A RESTAURANT FINDER USING BELIEF-DESIRE-
INTENTION AGENT MODEL AND JAVA TECHNOLOGY

Dongging Lin Thomas P. Wiggen Chang-Hyun Jo
Department of Computer Science Department of Computer Science Department of Computer Science
University of North Dakota University of North Dakota California State University, Fullerton
Grand Forks, ND 58202 Grand Forks, ND 58202 Fullerton, CA 92834
(701) 777-3477 (714) 278-7255
wiggen@cs.und.edu jo@ecs.fullerton.edu

Contact Point:

Chang-Hyun Jo

Associate Professor

Department of Computer Science
California State University Fullerton
Fullerton, CA 92834-6870

(714) 278-7255
jo@ecs.fullerton.edu

A RESTAURANT FINDER USING BELIEF-DESIRE-
INTENTION AGENT MODEL AND JAVA TECHNOLOGY

Dongqing Lin
Department of Computer Science
University of North Dakota
Grand Forks, ND 58202

ABSTRACT

It has been becoming more and more important to design systems
capable of performing high-level management and control tasks in
interactive dynamic environments. At the same time, it is difficult
to develop and maintain such complex systems with our
traditional software techniques. The agent-oriented/based
systems, rooted in a different view of computational entities, offer
prospects for a qualitative change in this aspect. In this work, we
adopt the basic architecture of a Belief-Desire-Intention (BDI)
agent model and develop a more intelligent and dynamic
searching model for agent programming. In the BDI model, the
Desire is the goal to achieve or event to handle, the Intention is a
set of plans to realize the predefined goal or react to a specific
situation, and the Belief is the knowledge about the agent itself
and the varying environment. Applying BDI concepts, we will
build an experimental framework in our Restaurant Finder
system. The belief, desire and intention are initially established as
separate classes as in the object-oriented analysis and design, then
these classes will be integrated as basic units for a BDI agent. The
agent will possess learning behavior based on the user's feedback
and the principle of inferring preferences. In addition, the agent
will also update its knowledge dynamically based on analysis of
user's interaction with the system. The dramatic increase in the
use and availability of mobile devices has resulted in the ability to
access information anytime and anywhere. Our Restaurant Finder
system is designed for use on mobile phones. This system has
been constructed and implemented based on a three-tier
architecture. The client tier is a J2ME (Java™ 2 Micro Edition)
emulator for the primary interface. In the middle tier, the Apache
Tomcat Server will be installed to process the client's request,
update the system database, and send back the recommendation.
The information tier is a database system using the IBM
Cloudscape database. The Restaurant Finder system will
demonstrate an example of BDI agent programming and the
J2ME Mobile Information Device Profile (MIDP) client

Thomas P. Wiggen
Department of Computer Science
University of North Dakota
Grand Forks, ND 58202
(701) 777-3477

wiggen@cs.und.edu

Chang-Hyun Jo
Department of Computer Science
California State University, Fullerton
Fullerton, CA 92834
(714) 278-7255

jo@ecs.fullerton.edu

application design.

Keywords
Belief-Desire-Intention (BDI) Agent-Based Programming

1. INTRODUCTION
1.1 The Problem

Conventional computer software and systems have been designed
and built for dealing with precise and complete information. In
recent years, it’s often required that new systems should be
capable of working with a complex and uncertain world. These
systems will need to process imperfect and limited information
from a substantially changing environment. In addition, it is often
required that the existing systems will have to be changed and
modified frequently to improve their capability and performance.
Efficient and flexible computer architectures and languages that
reduce the complexity and time for system specification and
modification have been developed to meet these demands
[Georgeff et al. 98]. Among them, the agent-based modeling
techniques provide effective architecture to modularize the
sophisticated systems and solutions to handle the interaction
between the systems and the environment dynamically.

