublemaker. The system is driven by the MASCARET model
proposed for organizing the interactions between agents (give
them reactive and social abilities).
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2.3 Positioning our work

Our approach differs from the previous work in the
following way. Current approaches rely mostly on theoretical
architectures (automata, Petri networks, expert systems). Only
a few works propose to build systems taking into account
cognitive behaviour model and error models for virtual human
animation [6, 7, 8]. In our work, taking into account human
factors is essential. We based our research on cognitive models
in the domain of safety and human behaviour in risky situations
[19, 20, 21]; from the models we propose new mechanisms
using multi-agent system to represent human decisional process
and human behaviour-based errors to finally simulate them in a
virtual environment. To achieve our goal we developed a
generic language that describes the goal-decomposition of an
intervention and integrates some of its related cognitive and
safety aspects.

III. COGNITIVE AND ACTIVITY MODEL

In the virtual environment the objective is to simulate the
agents’ operating mode in both normal and constrained work
conditions. These situational constraints could have three
origins: (i) physical dimensions of the environment like
difficulties related to the geometry of the site, operator
morphology, coldness, or wind; (ii) organizational dimension,
prescribed procedure; and (iii) cognitive and mental
characteristics of the virtual operators like objectives, time
pressure, cautiousness, tiredness, stress, expertise, etc.
Cognitive planning lets us to simulate some of the possible
deviations of virtual agent’s behaviours while interacting with
the environment and with the other operators.

3.1. The COCOM model

Depending on the situational constraints describe previously,
our virtual operators have different behaviours. We rely on a
model proposed by Hollnagel [21] the COCOM model. The
model enables to describe, what he called, the control mode of
an operator that depends on the time pressure. Hollnagel
defines four types of control modes associated to time zones in
which an agent can operate. (i) In the strategic control mode,
the agent has a wide time horizon and looks ahead at
higher-level goals. He has a both large and detailed anticipation
of the work system. (ii) The tactical control mode characterises
situations where performance more or less follows a known
procedure or rule. The user’s time horizon goes somewhat
beyond the dominant needs of the present, but planning is of
limited range. He often chooses the simplest situation and can
therefore not respect the safety constraints. (iii) In the
opportunistic control mode, the next action reflects the salient
features of the current context. Only little planning or
anticipation is involved, perhaps because the context is not
clearly understood by the agent or because the situation is
chaotic. Opportunistic control is a heuristic that is applied when
the knowledge mismatch is large, either due to inexperience,
lack of formal knowledge, or an unusual state of the
environment. (iv) In the scrambled control mode, the next
action is in practice unpredictable or random. Such a
performance is typically the case when people act in panic,

when cognition is effectively paralyzed and there is
accordingly little or no correspondence between the situation
and the actions. Thus depending on the control mode, the
operator will plan broadly and choose the actions more adapted
to the situation or plan to a more limited degree and
compromise on safety aspects to gain productivity.

3.2. Border-line tolerated conditions of use (BTCU)

To characterize the deviations eventually operated by virtual
operators we were inspired by the notion of border-line
tolerated conditions of use (BTCU) from studies in ergonomics
and human reliability. This notion highlights the individual and
social regulations operated on the field which bring the use
conditions of the tools and the realization mode of the task to
some compromise zones affecting safety [22]. For example,
some tasks are partially or not at all done because of a lack of
time due to the compromises made between safety and
production. This concept is a complement of others elements
linked to the individual, like those reported to the
consciousness of the risk, the tiredness effects or the time
pressure on the performance, etc. It is a characteristic of the
task with safety implications as “allowed to be performed”,
“allowed not to be performed”, or “not allowed”. If a task is
considered as a BTCU, the agent will decide to perform it
depending on its control mode and its characteristics (e.g. if it is
in a hurry).

