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Abstract—Our research deals with the design of a training 

system to support decision-making in the preparation and the 
management of maintenance interventions in high-risk industries 
namely SEVESO sites. The proposed system incorporates virtual 
reality and artificial intelligence to simulate virtual autonomous 
characters and their cognitive processes in dangerous working 
situations. It generates behaviour-based errors to support 
learning and risk prevention. It uses new mechanisms taking into 
account human factors with respect to cognitive modelling of 
human behaviour regarding risky situations.   In the simulated 
environment the trainee can visualize the risks incurred during 
his work with the virtual agents. The emergent risks depend on 
the cognitive characteristics of the virtual operators and on the 
expertise of the trainee. We propose a multi-agent system to 
support the control of virtual operators represented by virtual 
cognitive agents. The difference with a classic MAS is that our 
cognitive agents are enriched with a planner for selecting actions 
according to goals, the environment and to the personal 
characteristics of the agents (time pressure, caution, tiredness, 
hunger). 

Index Terms—Cognitive planning, intelligent virtual 
environment, multi-agent system, risk prevention. 
 

I. INTRODUCTION 

1.1. Research context 

The combination of virtual reality with multi-agent systems 
gives the opportunity to offer virtual environments for 
improving training and decision-making with avatars and 
virtual autonomous agents in hazardous surroundings, on 
high-risk so-called SEVESO plant. The context of our research 
is to model collaborative and cooperative work to improve 
training, decision-making and risk avoidance and to show the 
results of the activity in a hazardous environment [1]. As a 
supplementary benefit, these combination enable introduce 
unexpected variations so that training scenarios are no longer 
predefined and ideal. This feature is particularly interesting 
when training objectives are not only to acquire the correct 
procedure, but also to highlight the difficulty of cooperative 
work and the constraints linked to hazardous professional 
activities. This paper addresses the design and the 
implementation of a system to simulate autonomous behaviour 
of virtual operators interacting with real operators in a virtual 
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environment for training/learning. The system aims to take into 
account various situational constraints and human-factors 
issues to support the generation of the subsequent variations in 
the way virtual operators are behaving and applying the 
procedures to achieve their task. Such constraints could be the 
result of the combination of cognitive and physical parameters 
such as tiredness, stress, expertise, hunger, motivation, etc. 
They can also come from time pressure, missing tools, etc. 
Taking these human factors into account we are able to 
simulate erroneous behaviours and some deviations. These 
deviations could be: errors, failure, indiscipline and botching. 

Virtual reality is useful for training people but systems based 
only on this technology are rather reductive and deterministic. 
We want to let our virtual characters react to the changes of the 
environment, take their own decisions and work together with 
the real operator. We want them to react in an autonomous way. 
We therefore propose coupling virtual reality with multi-agent 
systems.  

Our work is based on cognitive modelling, errors modelling, 
multi-agent planning and activity modelling. We propose an 
ontological and knowledge-based model to describe the 
operator’s activity (HAWAI-DL 2 ), a related risk model, a 
model of the environment (COLOMBO3) and a decision-maker 
module based on a multi-agent system (MASVER4) to interpret 
the models and to simulate the operators’ behaviour. A 
challenge is to develop an intelligent virtual environment that 
will be connected to MASVERP that will support the control of 
virtual operators represented by cognitive agents.  

1.2. Our Assumptions 

Our work is based on two assumptions: (i) there is a need for 
such systems; and (ii) such systems can be implemented with 
MAS. 

The first assumption is that virtual reality can improve safety 
training for industrial interventions [2]. Real working situations 
on SEVESO site can be costly and dangerous; therefore virtual 
reality will be a knowledge and know-how cheaper vector.  The 
potentials offered by VR are offering new perspectives to 
training: virtual presentation of the working situation, of the 
installation, the tools function, learning of how to detect the 
defaults while playing a scenario, etc. Indeed, virtual 
environment might favour learning by doing since the user is in 
constant interactivity with the environment (perception- 
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decision-action loop) [3, 4, 5]. Training and decision making 
related to safety management can be improved when operators 
and managers see the impact of their decisions and actions on 
the technical and human system they have in charge. 

