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The international Computational Neuroscience meeting (CNS) has
been a premier forum for presenting experimental and
theoretical results exploring the biology of computation in the
nervous system for the last 16 years. The meeting is organized
by the Organization for Computational Neurosciences, a non-profit
organization governed by an international executive committee
and board of directors. A separate program committee is
responsible for the scientific program of the meeting. Partici-
pants at the meeting are from academia and industry. The
meeting not only provides a venue for research presentation
and discussion by senior scientists but actively offers a forum for
promoting and supporting young scientists and students from
around the world.
The papers in this supplemental volume were presented at the
16th Annual Computational Neuroscience Meeting (CNS*2007)
held in Toronto, Ontario, Canada from Saturday July 7 to
Thursday July 12, 2007. The meeting consisted of a welcome
reception, three days of oral and poster sessions, an evening
harbor cruise and dinner, and two days of workshops. The main
meeting was held at 89 Chestnut, a University of Toronto
conference facility and the workshops took place at the
University of Toronto downtown campus.
Abstracts for the meeting were submitted in early February.
Those authors wanting an oral presentation also submitted an
extended summary of their work. The abstracts were reviewed
by the Program Committee and each extended summary was
additionally reviewed and scored by two independent reviewers.
In the end 230 papers were accepted for the meeting. The

review comments and scores for the extended summaries were
used by the Program Committee to construct the final oral and
poster programs.
Abstracts for oral presentations are given first, in order of
presentation at the meeting. Abstracts for poster presentations
are grouped by topic according to keywords chosen by the
authors in their initial submissions. Clearly some papers could fit
under multiple topics, so this classification is by no means
precise. Nevertheless, these abstracts represent a sampling of
some of the exciting work being done today, often by young
researchers, in the field of Computational Neuroscience.
CNS*2007 Program Committee: Bill Holmes, Chair (Ohio
University), Steve Bressler (Florida Atlantic University), Frances
Chance (University of California, Irvine), Sharon Crook (Arizona
State University), Markus Diesmann (RIKEN), Alex Dimitrov
(Montana State University), Sonja Gruen (Free University,
Berlin), Tay Netoff (University of Minnesota), Hiroshi Okamoto
(RIKEN), Mike Paulin (University of Otago), Astrid Prinz (Emory
University), Michelle Rudolph (CRNS).
CNS*2007 Reviewers: Kurt Ahrens, Athena Akrami, Jose
Ambros-Ingerson, Peter Andras, Toru Aonishi, Ildiko Aradi,
Francesco Battaglia, Maxim Bazhenov, James Bednar, Jan Benda,
Upinder Bhalla, Ingo Bojak, Victoria Booth, Amitabha Bose,
Steve Bressler, Romain Brette, Robert Butera, Ronald Calabr-
ese, Carmen Canavier, Jeremy Caplan, Hide Cateau, Michela
Chippalone, Thomas Cleland, Albert Compte, Felix Creutzig,
Patrick Crotty, Gennady Cymbalyuk, Peter Dayan, Gustavo
Deco, Paolo DelGiudice, Michael Denker, Alain Destexhe,
Alexander Dimitrov, Mingzhou Ding, Ramana Dodla, Brent
Doiron, Chris Eliasmith, Udo Ernst, Gabbiani Fabrizio, Adrienne
Fairhall, Jean-Marc Fellous, Roberto Fernández Galán, Nicolas
Fourcaud-Trocme, Erik Fransen, Marc-Oliver Gewaltig, Stan
Gielen, Bruce Graham, Lyle Graham, Cengiz Gunay, Christian
Hauptmann, J. Michael Herrmann, Yutaka Hirata, Kazuhisa
Ichikawa, Hide Ikeno, Dieter Jaeger, Don Johnson, Ranu Jung,
Szabolcs Kali, Amir Karniel, Gabriel Kreiman, Linda Larson-
Prior, Aurel A Lazar, Maciej Lazarewicz, Tim Lewis, Hualou
Liang, Benjamin Lindner, Marja-Leena Linne, Andre Longtin,
Niklas Ludtke, William Lytton, Paul Miller, Samat Moldakarimov,
Abigail Morrison, Tay Netoff, Ernst Niebur, Haruka Nishimura,
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Panzeri, Gordon Pipa, Panayiota Poirazi, Bernd Porr, Jennifer
Read, Patrick Roberts, Horacio Rotstein, Yasser Roudi, Alex
Roxin, Michelle Rudolph, Ko Sakai, Yukata Sakai, Emilio Salinas,
Steven Schiff, Shihab Shamma, Harel Shouval, Asya Shpiro, Karen
Sigvardt, Leslie Smith, Martin Stemmler, David Sterratt,
Benjamin Torben-Nielsen, Horatiu Voicu, Christina Weaver.