Agent computing is based on agents. An agent is a concurrent,
autonomous, intelligent, and self-contained object. Here the self-
containing has two meanings. First, an agent has a definite goal.
Secondly, an agent defines pertinent behavior to achieve its goal
based on the current environment [Jo 01]. The Belief, Desire, and
Intention construct the essential part of the state which best
describes the systems and the environment. The Belief represents
knowledge of the world, i.e. the agent itself and the varying local
environment. It can be the value of a variable, a relational
database, or symbolic expressions in predicate calculus. The
Desire is the goal to achieve or event to handle, which can be the
value of variable, a record structure, or a symbolic expression in
some logic. The important point is that the Desire represents the
desired end state. By defining states, the corresponding behavior
of the agent can be determined step by step to achieve the goal.
Applying this agent Desire concept will lead to the desire-oriented
computing instead of conventional task-oriented computing. The
desire includes relevant tasks to be completed. The desire-
oriented computing focus on what to do instead of how to do as
defined in task-oriented computing. The Intention represents the

third necessary component of the state. It is a set of plans to
realize the predefined goals or react to a specific situation.
Computationally, Intention may be a set of executing threads in a
process [Georgeff et al. 98].

The agent model based on Belief-Desire-Intention (BDI) has been
proved as a powerful computing technique [Bratman 87]. One
interesting BDI agent system called JACK has extended the Java
programming language in agent modeling [JACK 99]. JACK has
Class, Interface, Method, Syntactic and Semantic extensions of
Java implemented as Java plug-ins to support an agent-oriented
development environment. JACK also uses the Database class to
define and manipulate its beliefs. Another Mobile BDI Agent
Toolkit applies Java packages to provide a runtime environment
for BDI model programming [Busetta et al. 98]. An application of
BDI agent modeling, Agent-based Stock Trader shows how to
design and implement the Belief-Desire-Intention concepts using
Java classes and Microsoft Access database system [Feng & Jo
02]. Meanwhile new concepts for an agent-based programming
language, APL, have recently been proposed and developed. One
APL prototype is to translate the APL source into the Java source
codes, which can be run on the Java Virtual Machine [Jo &
Arnold 02].

Applying BDI concepts, we will build an experimental framework
for our Restaurant Finder system. However, until now there have
been no proper programming languages to well support agent
programming naturally. So in this work, we try to enhance the
capability of the object-oriented language, Java, to build this
agent system. The belief, desire and intention are initially set up
as separate object classes, then these classes will be integrated as
basic units for a BDI agent. The dynamic mapping from the
specific belief to an Intention plan will be realized by
manipulating the relational database. In addition, the agent will
possess learning behavior based on the user's feedback and the
principle of inferring preferences. The agent will also update its
knowledge dynamically to make it more intelligent by analyzing
the user's interaction with the system.

1.2 The System

The dramatic increase in the use and availability of mobile
devices has resulted in the ability to access information anytime
and anywhere. Our Restaurant Finder system is built for use on
mobile phones. A three-tier architecture design is applied in this
system. The client tier is a Sun MIDP-device emulator that acts as
the J2ME client that receives content in the plain-text format.
J2ME™ (Java™ 2 Micro Edition) is Sun’s newest Java platform
for developing applications for various consumer devices, such as
set-top boxes, embedded systems, mobile phones and cell pagers.
MIDP (Mobile Information Device Profile) is a set of APIs that
allows developers to handle mobile-device-specific issues, such as
creating user interfaces, storing information locally and
networking. In the middle tier, the Apache Tomcat Server will be
installed to process the client's selections, update the system
database, and send back the recommendation. This server is the
Java servlet container to handle the user’s Get/Post request and
deliver a restaurant candidates screen or a restaurant
recommendation screen to the user. The information tier is a
database system using the Cloudscape relational database, which
is a pure-Java database management system from the IBM
Cloudscape [Deitel 02]. The Restaurant Finder system will

demonstrate an example of BDI agent programming and the
J2ME MIDP-device client application design.

1.3 Outline of the Document

In Section 2, we will describe the basic architecture and design of
this BDI-agent based Restaurant Finder system. In Section 3, we
will explain how to implement the BDI-agent concepts using Java
technology and relational database in this system. An application
example for testing the system will be shown in Section 4. The
conclusions and ideas for future work are listed in Section 5.

2. CONCEPT AND DESIGN
2.1 BDI Agent Model

The first-order intentional system, which has beliefs and desires,
but no beliefs and desires about beliefs and desires, is the basis for
our intelligent Restaurant Finder system. In this BDI agent model,
we have adopted human-like mental attitudes of Belief, Desire,
and Intention as the blocks representing the information,
motivation and deliberation of the agent. This kind of modeling
mechanism has been argued as rational and flexible for building
an intelligent goal-driven agent [Rao et al. 95].

