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Contrary to Hopfield-like networks, random recurrent neural networks (RRNN), where the couplings

are random, exhibit complex dynamics (limit cycles, chaos). It is possible to store information in these

networks through Hebbian learning. Eventually, learning “destroys” the dynamics and leads to a fixed
point attractor. We investigate here the structural changes occurring in the network through learning.

We show that a simple Hebbian learning rule organizes synaptic weight redistribution on the network

from an initial homogeneous and random distribution to a heterogeneous one, where strong synaptic
weights preferentially assemble in triangles. Hence learning organizes the network of the large synap-

tic weights as a “small-world” one.
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1 Introduction

Using random recurrent neural networks is part of the
dynamical systems approach to the simulation of some
cognitive functions. The start of our work is the under-
standing of Freeman’s experiments on the olfactory
bulb, where the spontaneous neuron dynamics are cha-
otic and the dynamics reduces to a simpler attractor (a
limit cycle) when a known odor is recognized (Free-
man, 1987; Skarda & Freeman, 1987; Yao & Freeman,
1990). We have been able to replicate these findings
using random recurrent neural networks (RRNN) with
a classical Hebbian learning rule (Daucé, Quoy, Ces-
sac, Doyon, & Samuelides, 1998). Following Amari
(1972) we developed a mean-field theory that allowed
us to study the dynamics of the system theoretically
and understand the influence of its various parameters

(Cessac, Doyon, Quoy, & Samuelides, 1994). Using a
modified Hebbian learning rule, we have shown that
this kind of network is able to store and retrieve com-
plex spatial (static) and temporal (sequences) patterns
(Daucé, Quoy, & Doyon, 2002).

Parallel to this approach, recent studies have focused
on the topological structure of large networks using
complex network approaches. They have proven suc-
cessful in understanding the global properties of several
complex systems originating from highly disparate fields,
from biological to social and technological domains.
Hence the same (or similar) reasoning can be applied
to understand cell metabolism (Jeong, Tombor, Albert,
Oltvai, & Barabasi, 2000), the citation of scientific arti-
cles (Newman, 2001), software architecture (Valverde,
Cancho, & Solé, 2002), the Internet (Barabasi & Albert,
1999) or electronic circuits (Cancho, Janssen, & Solé,
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2001). The most common statistical structures are the
so-called small-world and scale-free networks. Small-
world networks are sparse complex networks with
both small average shortest path and a large degree of
clustering, while scale-free networks are defined by a
connectivity probability distribution that decreases as
a power law (see section 5 for more formal definitions).
At a much coarser grain, complex networks methods
have recently been applied to networks of cortical areas
(Eguiluz, Chialvo, Cecchi, & Apkarian, 2005; Sporns,
Chialvo, Kaiser, & Hilgetag, 2004) i.e. not networks of
neurons but networks of neuron areas, with the pros-
pect of understanding the network functions.

We propose here to combine a dynamical system
approach with a complex network analysis, in order
to understand the dynamical and structural changes
occurring through learning in our model. So, in the
following, we first present our model (Section 2), then
show some typical dynamical behaviors (Section 3),
before introducing the learning rule (Section 4) and
studying the structure of the network before and
after learning (Section 5). Finally we conclude in Sec-
tion 6.

2 Model

A random recurrent neural network is a set of N fully
connected neurons. The connection weights wij are ini-
tially randomly drawn according to a Gaussian law �(0,
J2/N), where J is the standard deviation. The state of
the neurons in the network is x(t) = {xi(t)}, i = 1 … N
where each xi is a real number  [0–1] that is propor-
tional to the firing frequency of neuron i. The state
dynamics is given by the following set of discrete-
time recurrent equations:

(1)

where f is a sigmoidal function with slope g in 0. The
thresholds θi are randomly chosen according to a
Gaussian law �( , ). I = {Ii} is an N dimensional
constant input vector with mean 0 and variance 0.1.
Time varying sequences have been studied in Daucé
et al. (2002). Hence the parameters of the system are:
g, J, ,  and I. Without loss of generality, in this
study we have set J to 1, and  and  to 0.