BioMed Central

Page 1 of 119
(page number not for citation purposes)

http://www.biomedcentral.com/


CNS*2007 Local Organizer and Workshop Chair:
Frances Skinner (Toronto Western Research Institute and
University of Toronto).
Government Liaisons: Dennis Glanzman (NIMH), Yuan Liu
(NINDS), Kenneth Whang (NSF).
Supporting Agencies: National Institute of Mental Health
CNS – Organization for Computational Neuroscience
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André Longtin1,2, Len Maler2,3, Jan Benda3,4

and Jason Middleton1,2,3
1Department of Physics, University of Ottawa, Ottawa, Canada
2Center for Neural Dynamics, University of Ottawa, Ottawa,
Canada
3Department of Cellular and Molecular Medicine, University of
Ottawa, Ottawa, Canada
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E-mail: alongtin@uottawa.ca

BMC Neuroscience 2007, 8(Suppl 2):S1

There are an increasing number of experimental studies of sensory
neural systems devoted to understanding the processing of
naturalistic stimuli. Such studies are necessary to reveal the whole
spectrum of possible computations accomplished by neural systems.
We discuss recent advances in this area in the context of the electric
sense, which can be seen as a combination of the visual and auditory
senses [1]. This sense is very advantageous for such studies because
its input can be well characterized and modeled [2]: modulations of
an endogenous electric organ discharge (EOD) carrier caused by
objects such as rocks and food, and communication signals between
the fish. Especially important is the fact that the anatomy enables
electrophysiological recordings through many successive stages of
processing.

This talk will briefly review earlier results on coherence shifts,
oscillations and bursting in this sense, and present recent results
from our experimental/theoretical collaboration. First, in the
context of communication, the primary afferent neurons or
"electroreceptors" exhibit transitions between synchronized and
desynchronized states. The direction of the transition depends on
whether the interaction is between fish of the same or opposite sex
[3]. The decoding of this effect is performed by pyramidal cells, and
depends on the frequency dependence of the synchronous
discharges. We also present results showing that the synchronous
discharges between afferents selectively encode high frequencies.
We then consider the cocktail party problem these animals face, with
the goal of discovering the neural solution to this general problem.
We address this issue in the context of the detection of slow time
scale modulations of the EOD carrier. These slow modulations arise
whenmany fish are in the vicinity of one another.We show that these
modulations can be extracted via a Hilbert-type transform, and
illustrate the circuitry that enables this computation [4]. Modeling
shows that the effect requires strong neuronal nonlinearity, and can
under certain circumstances benefit from the presence of noise when
a population of neurons is considered [5]. This computation allows
parallel transmission of high-frequency signals, as well as the low
frequency envelope that results from social interactions.
References
1. Heiligenberg W: Neural Nets of Electric Fish MIT Press,

Cambridge, MA; 1991.
2. Babineau D, Lewis JE and Longtin A: Spatial acuity and

prey detection in weakly electric fish. PLoS Comput Biol
2007, 3(3):e38.

3. Benda J, Longtin A and Maler L: A synchronization-
desynchronization code for natural communication
signals. Neuron 2006, 52:347–358.

4. Middleton JW, Longtin A, Benda J and Maler L: The
cellular basis for parallel neural transmission of a
high-frequency stimulus and its low-frequency envel-
ope. Proc Natl Acad Sci 2006, 103:14596–14601.