Our second assumption is that such an environment can be 
fruitfully implemented by a multi-agent system. We propose a 
new system, MASVERP [1] that endows the environment 
(virtual characters and objects) with autonomous decisional 
capacities. Three different entities share the same environment: 
(i) virtual characters represented by autonomous cognitive 
agents; able to make decisions using a planner that interprets 
the high level task model; (ii) the behavioural objects of the 
environment represented by reactive agents and finally (iii) an 
avatar representing the trainee. 

 In our project, our goal is neither to reproduce perfect 
cognitive mechanisms nor to describe the operator’s cognition.  

Instead, we aim to emulate the behaviours that could occur 
with a reasonable level of faithfulness dynamically, according 
to a cognitive model representing the evolution of the cognitive 
state of an operator and the incurred risk. This approach 
requires merging three scientific domains as shown Fig. 1. 

 

 
 

Fig. 1. Coupling knowledge engineering and virtual reality. 
 

We merge (i) knowledge engineering databases to provide 
an industrial risk model and an ontological task model both 
issued from field analysis, (ii) multi-agent systems and (iii) 
virtual reality. In this article we focus only on the aspects 
related to the knowledge and decisional module. We do not 
consider the mere design of the 3D virtual environment, the 
animation and visual rendering of the virtual characters.  

We present the language HAWAI-DL specified to support 
the description of human activity, the decisional architecture of 
our system, the multi-agent systems MASVERP and methods 
to augment the virtual agent behaviour with AI structures that 
incorporate among other things behaviours, knowledge, 
environment, and characteristics models. We present our 
decision algorithm taking into account cognitive aspects and 
we finally present some preliminary results and the virtual 

environment for risk prevention.  
 

II. RELATED WORK 

2.1 Behaviour modelling and cognitive structures in 
characters animation 

Demitri Terzopoulos and Wei Shao [6] developed a system 
representing intelligent virtual pedestrians evolving in a virtual 
urban environment. Their algorithms aims at emulating not 
only appearance, locomotion, and behaviour of each intelligent 
character but also at generating complex collective behaviours 
and actions as can be observed in urban spaces. Their system is 
based on cognitive modelling [7] and a hierarchy of high data 
structures integrating motor, perceptual, behavioural, and 
cognitive components. Each pedestrian has a stack of goals set 
by the behavioural and cognitive control components. Each one 
also has an action selection mechanism that determines the 
action to implement according to the mental state of the 
pedestrian (physiological and psychological social needs: 
tiredness, thirst, curiosity). The value of the mental state 
matches a specific behaviour. 

Along the same line, IRISA developed a crowd simulator 
based on studies of pedestrian behaviours (Virtual Urban 
Environment System) [8]. The behavioural model of 
pedestrians includes social and driving rules of interaction 
based on Gibson affordance theory [9] and on the perception 
model proposed by Badler [10]. They proposed the HPTS++ 
language inspired by a cognitive theory [11] to model their 
autonomous agents organised in a hierarchy of automata.  

In the field of training tools using virtual reality and human 
behaviour modelling, Jeff Rickel and Lewis Johnson designed 
STEVE, an autonomous animated agent that lives in a virtual 
world and interacts with students [12, 13]. It has been designed 
to help students in learning to perform procedural tasks. 
STEVE has a cognitive mono-agent architecture based on 
SOAR [14], which allows it to know the state of the 
environment in real time and to decide what actions to 
undertake. STEVE’s technologies have been further used for 
leadership training in Virtual Bosnia [15, 16]. 

2.2 Multi-agent systems combined with VR in VET/L 

A good overview of the combination of virtual reality and 
multi-agent systems can be also found in [17] and in [18]. The 
GRIC-GRAAL [17]  group of researchers developed a training 
tool for firemen. It aims at keeping them out of danger. The 
architecture is a multi-agent system composed of emotional and 
reactive agents. It is based on a personality model (Five-Factor 
Model) and on an advanced emotional ontological model. 
Agents have a goal to achieve and use a Prolog planner to 
determine their actions. In the MASCARET project [18], the 
physical environment represents a plant where an exercise 
takes place including physical phenomena that can appear on 
the plant (fire, smoke, water spreading). The trainees play the 
role of the different group managers who intervene during an 
incident and the trainer participates to the simulation as a 
troublemaker. The system is driven by the MASCARET model 
proposed for organizing the interactions between agents (give 
them reactive and social abilities). 
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2.3 Positioning our work 