3 Dynamics

The network dynamics have been thoroughly studied
in our previous work (Cessac et al., 1994; Daucé et al.,
1998; Daucé et al., 2002). We report here on the main
results of these studies. Depending on the parameter g
(J being set to 1), various dynamical behaviors may
arise. First, when g is low, the system exhibits a unique
fixed point. When g increases, bifurcations occur lead-
ing successively to a limit cycle (see Figure 1), a torus
(see Figure 2), frequency locking and finally to chaos

∈
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Figure 1 Limit cycle (g = 6, N = 100) represented in
phase space (mnet(t + 1) versus mnet(t)). See text for ex-
planations on mnet.

Figure 2 T2 Torus (g = 6.85, N = 100). See Figure 1 for
explanations.
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(see Figure 3). This corresponds to a quasi-periodicity
route to chaos (Doyon, Cessac, Quoy, & Samuelides,
1993). Observation of the network activity is performed
through the mean activity of all neurons:

(2)

Note that not all neurons behave the same way.
Some neurons are either damped near xi = 0, or satu-
rated near xi = 1. Some others really oscillate in the
[0–1] range. In the following, the saturated and oscil-
lating neurons will be referred to as the active neurons
or active population. This set of active neurons is pre-
cisely the part of the network that sustains the dynam-
ics. They are sequentially activated, so that there is a
small cluster of neurons activated at each time step.
This set of neurons is specific to the applied input pat-
tern I (Daucé et al., 1998).

4 Learning Rule

In this study, learning is performed using the follow-
ing Hebbian rule:

(3)

In addition a weight may not change its sign (it
remains positive or negative). It is easily seen from this
learning rule that only weights between active neurons
will change. More complicated learning rules may be
used as well (Daucé et al., 1998), but Equation (3) is the
simplest and generic enough for the study we want to
perform.

Learning an input modifies the weights, and there-
fore the dynamics of the system. Hence, during learn-
ing, we observe an inverse quasi-periodicity route to
chaos, i.e. from chaos to a limit cycle to a fixed point.
If learning is stopped when the dynamics settles on the
limit cycle, this cycle happens to be specific of the
learned input. Hence, the dynamics in the absence of
input is chaotic, and presenting the input reduces the
dynamics on the corresponding limit cycle. This behav-
ior is similar to the experimental results observed by
Freeman in the olfactory bulb (Freeman, 1987).

Each input vector leads to a different attractor
because an input is similar to a threshold, and thus may
be seen as a parameter of the system. Upon learning of
another input, the weights are again modified. Thus the
attractor corresponding to the first input is modified.
However, it stays similar in terms of frequency, rotation
number or center (see Figure 4). More importantly, the
group of activated neurons remains almost unchanged

mnet t( ) 1
N
---- xi t( )

i 1=

N

∑=

Figure 3 Chaos (g = 7, N = 100). See Figure 1 for expla-
nations.

t 1,≥∀
if xj t( ) 0.5≥ then

wij t 1+( ) wij t( ) a.xi t 1+( ).xj t( )+=

Figure 4  The attractor linked with the same input I1 af-
ter learning of I1 alone (light line), and after learning of I1

followed by learning of a different input I2 (darker line).
The attractor is slightly different because the weights
have changed through learning. However, the same
group of neurons are active (Daucé et al., 1998).
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(Daucé et al., 1998). Hence, applying a learning rule
relating these active neurons to a decision neuron on
another layer will lead to the activation of the same
decision neuron. We used this property to design the
motor command of a mobile robot (Daucé et al.,
2002).

Before learning, applying an input leads the sys-
tem to a chaotic dynamics. Only learning reduces the
dynamics onto a much simpler attractor. After learning
and removing of the learned input, the dynamics of the
system is different from the initial one (because the
weights have changed) but chaotic again. Learning a
different input leads the system to a different state. So
the state reached after learning is input-specific. When
learning different inputs successively, each input is
linked with a different attractor. An input which is not
learned does not change the dynamics in the same way
as learned inputs (Daucé et al., 1998).