5. Middleton JW, Harvey-Girard E, Maler L and Longtin A:
Envelope gating, noise shaping and signal transmis-
sion in populations of noisy neurons. Phys Rev E Stat
Nonlin Soft Matter Phys 2007, 75:021918.
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Dense gap-junction connections support dynamic
Turing structures in the cortex
D Alistair Steyn-Ross1, Moira Steyn-Ross1,
Marcus Wilson1 and Jamie Sleigh2
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3240, New Zealand
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The recent report by Fukuda et al [1] provides convincing
evidence for dense gap-junction connectivity between inhibitory
neurons in the cat visual cortex, each neuron making 60 +/- 12
gap-junction dendritic connections with neurons in both the
same and adjoining orientation columns. These resistive
connections provide a source of diffusive current to the
receiving neuron, supplementing the chemical-synaptic currents
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generated by incoming action-potential spike activity. Fukuda
et al describe how the gap junctions form a dense and
homogeneous electrical coupling of interneurons, and propose
that this diffusion-coupled network provides the substrate for
synchronization of neuronal populations.
To date, large-scale population-based mathematical models of the
cortex have ignored diffusive communication between neurons.
Herewe augment a well-establishedmean-field cortical model [2] by
incorporating gap-junction-mediated diffusion currents, and we
investigate the implications of strong diffusive coupling. The
significant result is the model prediction that the 2D cortex can
spontaneously generate centimetre-scale Turing structures (spatial
patterns), in which regions of high-firing activity are intermixed with
regions of low-firing activity (see Fig. 1). Since coupling strength
decreases with increases in firing rate, these patterns are expected
to exchange contrast on a slow time-scale, with low-firing patches
increasing their activity at the expense of high-firing patches. These
theoretical predictions are consistent with the slowly fluctuating
large-scale brain-activity images detected from the BOLD (blood
oxygen-level-dependent) signal [3].
References
1. Kosaka T, Singer W and Galuske RAW: Gap junctions

among dendrites of cortical GABAergic neurons
establish a dense and widespread intercolumnar
network. J Neurosci 2006, 26:3434–3443.

2. Steyn-Ross DA, Steyn-Ross ML, Sleigh JW, Wilson MT,
Gillies IP and Wright JJ: The sleep cycle modelled as a
cortical phase transition. J Biol Phys 2005, 31:547–569.

3. Fox MD, Snyder AZ, Vincent JL, Corbetta M, van Essen DC
and Raichle ME: The human brain is intrinsically
organized into dynamic, anticorrelated functional
networks. Proc Nat Acad Sci USA 102:9673–9678.
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An important consideration in analyzing the time-frequency
rhythms of hippocampal local field potentials is to what extent
changes in time of a single site signal actually reflect spatial
summation of two wholly separate signals. Signals observed
could be the result of the spatial summation of different
activities. For example, the duration of activities observed could
be due to two shorter durations overlapping. More broadly, it is
a source of concern if the hippocampal rhythms do not have well
defined spatial properties (preferably fairly homogenous) since a
single signal has no control for this variable.
To that end, we examine the behaviour of a spontaneous
hippocampal rhythm over time as it varies spatially within an intact
whole hippocampus preparation. We also examine the response to
a high frequency stimulation protocol of 80 Hz. Using four
simultaneous rostral to caudal recordings of two to five minutes,
we characterize this changing rhythmic activity according to
clustered patterns of activity in its time-frequency distribution.
Our data set consists of 40 extracellular recordings. The frequency
distribution change in response to stimulation was observed. We
calculate the spatial variance of the data for each unit of time. This
allows us to link the time-frequency data to a level of spatial variance.
The variance of the signal in time was defined to be the variance in
the mean frequencies of the signal resultant from partitioning each
time-frequency epoch into thirds. That is, a sliding 0.5 second
temporal resolution was divided into thirds and the variance in the
mean frequencies calculated. The change in the signal in time was
then compared to the change in signal in space to determine
whether there were any significant correlations.
There is a distinct relationship between the variance among
simultaneous rostral caudal recordings and the non-stationarity
present in each of those spatially distinct recordings. The peak values
nearly follow the y = -x line. Functional biological rhythms in the
hippocampus are commonly both non-stationary and coherent,
making this inverse relationship more intuitive. Consider that the
hippocampal recording has two components, one of which is