One purpose of this work is to show that the BDI agent model can
be used to build a system that can learn and adapt its behavior
according to accumulated experiences and changing environment.
The user's choices, restaurant information, and local environments
will be recorded as basic elements of Belief. Initially the criteria
will be set up for choosing a most appropriate restaurant based on
the user’s preference and current situation. The plans, i.e.,
Intention, will be called to meet the criteria and achieve the goal.
When a user searches the restaurants, various plans that reflect the
current and local information will be utilized to prepare a list of
restaurant candidates at run-time. Then the system can make
comparisons and give the user a final recommendation based on
this itemized group of restaurants. Here the agent model has the
exact Desire to achieve. It will let users select the restaurant
quickly and satisfactorily, and will re-build the information
database for the agent model each time the user makes a choice.
This Restaurant Finder application also demonstrates the
computability of the BDI model in constructing a real-world
system. The concepts of Belief, Desire, and Intention can be
effectively designed and implemented in a way similar to the
normal practice applied in unified process of software engineering
nowadays [Einhorn and Jo 02, Jo 01].

2.2 Architecture Design
The three-tier design has been applied to the Restaurant Finder as
in Figure 1.

In the Restaurant Finder system, the first layer is the client part
that is the user interface. The J2ME MIDP Emulator will be used
to simulate the mobile phone screen. The second layer is the Web
server part, which is the servlet engine for the Restaurant Finder
system. The third layer is the information storage, which is also a
server for the relational database management system. The
interface will direct the user request to be processed at the
corresponding BDI agent built using the Java Servlet technology.
The response, i.e., the restaurant recommendation from the
system, or the initial restaurant candidate list from user profile,
will be shown through the same user interface too. The BDI

agent-based system will retrieve, maintain, and update the
database system. The main contents of the database are user
profile, restaurant features, and local environment. The system
has been installed on the Apache Tomcat server. The Java-based
IBM Cloudscape database will be used to act as the database
system for the agent to rely on.

- ake Choices
Mobile Phone Interface 4»

Send
Recommendation

and Selections Evaluation
Results

i

|

|

|

|

: Send Requests Return
|

|

: J2ME MIDP Emulator
|

Restaurant Finder System K—— BDI Model

User Profile, Restaurant
Features, and Local

Environment

i
i

i

i

i

i

i

i
System Design Basis :
i

!

i

i
Apache Tomcat Server |
i

i
|
|
|
|
|
|
|
: Retrieve/Maintain/Update
|
|
|
|
|
|
|
|

Database Management System

Java-based IBM

Cloudscape Database

Figure 1. Three-tier Architecture of The Restaurant Finder
System.

Each time the user logs in, the information about the local
environment and restaurants will be provided according to the
location and the time that the user uses the mobile phone. The
Restaurant Finder system will first propose to the user a
predefined candidate list of the restaurants based on current
conditions and user's preference recorded in the database. The
user then can either choose a restaurant from the list or make new
selections from a menu to be shown on the mobile phone screen.
The system will make an optimum choice to meet the user's goal
by selecting the most appropriate restaurant from the database.
Meanwhile the system will also update the database system to
reflect the user's new preferences based on his/her current
choices. This can also be used to update the criteria in the
database system to be used as the plans for building future
restaurant candidate list. In this way, the system is able to
remember user's preferences and provide a more recent candidate
list next time the user logs in. Thus the system is designed with a
dynamic learning ability in the run-time environment by
manipulating the database system. The basic reasoning
mechanism is to assign a specific weight value to each element in
the database and calculate the total amount for each possible
selection of a restaurant. The weight values are also subject to
change after each selection made by the user.