Note that unlike Hopfield networks, RRNNs pos-
sess a unique attractor at a given time step, so that for
each set of parameters, any initial condition converges
on the unique attractor. Theoretical and numerical stud-
ies reported in Cessac et al. (1994) confirmed that in
the thermodynamic limit, the attractor is unique and
showed that in this case, only fixed point or chaotic
attractors are possible. For finite size networks, the
number of attractors present at a given time usually
remains unique but the types of attractors accessible to
the dynamics increases to also include limit cycles and
tori. Furthermore, in finite size systems, there exists a
narrow parameter range (theoretically proven and
numerically evidenced) where one fixed point and one
strange attractor can coexist. We have also conducted
experiments in which the weights are progressively
symmetrized, and found that other attractors may
appear (in the perfectly symmetrical case, RRNNs are
Hopfield-like neural networks). Because inputs are
parameters, there are different attractors for different
inputs. But in our case, the input is given by the applied
Ii’s, not by the initial condition x(0) (which is randomly
chosen). Thus our system is different from many cha-
otic neural networks for which chaos stems from the
exploration dynamics of several attractors belonging
to the same dynamical system (e.g. chaotic itinerancy;
Tsuda, 2001).

5 Learning and Structure

The mean value and variance of the weights are chang-
ing because the weights are updated according to the
learning rule (which remains unchanged). So after learn-
ing, the weights are not following the initial Gaussian
distribution anymore (see below) and therefore, we
have not yet been able to theoretically describe why
the dynamics is reducing when learning takes place.
However, simulations and statistics on the weight matrix
give us some insights. We have studied the structure of
the network before and after learning with complex
networks tools (Barabasi & Oltvai, 2004). The results
are reported in the following. Our aim here is to quan-
tify how learning influences the way large synaptic
weights distribute on the neural network. Towards this
aim, we first proceed to the thresholding of the weight
matrix. Let � = {wij} be the weight matrix and � =
{aij} its corresponding (possibly thresholded) adjency
matrix, i.e.

(4)

where e is the threshold and  (…) the Heavyside step
function:

(5)

Note that we are interested here in the strength of
the connection between two neurons, regardless of
their inhibitory/excitatory nature. Thus we restrain our
analysis to the weight intensity, retaining only their
absolute values, i.e. wij  |wij|.

Because we are dealing with undirected graphs,
incoming and outgoing connections are distinguished.
Thus, we should ideally study each statistical indica-
tor in triplicate: one concerning outgoing links only,
one for incoming links only, and one dealing with the
total links (incoming + outgoing). In this case, dealing
with multiple statistical indicators rapidly becomes
difficult to handle. We thus chose a tradeoff solution,
considering the graph as undirected most of the time,
while taking directionality into account in the cluster-
ing index.

We define the global weight wi, j as the maximal
value of the incoming and outgoing weights:

wi, j = max(wij,wji) (6)

aij Θ wij e–( )=

Θ

Θ x( )
1 if x 0≥
0 if x 0<




=

←
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Likewise, we note

ai, j = max(aij,aji) (7)

We then define the degree (connectivity) of node i
as:

(8)

ki thus denotes the number of i’s neighbors (a neigh-
bor is a neuron with at least one connection leading
into or out of i). The average clustering coefficient C
expresses the probability that two nodes connected to
a third one are also connected together (degree of cli-
quishness). The clustering index Ci of node number i
is:

(9)

With this definition at hand, the clustering index
takes link directionality (reciprocal links) into account,
but only when reciprocal links are between i’s neigh-
bors (see Figure 5). Reciprocal links linking i to its
neighbors are thus not explicitly accounted for in Ci.
This information can be found, for instance, in the
average density of reciprocal links.

We then classically define the clustering index C,
as the average value of Ci over the network

(10)

Let d(i, j) be the shortest path (in number of links)
between neuron i and j, then the mean shortest path
(MSP) is its average over the N(N – 1) nonidentical
neuron pairs

(11)

The probability distribution of the weights before
and after learning is displayed in Figure 6. Initially, the
distribution follows the Gaussian law described above
(Section 3). After learning, some of the weights still
display their initial Gaussian distribution (unlearned
weights). However, the most prominent event is the
emergence of two new modes in the weight distribution,
with a first group of weights centered around 0, and
another group, centered around 0.12. Weights around
0.12 are those corresponding to learned connections
linking together active neurons (see Section 4). Weights
around 0 correspond to initially negative weights that
are bounded by the condition that a weight may not
change its sign. However, the peak near 0.12 was not
particularly expected because the positive weights dis-
tribution could have been almost uniform.