3.3. Description of the human/operators activity

We took our inspiration from studies on human activity in
natural situations like those conducted in ergonomics or
psychology domain. Researchers in ergonomic, generally talk
about task and/or activity models to refer to models constructed
on the basis of data collected by ergonomics analysis of work
and activity. The various existing analysis methods are sharing
the same goal which is to provide an efficient model to describe
the specific exigencies, strategies and modes of operation
related to any vocational activity. Among the usual formalisms
used to figure out the results of work analysis, some are
well-adapted, generic and have the interesting ability of taking
the objectives, resources and working process of a subject in
relation with his complex environment into account. Such
methods are focused on the task that can be decomposed in
subtasks, operations or actions.

We can distinguish (i) HTA (Hierarchical Task Analysis),
GTA (Groupware Task Analysis), METISSE (Tasks
Description Model to Assist and Track the Trainee- French
translation) or MAD* (Analytic Method for Describing users
TaskS orienTed of inteRface specificAtion-French
translation-). GTA is specificaly designed to model collective
tasks. MAD* is more focused on the activity of an individual
even if the latest version tends to integrate a collective
dimension.

We propose a description language derived from MAD and
METISSE formalisms [23], HAWAI-DL. It supports (i) the
integration of factors affecting the performance at a collective
level; (ii) the expression of the operator’s activity as it should
be; (iii) how the activity may change in deteriorated situations
(lack of time, imprudent behaviour, safety behaviour, tiredness,
etc.). Our language takes into account the safety characteristics
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linked to risky activities. HAWAI-DL provides a hierarchical
description of the activity, allowing activities corresponding to
the procedure descriptions provided by experts during
interviews with ergonomics researchers to be represented. In
addition, this description is extended by the variances and the
errors exposed in interviewing the operators on the plant,
and/or the observations and the analyses obtained by the
experts in ergonomic. Our model allows taking into account
tasks that are hierarchically independent (i.e. that have no
hierarchical relations with the main task). We call this kind of
tasks “hyperonymic tasks”. For example it can be a task that
indicates how to manage a leak. Our model also allows taking
into account exceptional tasks that are triggered by exceptional
events such as a leak or a fire. In addition, we integrate into this
model the conditions under which an activity should be done,
such as BTCU and their associated risks.

A task in HAWAI-DL is described by several attributes
among which the following ones are directly relevant for our
purpose:

e Name of the task.

e Goal: the expected state of the world after completing the
task.

e Constructor: SEQ (sequential), PAR (parallel), AND, OR,
SIM (simultaneous), as well as ALT (alternative).

e Complex : if the task has subtasks or not

e Iterative: if a task is repeated several times, depending on
its duration or its frequency.

e Focus: if a sub-task is the main task in the hierarchical

decomposition of a task.

Dangerous: if a task is dangerous or not.

Interruptible: if a task is interruptible or not.

Optional: if a task is optional or not.

Priority: a task can have a high, medium, or low priority.

Safety-related task: if a task with safety implications is

“allowed to be performed”, “allowed not to be performed”,

or “not allowed”.

e BTCU : if the task have safety implications

e Agents : agents and roles that can performed the task

I
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Fig. 2. Role, task, and agent relations in GTA.

HAWAI-DL allows a detailed description of tasks. It goes
beyond the listing of the pre-conditions and post-conditions of
a task to a more detailed description, in particular for the
pre-conditions where we define:

e Mandatory pre-conditions: state of the world required for
the task to be performed.

e Regulatory pre-conditions: state of the world required by
safety regulations.

e Resources: tools that are required to accomplish the task.

e Triggering pre-conditions: events that require immediate
treatment for a specific task (triggered task).

e Favourable pre-conditions: the context in which the task is
relevant, for example:

= A safety-related task: for the sake of safety.

= A time-related task: if there is enough time, it is better
to perform it.

= An expertise-related task: is a task that can be
performed either by experts or by inexperienced.

=  An environment-related task: is an alternative task
that depends on the environment conditions. For
example, there is two ways to remove a pipe. The
environment conditions can be: bolts are not rusted. If
the bolts are rusted we prefer do the task with the
good environment conditions.