Our approach differs from the previous work in the 
following way. Current approaches rely mostly on theoretical 
architectures (automata, Petri networks, expert systems).  Only 
a few works propose to build systems taking into account 
cognitive behaviour model and error models for virtual human 
animation [6, 7, 8]. In our work, taking into account human 
factors is essential.  We based our research on cognitive models 
in the domain of safety and human behaviour in risky situations 
[19, 20, 21]; from the models we propose new mechanisms 
using multi-agent system to represent human decisional process 
and human behaviour-based errors to finally simulate them in a 
virtual environment. To achieve our goal we developed a 
generic language that describes the goal-decomposition of an 
intervention and integrates some of its related cognitive and 
safety aspects. 

 

III. COGNITIVE AND ACTIVITY MODEL 

In the virtual environment the objective is to simulate the 
agents’ operating mode in both normal and constrained work 
conditions. These situational constraints could have three 
origins: (i) physical dimensions of the environment like 
difficulties related to the geometry of the site, operator 
morphology, coldness, or wind; (ii) organizational dimension, 
prescribed procedure; and (iii) cognitive and mental 
characteristics of the virtual operators like objectives, time 
pressure, cautiousness, tiredness, stress, expertise, etc. 
Cognitive planning lets us to simulate some of the possible 
deviations of virtual agent’s behaviours while interacting with 
the environment and with the other operators. 

3.1. The COCOM model  

Depending on the situational constraints describe previously, 
our virtual operators have different behaviours. We rely on a 
model proposed by Hollnagel [21] the COCOM model. The 
model enables to describe, what he called, the control mode of 
an operator that depends on the time pressure. Hollnagel 
defines four types of control modes associated to time zones in 
which an agent can operate. (i) In the strategic control mode, 
the agent has a wide time horizon and looks ahead at 
higher-level goals. He has a both large and detailed anticipation 
of the work system. (ii) The tactical control mode characterises 
situations where performance more or less follows a known 
procedure or rule. The user’s time horizon goes somewhat 
beyond the dominant needs of the present, but planning is of 
limited range. He often chooses the simplest situation and can 
therefore not respect the safety constraints. (iii) In the 
opportunistic control mode, the next action reflects the salient 
features of the current context. Only little planning or 
anticipation is involved, perhaps because the context is not 
clearly understood by the agent or because the situation is 
chaotic. Opportunistic control is a heuristic that is applied when 
the knowledge mismatch is large, either due to inexperience, 
lack of formal knowledge, or an unusual state of the 
environment. (iv) In the scrambled control mode, the next 
action is in practice unpredictable or random. Such a 
performance is typically the case when people act in panic, 

when cognition is effectively paralyzed and there is 
accordingly little or no correspondence between the situation 
and the actions. Thus depending on the control mode, the 
operator will plan broadly and choose the actions more adapted 
to the situation or plan to a more limited degree and 
compromise on safety aspects to gain productivity. 

3.2. Border-line tolerated conditions of use (BTCU) 

To characterize the deviations eventually operated by virtual 
operators we were inspired by the notion of border-line 
tolerated conditions of use (BTCU) from studies in ergonomics 
and human reliability. This notion highlights the individual and 
social regulations operated on the field which bring the use 
conditions of the tools and the realization mode of the task to 
some compromise zones affecting safety [22]. For example, 
some tasks are partially or not at all done because of a lack of 
time due to the compromises made between safety and 
production. This concept is a complement of others elements 
linked to the individual, like those reported to the 
consciousness of the risk, the tiredness effects or the time 
pressure on the performance, etc. It is a characteristic of the 
task with safety implications as “allowed to be performed”, 
“allowed not to be performed”, or “not allowed”.  If a task is 
considered as a BTCU, the agent will decide to perform it 
depending on its control mode and its characteristics (e.g. if it is 
in a hurry). 