Properly setting the threshold e, we obtain the net-
work made of the largest synaptic connections only.
Hence, thresholding enables us to gradually isolate the
active weight network from the inactive part. Before
learning, weights are randomly (homogeneously) dis-
tributed over the network whatever the applied thresh-
old, so that the average MSP (Figure 7), as well as the
average clustering index (Figure 8), remain identical
to their values in a comparable random network.

ki ai j,
j 1=

N

∑=

Ci
1

ki ki 1–( )
---------------------- ai j, ai h, ajh ahj+( )

j h,
∑=

Figure 5 Illustration of the clustering index for three net-
work examples. The value of the degree ki and clustering
index Ci for neuron number 1 are given in each case.

C N 1– Ci
i 1=

N

∑=

MSP 1 N2 N–( ) d i j,( )
i j,
∑⁄=

Figure 6 Weight distribution before and after learning.
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After learning, increasing thresholds (thus grad-
ually isolating the active neuron network) reveal a
slight increase (less than 15%) in the MSP (see Fig-
ure 7). This indicates that the average degree of sepa-
ration between two neurons of the active population
increases only slightly. However, the average cluster-
ing index increases up to 65% (as compared with
purely random networks, see Figure 8). This denotes
that after learning, the distribution of the large synap-
tic weights over the network is no longer random.
Before learning, the larger-weight synapses are ran-
domly distributed across the network. In particular,
the probability that two neurons i and j are connected
through a large synaptic weight wij does not depend on
the overall connectivity pattern of these two neurons.
The large increase in the clustering index after learn-
ing indicates that in this case, the probability that two
neurons i and j are connected through a large-weight
synapse wij is much more likely if i and j have a third
common neighbor k to which they are connected via
two large-weight synapses (wik and wjk). Hence the
probability of finding triangular connectivity circuits
between neurons i, j and k in which all the implied
synaptic weights are strong, is increased by learning.
In other words, after learning, the distribution of the
large weights over the network is no longer random
because strong synaptic weights have preferentially

assembled into triangles. However, this distribution of
the large weight synapses still guarantees that the
number of large synaptic weights separating any two
neurons in the network remains very low.

To further demonstrate the reality of this organ-
ized weight distribution, we proceeded to the following
weight shuffling simulations. After Hebbian learning,
each weight wij of the weight matrix � was exchanged,
with probability p, with another randomly chosen weight
wkl. Figures 9 and 10 show the MSP and clustering
index, respectively, for various shuffling probabilities
p. Clearly, as p increases, the corresponding weight
matrices progressively lose their organized properties
and display characteristics that tend toward those of
random networks. Hence, random weight shuffling
destroys the organized weight structure and reverses the
structural effects of the Hebbian learning rule. Further
measurements, such as the clustering index dependence
on connectivity or connectivity correlations (Vázquez,
Pastor-Satorras, & Vespignani, 2002) have also been
computed and will be reported elsewhere.

The two previous properties (high clustering and
short distances) are the signature of so-called “small-
world” networks. In the broadest sense, the “small-
world” phenomenon only relates to sparse networks
that display a low mean shortest path (or more pre-

Figure 7 Mean shortest path versus threshold e. Values
are normalized by those observed on a random network
with same number of neurons and connections. Present-
ed are averages over three different initial conditions. The
bars indicate corresponding minimum and maximum val-
ues.

Figure 8 Average clustering index versus threshold e.
Values are normalized by those observed on a random
network with same number of neurons and connections.
Presented are averages over three different initial condi-
tions. The bars indicate corresponding minimum and max-
imum values.
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cisely one that scales as the logarithm of the network
size). However, in recent literature, the term “small-
world network” is usually employed in the sense of
Watts & Strogatz’s (1998) model, where “small-world”
networks are networks with both a low mean shortest
path (i.e. displaying the “small-world” phenomenon)
and a clustering index that is much higher than in com-
parable purely random networks. Actually, this defini-
tion encompasses non-trivial networks in which both
the local (high clustering index) and global (short mean
shortest path) properties are optimal. In this sense, our
present results show that after learning, the network
built by the strongest synaptic weights is such a “small-
world” network.