HAWAI-DL represents the impact of a task on the
environment as:

e Post-conditions: state of objects expected after performing
a task, and/or results after completing the task.

e Perceptive feedback: feedback effects of the task on the
environment.

In addition to the previous conditions, we define, for iterative
tasks:

e Stop conditions: the task is repeated until we reach a
predefined state (by default, the outcomes of the task). For
example, these may be defined as duration, a specific
number of iterations, or a number of instances (depending
on the current scenario) of the task.

Visual HAWAI - v3sversion12.xml
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Fig. 3. Sample of a task model with HAWAI-DL.
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IV. OUR ARCHITECTURE

4.1 Overall Architecture

Fig. 4 presents the architecture of our system on the
decisional side. The multi-agent system loads the activity
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model, the risk model and the world model. The activity and the
world model are traduced into ontological models and are
stored in the agent environment and in COLOMBO

environment. The risk model is composed with decisional rules.

The world model contains the instance of all objects present in
the virtual environment, including their state and their position.
COLOMBO sets up the state of the objects whenever
something appends in the environment or after an action
decided by MASVERP or by the real character, and then
updates the state of the world in real time. MASVERP can
access the state of the world by sending request messages to
COLOMBO.

Activity model Rizk model Wiarld madel
S _——___;-

Decisional e — A
module el Tee Mhodify Messages

Fig. 4. Overall architecture: interaction between modules.

4.2 MASVERP agents

To remind our objectives, we want the virtual operators to
adapt to the environment in an autonomous way, to respond and
react to the manager’s orders and to cooperate with the human
operators. We assume that a MAS is a promising solution to
reach this goal in terms of organisation, cooperation and
planning [24] and we propose MASVERP in order to model the
decisional module of the virtual agents and to give them the
required autonomous abilities. The cognitive entities
representing the virtual operators are complex and based on the
BDI (Belief, Desire, Intention) model [25]. The agents are
provided with a capacity of planning according to a high level
cognitive activity model in the following way:

e Interpret the task model
e Generate a plan (sequence of tasks)
e Adapt to the environment and do plan repair

The agent evolves in an open and dynamic environment, and
obviously it is a complex system. The agent reacts to any
possible unexpected events considered as relevant to risk

prevention like e.g. a fire, a leak or any other incident that could
happen. He must achieve the assigned task and find a
compromise whenever possible to cope with simultaneous (and
sometime incompatible) goals.

e  Present a consistent behaviour

Substituting a virtual autonomous character to a human
operator requires obtaining an operational behaviour in order to
represent what a real operator could do.

We can see, as shown Fig. 5, that the cognitive agents
comprise: (i) skills: in this part we specify what the agents can
do and how they can do it; (ii) a list of goals: i.e. what they have
to do. They also have an updater to refresh their goals, for
example, if during the exercise they are thirsty their goal will be
to quench their thirst; (iii) knowledge: what they know about
the environment and also what they have learnt; (iv)
environment: this part contains the environment variables and
state; (v) address book: all the acquaintances of the agent,
whom he knows and whom he can interact with; (vi) memory:
this field regroups all the agent internal states and his
characteristics, it could be progressive (pg) or permanent (pm)
characteristics as cautiousness (pm), tiredness (pg), temporal
pressure (pg), expertise (pm); they are used to determinate in
real time the behaviour (control mode) adopted by the agent;
the model of the activity is stored in the agent memory; (vii) a
planner which produces their decisions i.e. their (viii) activity.