3.3. Description of the human/operators activity 

We took our inspiration from studies on human activity in 
natural situations like those conducted in ergonomics or 
psychology domain. Researchers in ergonomic, generally talk 
about task and/or activity models to refer to models constructed 
on the basis of data collected by ergonomics analysis of work 
and activity. The various existing analysis methods are sharing 
the same goal which is to provide an efficient model to describe 
the specific exigencies, strategies and modes of operation 
related to any vocational activity. Among the usual formalisms 
used to figure out the results of work analysis, some are 
well-adapted, generic and have the interesting ability of taking 
the objectives, resources and working process of a subject in 
relation with his complex environment into account. Such 
methods are focused on the task that can be decomposed in 
subtasks, operations or actions.  

We can distinguish (i) HTA (Hierarchical Task Analysis), 
GTA (Groupware Task Analysis), METISSE (Tasks 
Description Model to Assist and Track the Trainee- French 
translation) or MAD* (Analytic Method for Describing users 
TaskS orienTed of inteRface specificAtion-French 
translation-). GTA is specificaly designed to model collective 
tasks. MAD* is more focused on the activity of an individual 
even if the latest version tends to integrate a collective 
dimension.  

We propose a description language derived from MAD and 
METISSE formalisms [23], HAWAI-DL. It supports (i) the 
integration of factors affecting the performance at a collective 
level; (ii) the expression of the operator’s activity as it should 
be; (iii) how the activity may change in deteriorated situations 
(lack of time, imprudent behaviour, safety behaviour, tiredness, 
etc.). Our language takes into account the safety characteristics 
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linked to risky activities. HAWAI-DL provides a hierarchical 
description of the activity, allowing activities corresponding to 
the procedure descriptions provided by experts during 
interviews with ergonomics researchers to be represented. In 
addition, this description is extended by the variances and the 
errors exposed in interviewing the operators on the plant, 
and/or the observations and the analyses obtained by the 
experts in ergonomic. Our model allows taking into account 
tasks that are hierarchically independent (i.e. that have no 
hierarchical relations with the main task). We call this kind of 
tasks “hyperonymic tasks”. For example it can be a task that 
indicates how to manage a leak. Our model also allows taking 
into account exceptional tasks that are triggered by exceptional 
events such as a leak or a fire. In addition, we integrate into this 
model the conditions under which an activity should be done, 
such as BTCU and their associated risks.  

A task in HAWAI-DL is described by several attributes 
among which the following ones are directly relevant for our 
purpose:  

• Name of the task.  
• Goal: the expected state of the world after completing the 

task. 
• Constructor: SEQ (sequential), PAR (parallel), AND, OR, 

SIM (simultaneous), as well as ALT (alternative).  
• Complex : if the task has subtasks or not 
• Iterative: if a task is repeated several times, depending on 

its duration or its frequency.  
• Focus: if a sub-task is the main task in the hierarchical 

decomposition of a task.  
• Dangerous: if a task is dangerous or not.   
• Interruptible: if a task is interruptible or not.  
• Optional: if a task is optional or not.  
• Priority: a task can have a high, medium, or low priority.  
• Safety-related task: if a task with safety implications is 

“allowed to be performed”, “allowed not to be performed”, 
or “not allowed”.  

• BTCU : if the task have safety implications 
• Agents : agents and roles that can performed the task 

 

 
 

Fig. 2. Role, task, and agent relations in GTA. 
 

HAWAI-DL allows a detailed description of tasks. It goes 
beyond the listing of the pre-conditions and post-conditions of 
a task to a more detailed description, in particular for the 
pre-conditions where we define: 

• Mandatory pre-conditions: state of the world required for 
the task to be performed. 

• Regulatory pre-conditions: state of the world required by 
safety regulations. 

• Resources: tools that are required to accomplish the task. 
• Triggering pre-conditions: events that require immediate 

treatment for a specific task (triggered task). 

• Favourable pre-conditions: the context in which the task is 
relevant, for example: 

 A safety-related task: for the sake of safety. 
 A time-related task: if there is enough time, it is better 

to perform it. 
 An expertise-related task: is a task that can be 

performed either by experts or by inexperienced. 
 An environment-related task: is an alternative task 

that depends on the environment conditions. For 
example, there is two ways to remove a pipe. The 
environment conditions can be: bolts are not rusted. If 
the bolts are rusted we prefer do the task with the 
good environment conditions. 