Figure 1 (abstract S2)

Diffusion-induced Turing patterns in a square cortex of side 25 cm. Panel a shows the case of zero diffusion: the cortex organizes into a
diffuse, cloud-like pattern, but fails to generate a Turing structure. Panels b-d show increasing inhibitory diffusion. These cases evolve into stable
serpentine Turing patterns containing alternating regions of low-(blue) and high-firing (red) cells.
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stationary background noise and one of which is the nonstationary
signal of interest. Our finding, then, is that the noise is uncorrelated
spatially and signal is correlated spatially. In this case, when the signal
is low, the non-stationarity would be low and the spatial variance
would be high. This is a very useful property for single site
recordings because it means that the more physiologically
interesting (nonstationary) the recording, the less we need to be
concerned that spatial summation is a problem.

S4
Synchronization of asynchrony-favoring neurons –
wireless clustering
Hideyuki Câteau and Tomoki Fukai
RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 3510198
Saitama, Japan
E-mail: cateau@brain.riken.jp

BMC Neuroscience 2007, 8(Suppl 2):S4

Paired neurons tend to fire synchronously or asynchronously
depending on the membrane potential dynamics. Traditionally,
those neurons that favor synchrony are associated with temporal
coding, while rate coding is associated with those that favor
asynchrony. However, as we show here, the effects of spike-timing-
dependent plasticity (STDP) challenge this view. Under STDP, a
population of neurons that favors asynchrony appears to self-
organize into clusters, each of which exhibits synchronous firing. This
paradoxical synchronization within each cluster is possible because
STDP selectively disrupts intra-cluster connections, thereby nullifying
the asynchrony tendency inherent in neurons.We call this a wireless
clustering.Whenwe run the same simulationwith neurons that favor
synchrony, no cluster-wide synchronization is observed. Instead,
these neurons are synchronized globally. Where the impact of a
single neuron on other neurons can be as small as 0.5mV, a cluster of
synchronously firing neurons can reliably elicit firing in other
neurons, making the cluster the likely unit for information processing
in the brain. Therefore, based on this study, asynchrony-favoring
neurons appear to contribute to the temporal coding scheme, not
synchrony-favoring neurons which exhibit global synchrony which is
more common in pathological events like a seizure.

S5
Multi input multi output neural population
encoding
Aurel A Lazar and Eftychios Pnevmatikakis
Department of Electrical Engineering, Columbia University,
New York, NY 10027, USA
E-mail: aurel@ee.columbia.edu

BMC Neuroscience 2007, 8(Suppl 2):S5

A formal mathematical model for representing neural stimuli is
presented. The model enables the investigation of stimulus
representation by spiking neurons, and provides algorithms that
under certain conditions can recover the stimuli with no error,
by knowing only the time of the spike trains.
In our model, we assume that N bandlimited input stimuli
approach the dendritic trees of M spiking neurons. Each stimulus
comes to a different branch of each dendritic tree, and each
dendritic tree is modeled as a linear time invariant (LTI) filter.
The outputs of all dendritic branches are summed together with
a background current (bias), and this sum enters the soma of
each neuron, which is modeled as an Integrate-and-Fire neuron.

We prove that under certain conditions, it is possible to recover all
N input spike trains, by knowing only the M spike trains, and provide
an algorithm for that purpose. The proof comes from the
mathematical theory of frames and the conditions require a
minimum average spike density from the neurons and some mild
conditions in the impulse responses of the dendritic branches/filters.
We illustrate this algorithm with an example that recovers the
stimuli when the dendritic branches perform arbitrary but known
time-shifts to the signal. This particular example is important as it
illustrates how information from sensory neurons that respond
with different latencies, can be combined together.
Finally, the model points to the significance of neural population
codes, as it shows that data from a single neuron can be
misleading in terms of what the input stimulus is. We illustrate
this significant observation with an example.