Bddress Book
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1 Updater Madule
N Cecision Module
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Fig. 5. MASVERP cognitive agents.
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4.3 MASVERP Planner

The planning problem is at the intersection of two
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domains: cognitive modelling and planning (robotics).
Cognitive modelling is an area of computer science that deals
with simulating human problem solving and mental task
processes in a computerized model. Such a model can be used
to simulate or predict human behaviour or performance on
modelled tasks. Planning is used to produce action sequences
or so-called plans to achieve a goal or to realize a complex task.
It is used in robotics and commonly in multi-agent systems.
Although the two approaches are quite different we propose to
merge them into what we call the “cognitive planning agent”.
We distinguish two phases of planning, (i) a provisional
planning or pre-planning and (ii) a real synchronous planning
during which it can be necessary to re-plan or to repair. The
first phase imposes building a flexible plan allowing the
adaptation to unexpected events. At the end of the pre-planning
phase we have a provisional flexible plan and after the
execution we have an effective adapted plan. The pre-planning
is also useful to the operators to anticipate the resources they
will need. Indeed, in the real activity, the operators prepare
their intervention and define a number of tools depending on
their mission and on the possible unexpected situations. The
planner has the following entries: (i) the activity model of the
operator used to specify the intervention, (ii) a risk model
presenting the possible risks incurred during the intervention,
(iii) a scenario and a world model containing the scenario data
and the state of the different objects and resources of the
environment, (iv) the characteristics of the agent taken into
account to define the associated control mode in real time and
finally (v) the goals. The planner provides the operators activity
(i.e. plans).

V. IMPLEMENTATION

5.1 Multi-Agent platform

In MASVERP, an agent is built from an OMAS” agent
template. It has several files representing its environment and
containing its skills. With OMAS the user can define agents,
give them skills and goals (programmed as Lisp functions),
then run them. Platform options allow tracing agent behaviour
or messages. In addition, OMAS offers an advanced model of
an assistant agent and allows creating local coteries. A coterie
is the agent organisation; every agent belonging to the same
coterie can communicate, receive and view all messages.

5.2 Computing the control mode

We implement the COCOM model adding physical and
cognitive parameters to compute the control mode. The control
mode determines how the agents coordinate their actions and
select the task to execute. To compute the control mode of our
cognitive agents we add several states of an agent. We also add
a Knock out (K.O) mode which is reached when the agent in
not able to do any task. We take into consideration (1) hunger,
thirst, physical tiredness to determine the motivation; (2)
cognitive load and tiredness to determine the vigilance, (3)
Stress, motivation to determine the agitation; (4) Motivation,

> Open Multi-Agents System: a platform developed in University of
Technology of Compiegne in France (UTC).

agitation and stress to determine the control mode.
5.3 Planning Algorithms

In the mode strategic, tactic and opportunistic the agent will
do the pre-planning for the resources. To select the action, we
develop different algorithms depending on the control mode.
Below, we present the algorithm used to cover the tree of tasks.

In the first step of the Agent-Planning algorithm (Fig. 6) we
determine if the task conditions (mandatory, favourable,
regulatory and BTCU) are activated. The mandatory conditions
are the state of the world required for the task to be performed,
therefore if they are false, the task cannot be achieved. The
function that checks the mandatory and resources conditions is
called Solve-X-Task-Conditions, because we are trying to make
the conditions true. We evaluate the mandatory conditions
(Solve-Mandatory-Task-Conditions). If it is not true, the Apply-
Solving-Method looks for a task in the task tree and in the
hyperonymic tasks that have for post-conditions the mandatory
conditions in parameters. If the research is successful then we
apply the task that has been found.