HAWAI-DL represents the impact of a task on the 
environment as: 

• Post-conditions: state of objects expected after performing 
a task, and/or results after completing the task. 

• Perceptive feedback: feedback effects of the task on the 
environment.  

In addition to the previous conditions, we define, for iterative 
tasks: 

• Stop conditions: the task is repeated until we reach a 
predefined state (by default, the outcomes of the task). For 
example, these may be defined as duration, a specific 
number of iterations, or a number of instances (depending 
on the current scenario) of the task. 

 

 
 

Fig. 3. Sample of a task model with HAWAI-DL. 
 

IV. OUR ARCHITECTURE 

4.1 Overall Architecture  

Fig. 4 presents the architecture of our system on the 
decisional side. The multi-agent system loads the activity 
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model, the risk model and the world model. The activity and the 
world model are traduced into ontological models and are 
stored in the agent environment and in COLOMBO 
environment. The risk model is composed with decisional rules. 
The world model contains the instance of all objects present in 
the virtual environment, including their state and their position. 
COLOMBO sets up the state of the objects whenever 
something appends in the environment or after an action 
decided by MASVERP or by the real character, and then 
updates the state of the world in real time. MASVERP can 
access the state of the world by sending request messages to 
COLOMBO.  

 

 
 

Fig. 4. Overall architecture: interaction between modules. 
 

4.2 MASVERP agents 

To remind our objectives, we want the virtual operators to 
adapt to the environment in an autonomous way, to respond and 
react to the manager’s orders and to cooperate with the human 
operators. We assume that a MAS is a promising solution to 
reach this goal in terms of organisation, cooperation and 
planning [24] and we propose MASVERP in order to model the 
decisional module of the virtual agents and to give them the 
required autonomous abilities. The cognitive entities 
representing the virtual operators are complex and based on the 
BDI (Belief, Desire, Intention) model [25]. The agents are 
provided with a capacity of planning according to a high level 
cognitive activity model in the following way: 

• Interpret the task model   
• Generate a plan (sequence of tasks) 
• Adapt to the environment and do plan repair 

The agent evolves in an open and dynamic environment, and 
obviously it is a complex system. The agent reacts to any 
possible unexpected events considered as relevant to risk 

prevention like e.g. a fire, a leak or any other incident that could 
happen. He must achieve the assigned task and find a 
compromise whenever possible to cope with simultaneous (and 
sometime incompatible) goals. 

•  Present a consistent behaviour  

Substituting a virtual autonomous character to a human 
operator requires obtaining an operational behaviour in order to 
represent what a real operator could do.   

 We can see, as shown Fig. 5, that the cognitive agents 
comprise: (i) skills: in this part we specify what the agents can 
do and how they can do it; (ii) a list of goals: i.e. what they have 
to do. They also have an updater to refresh their goals, for 
example, if during the exercise they are thirsty their goal will be 
to quench their thirst; (iii) knowledge: what they know about 
the environment and also what they have learnt; (iv) 
environment: this part contains the environment variables and 
state; (v) address book: all the acquaintances of the agent, 
whom he knows and whom he can interact with; (vi) memory: 
this field regroups all the agent internal states and his 
characteristics, it could be progressive (pg) or permanent (pm) 
characteristics as cautiousness (pm), tiredness (pg), temporal 
pressure (pg), expertise (pm); they are used to determinate in 
real time the behaviour (control mode) adopted by the agent; 
the model of the activity is stored in the agent memory; (vii) a 
planner  which produces their decisions i.e. their (viii) activity. 
 

 
 

Fig. 5. MASVERP cognitive agents. 
 