3. IMPLEMENTATION OF THE SYSTEM
3.1 BDI Agent-based Programming

Agent-based programming provides a new paradigm in building
intelligent agent systems. Instead of writing complicated
programs using object-oriented or even structured modeling
methodology, agent-based programming extracts goal-driven
autonomous, perceptive and cooperative agent concepts from the
problem domain. However there have been no proper
programming languages that can be directly used to construct
agents. So in our work, we take advantage of the object-oriented
nature of the Java language and program our agents based on
object concepts. Although Java does not support directly BDI
agents in our case, Java has suitable class structures that can be
used to build the basic units, like Belief, Desire, and Intention in
an agent model. For the time being, a relational database system is
chosen to support the Java BDI-agent programming. Although the
class structures of BDI concepts cannot be changed at run-time,
the information in the database can be updated dynamically
according to the changing environment. The information system
will be re-built every time a new restaurant candidate list is
generated for the user using Java Servlet technology.

3.2 Core of BDI Agent

As we described in Chapter 2, the relational database
management system will be used to establish the database system
for the BDI agent. The learning and reasoning ability of the BDI
agent will be realized dynamically with the aid of this database
system. Using Structured Query Language (SQL), the Belief
elements will be stored, retrieved, and updated in several tables of
the database system. Similarly, criteria used to suggest restaurants
will also be stored and updated in an Intention mapping table. The
restaurant candidate list will be constructed by retrieving these
restaurant items to meet user's requests for different
environments.

For this application, the main items about the restaurant feature
are type, price, location and parking which are established in the
Belief table of the database. In the database, the above-mentioned
items are the basis for the Belief concepts. Each element for these
items will be assigned a weight value from 1 to 10, representing
the quality or grade for each element. The higher value means a
restaurant closely satisfies user’s preference according to this
item. These values will be updated each time the user makes
different choices and a final decision. Recommendations will be
made by the system according to the comparison of total weight
values of available restaurants in terms of these data items. The
system will advise the user dynamically by changing the weight
values each time user makes new choices. Even in the user
interface part that is the mobile phone screen, the items shown on
the menu each time will also be different based on the current
situation and the user's former selections. The restaurant candidate
list will be built and updated each time the user starts the system.
Based on previous information, an initial candidate list will be
shown on the mobile screen when the user starts the system. This
will accelerate the process to let the user make a decision in an
acceptable or short time. According to the current Belief items
and the user's preference, this list will be different and customized
each time the user logs in. After that, a dynamic menu will be
shown on the screen for the user to make new choices if the user
has a different or new idea than the recommended restaurants in

the candidate list. By calculating the total weight values of all the
concerned Belief elements, a new optimum restaurant candidate
list will be provided to the user.

3.3 Structure of BDI Agent

For this Restaurant Finder system, the basic data structure for
Belief, Desire and Intention have been developed based on the
relational database table. The Desire is clear, which is to suggest
an appropriate restaurant to satisfy user’s requirement. The
contents for the Belief are maintained in two tables as described
below.

Table 1. Database Tables for Belief

Table Name Content

Restaurant Information about available restaurants
around.

Profile User’s profile for selecting restaurants.

The Restaurant table represents the current local situation in
which the user starts the Finder system. They will be generated
dynamically and will simulate the real environment for the
restaurants in the surrounding area. Each time the user logs in, the
selection process of restaurant will be performed according to
varying conditions. The detail of the Restaurant table is as
follows:

Table 2. Restaurant

ID

Name

Type

Price

Location

Parking

Address

The core part of the Belief is the user Profile table, which
provides permanent storage for the user’s history list of selected
restaurants. Initially, an empty table only with meta-data schema
is designed for the first time the user starts the Finder system.
Then the information about the user’s selections will be recorded
in the table after the user successfully makes decisions. The
schema of the Profile table is the same as that of the Restaurant
table.

Table 3 Profile

ID

Name

Type

Price

Location

Parking

Address

The difficult but interesting part is how to implement the
Intention dynamically. The user Profile table is the basis for
making reasonable recommendation to the user. Each time the
user logs in, the system will first analyze the user’s previous
selections with available local restaurants. Then the system will
provide the user a restaurant candidate list that reflects the user’s
previous selections. If the user has a new idea, the system will
also be able to provide a customized shortcut menu for the user to
choose. The analysis is based on the frequency of restaurants
appearing in the Profile table. Here a Java two-dimensional array
will be used to construct such a candidate list first. All the
information about a specific selection can be included in this
array easily. The array size will be determined dynamically based
on the Profile table information when the user logs in. After the
user selects a restaurant, all the pertinent information will be
added to the user Profile table for future reference. Note that the
Intention is about the several plans to suggest different possible
solutions to the user. The plans are chosen according to user’s
interests that may vary every time using the Finder system. These
interests are itemized as different criteria in building plans. These
plans can also be combined to make an optimal suggestion to the
user. This process reflects a dynamic mapping from Belief to
Intention with the help of database system. An Intention mapping
table is built to simulate the dynamic mapping in this application.