Interestingly, “small-world” networks are also
encountered in many real-world networks such as
those formed by cell metabolism (Jeong et al., 2000),
the citation of scientific articles (Newman, 2001), soft-
ware architecture (Valverde et al., 2002), the Internet
(Barabasi & Albert, 1999) or electronic circuits (Can-
cho et al., 2001). Furthermore, several studies have
shown that this organization might be common in real
biological neural networks. Indeed, it has been evi-
denced for the complete nervous system of the worm
Caenorhabditis elegans (Watts & Strogatz, 1998) and
mammal cortical area networks (Sporns & Zwi, 2004;

Sporns et al., 2004). Hence our results yield the formu-
lation of the hypothesis that small-world organizations
could spontaneously emerge as a result of generic
forms of Hebbian learning. Of course, this hypothesis
will need to be tested in future work.

6 Conclusion

We show that beginning with a randomly connected
neural network, and running a Hebbian learning rule
produces the following behaviors:

• the dynamics reduces from chaos to a limit cycle
and finally to a fixed point;

• the set of “active” neurons is reinforced, and is
specific to the applied input pattern;

• the structure composed by the large synaptic
weights organizes as a “small-world” network.

This picture leads us to formulate the hypothesis
that Hebbian learning in neural networks could shape
the network structure to produce small-world networks.
Interestingly, this structure itself reflects the small
group of active neurons sustaining the initially chaotic
dynamics. This also questions the relevance of small-

Figure 9 Mean shortest path versus threshold e for dif-
ferent values of the shuffling probability p. After learning,
each weight wij of the weight matrix was exchanged, with
probability p, with a randomly chosen other weight wkl.
Values are normalized by those observed on a random
network with same number of neurons and connections.

Figure 10 Average clustering index versus threshold e
for different values of the shuffling probability p. After learn-
ing, each weight wij of the weight matrix was exchanged
with probability p with a randomly chosen other weight wkl.
Values are normalized by those observed on a random
network with same number of neurons and connections.
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world architectures for storing and processing infor-
mation.

However, the effects observed on the network
structure are obtained after hundreds of learning steps,
whereas only a few dozen of them are enough to reduce
the dynamics and recognize a learned pattern (Daucé
et al., 1998). This means firstly that the structure
observed after learning may only be the result of long-
term learning shaping the global structure of the net-
work. Secondly, this also means that besides the dynam-
ics of the network, we have to take its “dynamical
topology” (as opposed to the structural topology) into
account. This dynamical topology is a functional one
that relates neurons responding to the same input.
Indeed the response of a neuron may be highly depend-
ent on the input frequency and may not directly depend
on the existence of a direct link between the two neu-
rons (Cessac & Sepulchre, 2004). Thus, one further step
will be the investigation of the influence of learning on
the ability to transmit a signal from one neuron to
another.

The study of the network structure presented here
has only been performed after learning one input. It is
now necessary to investigate this structure after learn-
ing several inputs. We expect to see the same kind of
small-world structure.

Our system is a discrete time one. We can expand
it into two directions. The first one concerns dealing
with “spikes” rather than firing rates. We have already
shown that the network dynamics in this case are qual-
itatively identical the properties exposed here (Daucé,
2004). The other direction deals with introducing con-
tinuous time dynamics instead of discrete time ones.
This is a very important issue for the following rea-
sons. Firstly, though synchronizing processes occur,
the natural brain does not compute with fixed discrete
time steps. Some results concerning chaos in the same
kind of dynamical systems have already been pub-
lished (Sompolinsky, Crisanti, & Sommers, 1988). We
also performed stability simulations in the continuous
time version of our equations. We obtained results that
are similar to those reported here in the discrete time
case, but for another range of parameters (Quoy, 2004).
Thus, bifurcations and chaos are also observed. How-
ever, it remains unclear whether we will keep the same
learning and retrieval properties. Indeed, our learning
scheme mainly relies on the correlation between active
neurons at two successive time steps. In the discrete
time system, these active neurons are changing quite

rapidly because at each time step the dynamics goes
from one part of the attractor to another one. In the
continuous time system, we will lose this property.
Therefore, learning may have to be adapted to this dif-
ferent behavior. This remains to be investigated.
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