4.3 MASVERP Planner 

 The planning problem is at the intersection of two 
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domains: cognitive modelling and planning (robotics). 
Cognitive modelling is an area of computer science that deals 
with simulating human problem solving and mental task 
processes in a computerized model. Such a model can be used 
to simulate or predict human behaviour or performance on 
modelled tasks. Planning is used to produce action sequences 
or so-called plans to achieve a goal or to realize a complex task. 
It is used in robotics and commonly in multi-agent systems. 
Although the two approaches are quite different we propose to 
merge them into what we call the “cognitive planning agent”. 
We distinguish two phases of planning, (i) a provisional 
planning or pre-planning and (ii) a real synchronous planning 
during which it can be necessary to re-plan or to repair. The 
first phase imposes building a flexible plan allowing the 
adaptation to unexpected events. At the end of the pre-planning 
phase we have a provisional flexible plan and after the 
execution we have an effective adapted plan. The pre-planning 
is also useful to the operators to anticipate the resources they 
will need. Indeed, in the real activity, the operators prepare 
their intervention and define a number of tools depending on 
their mission and on the possible unexpected situations. The 
planner has the following entries: (i) the activity model of the 
operator used to specify the intervention, (ii) a risk model 
presenting the possible risks incurred during the intervention, 
(iii) a scenario and a world model containing the scenario data 
and the state of the different objects and resources of the 
environment, (iv) the characteristics of the agent taken into 
account to define the associated control mode in real time and 
finally (v) the goals. The planner provides the operators activity 
(i.e. plans).  
 

V. IMPLEMENTATION 

5.1 Multi-Agent platform 

In MASVERP, an agent is built from an OMAS5 agent 
template. It has several files representing its environment and 
containing its skills. With OMAS the user can define agents, 
give them skills and goals (programmed as Lisp functions), 
then run them. Platform options allow tracing agent behaviour 
or messages. In addition, OMAS offers an advanced model of 
an assistant agent and allows creating local coteries. A coterie 
is the agent organisation; every agent belonging to the same 
coterie can communicate, receive and view all messages.  

5.2 Computing the control mode  

We implement the COCOM model adding physical and 
cognitive parameters to compute the control mode. The control 
mode determines how the agents coordinate their actions and 
select the task to execute. To compute the control mode of our 
cognitive agents we add several states of an agent. We also add 
a Knock out (K.O) mode which is reached when the agent in 
not able to do any task. We take into consideration (1) hunger, 
thirst, physical tiredness to determine the motivation; (2) 
cognitive load and tiredness to determine the vigilance, (3) 
Stress, motivation to determine the agitation; (4) Motivation, 

 
5  Open Multi-Agents System: a platform developed in University of 
Technology of Compiegne in France (UTC). 

agitation and stress to determine the control mode. 

5.3 Planning Algorithms  

In the mode strategic, tactic and opportunistic the agent will 
do the pre-planning for the resources. To select the action, we 
develop different algorithms depending on the control mode. 
Below, we present the algorithm used to cover the tree of tasks.   

In the first step of the Agent-Planning algorithm (Fig. 6) we 
determine if the task conditions (mandatory, favourable, 
regulatory and BTCU) are activated. The mandatory conditions 
are the state of the world required for the task to be performed, 
therefore if they are false, the task cannot be achieved. The 
function that checks the mandatory and resources conditions is 
called Solve-X-Task-Conditions, because we are trying to make 
the conditions true. We evaluate the mandatory conditions 
(Solve-Mandatory-Task-Conditions). If it is not true, the Apply- 
Solving-Method looks for a task in the task tree and in the 
hyperonymic tasks that have for post-conditions the mandatory 
conditions in parameters. If the research is successful then we 
apply the task that has been found.  

 

 
 

Fig. 6. Agent planning algorithm. 
 

We are doing the same treatment for the favourable 

Agent-Planning (agent, tree, mode) 
If (mode = STRATEGIC or mode = TACTICAL or mode = 
OPPORTUNISTIC) then 

Resource-Planning (agent) 
   Task  Main-task (tree) 

Goal  has-goal (Task) 
Subtask  has-subtask (Task) 
Constructor  has-constructor (Task) 
Result = Solve-Mandatory-Task-Conditions (Task) 

   T-CLU = 2*Number-of-BTCU-Tasks (tree)/3 
If result = FALSE then Return FAILURE 
Else //step 1 
    Mandatory-Activated-State = TRUE 