S6
Object localization through the lateral line
system of fish
Julie Goulet1, Jacob Engelmann2, Boris Chagnaud2,
Jan-Moritz Franosch1 and J Leo van Hemmen1
1Bernstein Center for Computational Neuroscience and Physik
Departement T35, TU München, 85747 Garching bei
München, Germany
2Institute for Zoology, University of Bonn, Poppelsdorfer
Schloss, 53115 Bonn, Germany
E-mail: julie@ph.tum.de
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Fish use their lateral-line mechanoreceptive system to analyze
water motion around their body. The functional unit of the fish
lateral-line system is a neuromast. This is in essence a cupula, a
gelatinous protuberance sticking into the water and deflected by
local water flow. Deflections stimulate sensory hair cells at the
basis of the cupula and in this way generate spikes in the lateral-
line nerves. Neuromasts are either free standing on the skin
(superficial neuromasts, SN) or in a system of sub epidermal
canals (canal neuromasts, CN). It has been shown that SNs are
sensitive to constant flow whereas CNs are not. Nobody,
however, has ever proposed a mathematical model to relate the
water perturbation in the fish environment to the water motion
in the canal, the neuromasts displacement, and the spike flow in
the afferent nerves. This is what we do here. The CN system
consists of canals that are open to the external environment
through approximately equidistant pores. Between each pair of
pores at the surface one can find one or more neuromasts in the
canal. A pressure difference between the pores induces water
movement in the canal and hence stimulates the neuromasts.
We solve the case of a small sphere oscillating near the body,
study the effect of different terms of the hydrodynamics on the
pressure map of the fish body and the ensuing neuronal
excitation pattern, and show that the maximum and the two
points where the pressure difference between two pores vanish
suffice to enable a fish to determine the distance to a stimulus.
Our theory has been confirmed by recording experiments. It has
also been shown that even though a constant flow does increase
the firing rate the effect induced by an oscillating dipole and the
distance between the zeros can still be measured.
Acknowledgements
Project funded by the Bernstein Center for Computational
Neuroscience – Munich.
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Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2The Hun School of Princeton, 176 Edgerstoune Road,
Princeton, NJ 08540, USA
3Joseph Henry Laboratories of Physics and Lewis-Sigler
Institute for Integrative Genomics, Princeton University,
Princeton, NJ 08544, USA
4Department of Physics, Indiana University, Bloomington,
IN 47405, USA
E-mail: nemenman@lanl.gov

BMC Neuroscience 2007, 8(Suppl 2):S7

Our knowledge of the sensory world is encoded by neurons in
sequences of discrete, identical pulses termed action potentials
or spikes. There is persistent controversy about the extent to
which the precise timing of these spikes is relevant to the
function of the brain. We revisit this issue, using the motion –
sensitive neurons of the fly visual system as a test case. New
experimental methods allow us to deliver more nearly natural
visual stimuli, comparable to those which flies encounter in free,
acrobatic flight, and new mathematical methods allow us to
draw more reliable conclusions about the information content
of neural responses even when the set of possible responses is
very large. We find that significant amounts of visual information
are represented by details of the spike train at millisecond and
sub-millisecond precision, even though the sensory input has a
correlation time of ~60 ms; different patterns of spike timing
represent distinct motion trajectories, and the absolute timing
of spikes points to particular features of these trajectories with
high precision. Under these naturalistic conditions, the system’s
information transmission rate still increases with higher photon
flux, even though individual photoreceptors are counting more
than one million photons per second. Further, exploiting the
relatively slow dynamics of the stimulus, the system removes
redundancy and so generates a more efficient neural code.