For one instance, Intention class is implemented to provide
information for use by the BDI agent in this application. Based on
user’s selection, the pertinent restaurant type, price, location and
parking will be converted into corresponding integer numbers
from 1 to 10. The agent will sum these numbers up for each
restaurant in the local area. The restaurant with highest total
weight value will be shown in the mobile phone interface. The
above mentioned process implemented by the Intention will be
controlled dynamically by using an Intention mapping table as
shown in Table 4. In the IntentionMap table, iName, iType,
iPrice, iLocation and iParking are the base values to be used by
the Intention class. The iNum is a control number to define which
set of data in the IntentionMap table will be applied this time. By
giving different value of iNum, the Intention class will be able to
determine which plan is to apply for the current case. In such a
way, the BDI agent would probably provide different
recommendation to the user even for the same local environment.

Table 4. IntentionMap

iNum

iName

iType

iPrice

iLocation

iParking

Modular design can be easily applied to the BDI agent-based
system. First the Belief, Desire and Intention will be built based
on Java classes. Then these pre-defined structures will be
assembled to build an agent. The basic structure of BDI agent-
based Restaurant Finder system is shown in Figure 2.

Table 5. Restaurant Information for Testing.

Name Type Price Location Parking
Applebee American | High Nearby Difficult
Burger King | Fast Very Close Easy
Food Low
China Chinese Medium | Far Easy
Garden
Guadalajara | Mexican | Medium | Very Very
Close Difficult
Olive Italian High Very Far | Very
Garden Difficult
Pizza Hut Italian Medium | Close Easy
Red Lobster | American | Very Far Difficult
High

The addresses of the restaurants are not listed, but they are stored
in the Restaurant table in the database. They represent a typical
scenario that the Restaurant Finder system should handle. In
processing the restaurant information, each data item will be
assigned a weight value according to the Intention plan selected
by the system and user’s choices. Then the total weight values
will be compared by the system and a most appropriate restaurant
will be provided to the user. In the meantime, the system will

record the user’s choices and update the user’s Profile table.

Belief
Each element - _
—represented i User
by weight,]
Restaurant
1-10
Belief and
Intention Desire
maintained Goal to be
and updated realized with N
by the <+ a highest total <7 Find Restaurant
Restaurant weights
Database
Management
System
Weight of each Intention
element to be
L_changed; _ Criteria
candidate list (BI mapping)
to be built
based on

user’s choices Belief items to be evaluated

by Intentions to get a Goal.

Figure 2. Basic Structure of BDI Agent-based Restaurant Finder

4. EXPERIMENTAL RESULTS

4.1 Simulated Local Environment

The restaurant Finder system has been tested by applying a
simulated local environment. It is assumed that the user will start
the system in an area with seven restaurants. The pertinent
information about these restaurants is listed in Table 5.

4.2 Example for the First-time User

Figure 3 shows the Welcome screen of the Restaurant Finder
system. When the Select button is clicked, it will direct an initial
message to the Candidate screen as shown in Figure 4.

Figure 3. Welcome Screen.

Figure 4. Candidate Screen.

As this is the first time to use the system, there is not any record
in the user Profile table. The screen shows a message “No
restaurant candidates yet!”. The user needs to input his/her
preferences and let the system recommend a restaurant. A series
of four screens must be gone through as shown in Figure 5, 6, 7,
and 8.

Figure 7. Location Screen.

Figure 5. Type Screen.

estaurant Parking
" very Difficult
D it

Figure 8. Parking Screen.

In this case, the user likes a restaurant with Italian food and
medium price, but does not care about the location and parking.
By comparing the available restaurants, Pizza Hut is selected
instead of Olive Garden. The main reason is the price. The result
is shown in Figure 9. If the user changes his/her idea, he/she can
simply click the Select button to continue the same process again.
This time another restaurant is recommended as in Figure 10, i.e.,
Applebee. In the meantime, the user’s selection will be written to
the Profile table which reflects the user’s most recent preference.