Agent-Planning (agent, tree, mode)
If (mode = STRATEGIC or mode = TACTICAL or mode =
OPPORTUNISTIC) then
Resource-Planning (agent)
Task€ Main-task (tree)
Goal € has-goal (Task)
Subtask € has-subtask (Task)
Constructor € has-constructor (Task)
Result = Solve-Mandatory-Task-Conditions (Task)
T-CLU = 2*Number-of-BTCU-Tasks (tree)/3
If result = FALSE then Return FAILURE
Else //step 1
Mandatory-Activated-State = TRUE
Result = BTCU-Treatment (T-CLU, tree, Task, mode)
If result = TRUE
Then BTCU-Activated-State = TRUE
Else BTCU -Activated-State = FALSE
Result = Favourable-Task-Conditions (Task, mode)
If result = TRUE then Favourable-Activated-State = TRUE
Else Favourable-Activated-State = FALSE
If (agent-expert? = TRUE and agent-cautious? = FALSE) or
(mode <> STRATEGIC ) then Regulatory-Activated-State = FALSE
Else result = Regulatory-Task-Conditions (Task, mode)
If result = TRUE then Regulatory-Activated-State =
TRUE Else Regulatory-Activated-State = FALSE
Result = Solve-Resource-Task-Conditions (agent, Task)
If result = TRUE then Resource-Activated-State = TRUE
Else Resource-Activated-State = FALSE
If Mandatory-Activated-State = TRUE and //step 2
Resource-Activated-State = TRUE then
T-CLU=T-CLU -1
If Complex-task? = FALSE //it is a simple task, a leaf
Then Apply-Simple-Task (Task)
Else If Constructor = SEQ then
Agent-Planning-SEQ (Subtask)
Else If Constructor = ALT then
Agent-Planning-ALT (Subtask)
Else If Constructor = AND then
Agent-Planning-AND (Subtask)
Else If Constructor = OR then
Agent-Planning-OR (Subtask)
End.

Fig. 6. Agent planning algorithm.

We are doing the same treatment for the favourable
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(Favourable-Task-Conditions) and regulatory conditions
(Regulatory-Task-Conditions). We are trying to make them
true. However, in the case of regulatory conditions, an expert
and careless agent will not take them into account. If we are in
an alternative case, we will try to solve the regulatory
conditions only if there is no other alternative task possible.

The BTCU conditions are linked to the safety conditions of a
task (BTCU-Treatment). We compute a value that conditions
the number of BTCU that an agent can executed (T-CLU). If
this value is not nil and if the task is a BTCU task, then
depending on the control mode we determine if the agent will
do the BTCU or not. If the agent is in a tactical mode, if the
T-CLU is not nil we choose in a random way if he will do the
BTCU or not. If the result is true then we check if the BTCU
condition is true then the final decision is that the agent will do
the task. In the other modes, the accomplishment of the BTCU
task relies on another criteria such as caution, expertise and
safety implications of the task.

Finally, to solve the resource conditions (Sol/ve-Resource
-Task-Conditions), we determine if the agent has the tool in his
toolbox or with him. If not, if he is in a strategic or tactical
mode and if he is not in a hurry he can choose whether to look
for the tool in the industrial unit or to ask another agent. If he
choose the latter solution, if the other agent is not available this
will increase his stress and he will look for the tool in the
industrial unit. If he is in the opportunistic mode he will reason
by analogy. He will look for a tool that can replace the needed
one. For example, he will take a pawl-spanner instead of an
adjustable-spanner. In the scramble mode he tries to find the
tool.

In the step 2, if the step 1 returned true for the mandatory and
resources conditions then we check if the task is a complex task
or not. Ifit is not a leaf of the task tree we called other functions
depending on the task constructor.

The constructor SEQ obliges each subtask to be realized one
after the other. The constructor ALT allows one task to be
selected from among several tasks depending on: the
environmental conditions, the state and level of the operator,
and the available resources. Choosing one of the alternatives
tasks depend also on specific BTCU and on the control mode of
the operator. If the alternative task does not succeed then the
agent can choose another possible one. The constructor OR
works like ALT but the task can be chosen in any order. The
constructor AND works like SEQ but each task must to be
realized.