       Result = BTCU-Treatment (T-CLU, tree, Task, mode) 
       If result = TRUE  
       Then BTCU-Activated-State = TRUE 
       Else BTCU -Activated-State = FALSE 
       Result = Favourable-Task-Conditions (Task, mode) 

If result = TRUE then Favourable-Activated-State = TRUE 
Else Favourable-Activated-State = FALSE 
If (agent-expert? = TRUE and agent-cautious? = FALSE) or 

 (mode <> STRATEGIC ) then Regulatory-Activated-State = FALSE 
  Else result = Regulatory-Task-Conditions (Task, mode) 

          If result = TRUE then Regulatory-Activated-State = 
             TRUE   Else Regulatory-Activated-State = FALSE 

  Result = Solve-Resource-Task-Conditions (agent, Task) 
  If result = TRUE then Resource-Activated-State = TRUE 
  Else Resource-Activated-State = FALSE  

If Mandatory-Activated-State = TRUE and //step 2 
    Resource-Activated-State = TRUE then 
      T-CLU = T-CLU – 1  

If Complex-task? = FALSE //it is a simple task, a leaf 
Then Apply-Simple-Task (Task) 

      Else If Constructor = SEQ then 
     Agent-Planning-SEQ (Subtask) 
        Else If Constructor = ALT then 
             Agent-Planning-ALT (Subtask) 
          Else If Constructor = AND then 
                Agent-Planning-AND (Subtask) 
               Else If Constructor = OR then 
                      Agent-Planning-OR (Subtask)  

End. 
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(Favourable-Task-Conditions) and regulatory conditions 
(Regulatory-Task-Conditions). We are trying to make them 
true. However, in the case of regulatory conditions, an expert 
and careless agent will not take them into account.  If we are in 
an alternative case, we will try to solve the regulatory 
conditions only if there is no other alternative task possible. 

The BTCU conditions are linked to the safety conditions of a 
task (BTCU-Treatment). We compute a value that conditions 
the number of BTCU that an agent can executed (T-CLU). If 
this value is not nil and if the task is a BTCU task, then 
depending on the control mode we determine if the agent will 
do the BTCU or not. If the agent is in a tactical mode, if the 
T-CLU is not nil we choose in a random way if he will do the 
BTCU or not. If the result is true then we check if the BTCU 
condition is true then the final decision is that the agent will do 
the task. In the other modes, the accomplishment of the BTCU 
task relies on another criteria such as caution, expertise and 
safety implications of the task.  

Finally, to solve the resource conditions (Solve-Resource 
-Task-Conditions), we determine if the agent has the tool in his 
toolbox or with him. If not, if he is in a strategic or tactical 
mode and if he is not in a hurry he can choose whether to look 
for the tool in the industrial unit or to ask another agent. If he 
choose the latter solution, if the other agent is not available this 
will increase his stress and he will look for the tool in the 
industrial unit. If he is in the opportunistic mode he will reason 
by analogy. He will look for a tool that can replace the needed 
one. For example, he will take a pawl-spanner instead of an 
adjustable-spanner. In the scramble mode he tries to find the 
tool.  

In the step 2, if the step 1 returned true for the mandatory and 
resources conditions then we check if the task is a complex task 
or not. If it is not a leaf of the task tree we called other functions 
depending on the task constructor.  

The constructor SEQ obliges each subtask to be realized one 
after the other. The constructor ALT allows one task to be 
selected from among several tasks depending on: the 
environmental conditions, the state and level of the operator, 
and the available resources. Choosing one of the alternatives 
tasks depend also on specific BTCU and on the control mode of 
the operator. If the alternative task does not succeed then the 
agent can choose another possible one. The constructor OR 
works like ALT but the task can be chosen in any order. The 
constructor AND works like SEQ but each task must to be 
realized. 