Figure 9. Recommendation — Pizza Hut.

Figure 10. Recommendation — Applebee

4.3 Example for a Previous User

Another example is when the user starts the system with previous
records already in the system. At the Candidate screen, the system
will give the user a candidate list of at most three restaurants.
These restaurants are those the user selected lately or the most
frequently selected. Now we continue the scenario from the
example in Section 4.2. The Applebee restaurant should be
provided as the first candidate in the candidate screen. This is
proved correct in Figure 11. The candidate list will be updated
each time the user makes choices. In Figure 12, Olive Garden has
been inserted as the first one in the restaurant candidate list.

Figure 11. Candidate — Applebee.

Figure 12. Candidate — Olive Garden.

5. CONCLUSIONS AND FUTURE WORK

Agent-based computing has been emerging as a major
programming paradigm for the future. The Belief-Desire-
Intention (BDI) agent modeling provides an efficient technique to
build complex and intelligent system with its ability to learn and
adapt and its characteristic for modular design. However, there
are not many practical applications based on the BDI-agent
concept developed yet. In this project we present an experimental
framework for a Restaurant Finder system using BDI model and
Java technology. We demonstrate how to design and implement
the agent-based system with the help of database system. The
system is able to learn from previous experiences and adapt to the
changing environment.

In summary, the merit of this work is to show how to design a
real-world application based on the BDI-agent model. This work
shows how to implement very practically the BDI-agent-based
application using the limitation of the current technology
available to represent the BDI agent-based model appropriately.
The noble idea of a belief-intention mapping table allows us to
make the system reflective and intelligent by learning and
adaptation. This work shows how to realize the theoretical BDI
agent model, and how this realization can be used to relay
information to a real-world application implementation.

There is a great risk that run-time dynamic mapping will affect
the performance of the system. This is still an important issue for
the BDI agent-based modeling. Java does not support directly
run-time knowledge management or function implementation. It
is a big challenge to handle how to update or add the Intention
plans at run-time without affecting the system. If this can be done,
the advantages of BDI agent-based modeling will be fully
realized. This is part of the work for agent modeling to be
completed in the future.

6. REFERENCES

[1] Agent Oriented Software Pty. Ltd., JACK Intelligent Agents
User Guide, URL = www.agent-software.com.au, 1999.

[2] Bratman, Michael E., Intention, Plans, and Practical
Reason, Harvard University Press, Cambridge, MA, 1987.

[3] Busetta, Paolo and Ramamohanarao, Kotagiri, an
Architecture for Mobil BDI Agent, Mobile Computing Track,
ACM SAC’ 98, 1998.

[4] Deitel, Paul J., Harvey M., Deitel, Santry, Sean E., Advanced
JavaTM 2 Platform — How to Program, Prentice Hall, Upper
Saddle River, NJ, 463, 531-533, 543-549, 718-739, 755-784,
2002.

[5] Einhorn M. Jeffery and Jo, Chang-Hyun, A BDI Agent
Software Development Process, University of North Dakota,
2002.

[6] Feng, Xin and Jo, Chang-Hyun, Agent-based Stock Trader,
Department of Computer Science, University of North
Dakota, 2002.

[7] Georgeff, Michael, Pell, Barney, Pollack, Martha, Tambe,
Milind, and Wooldridge, Michael, The Belief-Desire-
Intention Model of Agency (1999), Proceedings of the 5th
International Workshop on Intelligent Agents V : Agent
Theories, Architectures, and Languages (ATAL-98), URL =
citeseer.nj.nec.com/georgeff99beliefdesireintention.html.

[8] Jo, Chang-Hyun, 4 Seamless Approach to the Agent
Development, ACM SAC 2001, Las Vegas, NV, 641-647,
2001.

[9] Jo, Chang-Hyun and Arnold, Allen J., the Agent-based
Programming Language: APL, ACM SAC 2002, Madrid,
Spain, 27-31, 2002.

[10]Rao, Anand S. and Georgeff, Michael P., BDI Agents: From
Theory to Practice, Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), San
Francisco, USA, June 1995.