If the task is a leaf of the task tree, we called
Apply-Simple-Task. We have different categories of tasks:
decisional tasks, perceptive tasks and actions tasks. The leaves
are actions tasks. Some actions tasks required another level of
planning. Let us consider the task “put a deposit on the gate”.
To do this task, the agent will first set up his goal. To solve the
mandatory conditions it will look for a task whose effect on the
world will be: gate is unlocked. After setting up his goal, the
agent uses COLOMBO and the object model to look for a
method to lock the gate depending on the kind of gate. He will:
(1) ask COLOMBO which kind of gate it is, (2) look for a
method to lock the gate in the ontological object model, (3)
apply the method/action found. The preconditions of an action
are for example to be near the object and to be in the good

position. All these preconditions are verified when we call
Apply-Simple-Task. 1f the agent is an expert, the environment
conditions will be integrated into the reasoning. At the simple
task level we are in a planning mode and no longer in an action
selection mode. When the agent selects an action or a decision,
for example a task of moving and positioning, a request
message is send to COLOMBO that in turn sends a message to
the virtual environment. Then a lower level behavioural
animation is called.

Solve-Mandatory-Task-Conditions (task)
Mandatory € Evaluate (has-mandatory (task))
If Mandatory = TRUE then return TRUE
Else result = Apply-Solving-Method (task, Mandatory)
If result = TRUE then return TRUE
Else return FALSE
End.

Fig. 7. Algorithm to solve the mandatory conditions of a task.

Fig. 9. Virtual environment for risk prevention. On the picture we can see the
agent processing the task: open the gate.
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Fig. 11. Risk Visualisation: a leak or a fire.

VI. THE VIRTUAL ENVIRONMENT

6.1 The Virtual Environment

We develop the virtual environment corresponding to our
working scenario: a pipe substitution operation in a high-risk
industrial plant. The operations comprise three phases: (1)
prepare and secure the intervention zone, (2) dismantling of the
mono-pomp group, (3) assembly of the new mono-pomp group.
The activity model has been developed with VISUAL HAWALI.
The character is modelled with 3DSMAX and the virtual
environment is designed with VIRTOOLS. In the environment,
the learner (avatar) has to execute a collaborative maintenance
task with other virtual characters (virtual agents) as shown Fig.
8. The manager in charge of the plant gives his order to the
agents. When receiving an order, the agents compute a plan and
then execute it. Each action modifies the state of the
environment, the state of the object. We can see in the virtual
environment in real time the progress of the agents and of the
virtual characters (Fig. 9, Fig. 10). We are also able to see the
impact of their decisions and the consequences of their errors.

For example, if the agent decides to open the gate without
removing the rest of product (action of a novice) present in the
pipe, leak of the dangerous product can occur.

VII. CONCLUSION AND OUTLOOK

In this article we describe a system developed to model
virtual autonomous characters and their activities in risky
situations to support learning, decision-making and risk
prevention. Because human-factors are essential in such a
training system we based our work on a cognitive model. We
proposed a description language to represent human activity
taking into account the safety aspects (HAWAI-DL). We also
built a multi-agent system MASVERP, modelling the
autonomous behaviour of virtual operators. The multi-agents
system is connected to the virtual environment through the
COLOMBO module in charge of managing every change in the
environment or any change in an object state. These changes
can occur after an action executed by the trainee (avatar) or by
the virtual operators.

Our multi-agent system is based up on action selection and
cognitive planning. The agents take their decisions and create a
plan depending on their physical and cognitive characteristics.
The control mode delimitates the choice of an action.
Depending on this parameter the agent plans broadly and
chooses the actions more adapted to the situation or plans to a
more limited degree and compromises on safety aspects to gain
productivity.

Simulating virtual human behaviour remains a challenging
issue, especially when real-time animation must be supported
but we do not and will not focus on path planning, virtual
character facial modelling and locomotion. Our future work
will focus on removing some limitations of our system by
having a better integration of knowledge in the agent
environment, by letting agent learn or introducing memory
features. The first results are encouraging and our work
elaborated a new axis of research on cognitive simulation and
modelling. We strived to develop a generic platform and model.
A good test will be to use different scenarios seeing how much
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work is needed to adapt it to our technology.
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