If the task is a leaf of the task tree, we called 
Apply-Simple-Task. We have different categories of tasks: 
decisional tasks, perceptive tasks and actions tasks. The leaves 
are actions tasks.  Some actions tasks required another level of 
planning. Let us consider the task “put a deposit on the gate”. 
To do this task, the agent will first set up his goal. To solve the 
mandatory conditions it will look for a task whose effect on the 
world will be: gate is unlocked. After setting up his goal, the 
agent uses COLOMBO and the object model to look for a 
method to lock the gate depending on the kind of gate. He will: 
(1) ask COLOMBO which kind of gate it is, (2) look for a 
method to lock the gate in the ontological object model, (3) 
apply the method/action found. The preconditions of an action 
are for example to be near the object and to be in the good 

position. All these preconditions are verified when we call 
Apply-Simple-Task. If the agent is an expert, the environment 
conditions will be integrated into the reasoning.  At the simple 
task level we are in a planning mode and no longer in an action 
selection mode. When the agent selects an action or a decision, 
for example a task of moving and positioning, a request 
message is send to COLOMBO that in turn sends a message to 
the virtual environment. Then a lower level behavioural 
animation is called.  

 

 
 

Fig. 7. Algorithm to solve the mandatory conditions of a task. 
 

 
 

Fig. 8. Collaborative work in the virtual environment. 
 

 
 

Fig. 9. Virtual environment for risk prevention. On the picture we can see the 
agent processing the task: open the gate. 

Solve-Mandatory-Task-Conditions (task) 
 Mandatory  Evaluate (has-mandatory (task)) 
 If Mandatory = TRUE then return TRUE 
 Else result = Apply-Solving-Method (task, Mandatory) 
   If result = TRUE then return TRUE 

 Else return FALSE 
End. 
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Fig. 10. Virtual environment. 
 

 
 

Fig. 11. Risk Visualisation: a leak or a fire. 

VI. THE VIRTUAL ENVIRONMENT 

6.1 The Virtual Environment  

We develop the virtual environment corresponding to our 
working scenario: a pipe substitution operation in a high-risk 
industrial plant. The operations comprise three phases: (1) 
prepare and secure the intervention zone, (2) dismantling of the 
mono-pomp group, (3) assembly of the new mono-pomp group. 
The activity model has been developed with VISUAL HAWAI. 
The character is modelled with 3DSMAX and the virtual 
environment is designed with VIRTOOLS. In the environment, 
the learner (avatar) has to execute a collaborative maintenance 
task with other virtual characters (virtual agents) as shown Fig. 
8. The manager in charge of the plant gives his order to the 
agents. When receiving an order, the agents compute a plan and 
then execute it. Each action modifies the state of the 
environment, the state of the object. We can see in the virtual 
environment in real time the progress of the agents and of the 
virtual characters (Fig. 9, Fig. 10). We are also able to see the 
impact of their decisions and the consequences of their errors. 

For example, if the agent decides to open the gate without 
removing the rest of product (action of a novice) present in the 
pipe, leak of the dangerous product can occur. 

 

VII. CONCLUSION AND OUTLOOK 

In this article we describe a system developed to model 
virtual autonomous characters and their activities in risky 
situations to support learning, decision-making and risk 
prevention. Because human-factors are essential in such a 
training system we based our work on a cognitive model. We 
proposed a description language to represent human activity 
taking into account the safety aspects (HAWAI-DL).  We also 
built a multi-agent system MASVERP, modelling the 
autonomous behaviour of virtual operators. The multi-agents 
system is connected to the virtual environment through the 
COLOMBO module in charge of managing every change in the 
environment or any change in an object state. These changes 
can occur after an action executed by the trainee (avatar) or by 
the virtual operators.  

Our multi-agent system is based up on action selection and 
cognitive planning. The agents take their decisions and create a 
plan depending on their physical and cognitive characteristics. 
The control mode delimitates the choice of an action. 
Depending on this parameter the agent plans broadly and 
chooses the actions more adapted to the situation or plans to a 
more limited degree and compromises on safety aspects to gain 
productivity.  

Simulating virtual human behaviour remains a challenging 
issue, especially when real-time animation must be supported 
but we do not and will not focus on path planning, virtual 
character facial modelling and locomotion. Our future work 
will focus on removing some limitations of our system by 
having a better integration of knowledge in the agent 
environment, by letting agent learn or introducing memory 
features.  The first results are encouraging and our work 
elaborated a new axis of research on cognitive simulation and 
modelling. We strived to develop a generic platform and model. 
A good test will be to use different scenarios seeing how much 
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work is needed to adapt it to our technology. 
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