S8
Information theoretic bounds on the effectiveness
of neural prosthetics
Ilan N Goodman and Don H Johnson
Department of Electrical & Computer Engineering, Rice
University, Houston, TX 77005, USA
E-mail: igoodman@rice.edu

BMC Neuroscience 2007, 8(Suppl 2):S8

Capacity defines the ultimate fidelity limits of information transmis-
sion by any system, be it conveyed by digital, analog or spike train
signals. Rate-distortion theory shows that regardless of how error is
defined, any system having a smaller capacity than another must
result in larger estimation errors. For example, this theory shows
that, for bandlimited Gaussian stimuli, the smallest possible mean-
squared error decays exponentially with capacity. Since a single
neuron’s capacity is proportional to peak spike rate, "2min / exp
{��max/eW} (W is the stimulus bandwidth).
In previous work, we derived the capacity of parallel Poisson
process channels, which allows us to study the relative

effectiveness of neural population structures. Here, we elabo-
rate those results for two models of neural prosthetics: (1)
electrical stimulation systems such as cochlear implants and (2)
neural control systems that use surface or gross potentials to
control movements of limb prostheses. We show that for the
electrical stimulation case, the capacity is proportional to the
size of the population being stimulated, regardless of whether
the stimulus drives the entire population or whether individual
neurons are independently stimulated (fig 1). In this case, gross
stimulation theoretically suffices. In contrast, neural control
systems using gross recordings have a far smaller capacity. If a
single potential represents the aggregate population activity, we
found that capacity does not increase with population size, but
instead saturates at a value less than the capacity provided by
using the individual outputs of two neurons to derive the
control signal. If two gross potential measurements are made,
assumed here to represent overlapping subpopulations, capacity
is larger than in the single-potential case but still saturates with
increasing population size.
We conclude that stimulation prosthetics face no fundamental
barriers to being effective. Neural control systems do, however.
This fundamental limitation can be overcome by using spike sorting
(teasing apart the gross potential into its constituents) and/or by
using feedback, which has been shown to increase capacity.

S9
Invited talk: What can brain imaging add to
neuronal and network representations of pain and
attention?
Karen D Davis1,2
1Department of Surgery, Institute of Medical Science,
University of Toronto, Toronto, Ontario, Canada
2Division of Brain, Imaging and Behaviour Systems, Toronto
Western Research Institute, Toronto, Ontario, Canada
E-mail: kdavis@uhnres.utoronto.ca

BMC Neuroscience 2007, 8(Suppl 2):S9

Classic electrophysiological studies laid the groundwork for our
understanding of pain mechanisms and the impact of attentional
factors. However, with the advent of neuroimaging technologies

Figure 1 (abstract S8)

Capacity as a function of neural population size.
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such as functional MRI, brain mechanism associated with the
multidimensional aspects of human pain perception can now be
mapped. Our lab is developing models of specific qualities (percept-
related fMRI) of the pain experience, how they are impacted by
attentional and individual factors in both healthy individuals and
chronic pain states. Such models are also informed by single cell
electrophysiological recordings in the human brain, and network
models of pain and attention we are developing from multivariate
analyses. This presentationwill provide an overviewof these studies.

S10
Recollection and imagination in a functional
model of visual cortex
Rüdiger Kupper, Andreas Knoblauch, Ursula Körner,
Edgar Körner and Marc-Oliver Gewaltig
Honda Research Institute Europe GmbH and Carl-Legien-Str.
30, D-63073 Offenbach/Main, Germany
E-mail: ruediger.kupper@honda-ri.de

BMC Neuroscience 2007, 8(Suppl 2):S10

In [1] we have presented a model of signal flow in functional
cortical columns, across the six cortical layers and between
several cortical areas. We showed how the columnar sub-
systems interact to predict and recognize stimuli in terms of
locally stored knowledge. In this model, columnar communica-
tion integrated bottom-up signals with internally generated top-
down signals to describe the stimulus consistently across all
cortical areas. Here we extend this model to demonstrate that
the same setup of intercommunicating columns can use the
stored knowledge to integrate a pre-activation on the highest
level with the bottom-up recognition process. Given only coarse
or invariant top-down activation, the model can (i) guide and
support the recognition of noisy or ambiguous stimuli, and (ii)
recall known objects, at the highest level of detail, by creating
specific neural activations across all cortical areas. The second
process corresponds to recollection or mental imagery, in
which the brain internally creates a percept without a physical
stimulus.

The top-down pre-activation supports recognition of a stimulus
in several ways. (1) If the stimulus is noisy and could not be
recognized in the pure bottom-up-driven mode, the pre-
activation of the highest area supports weak bottom-up
activations that are consistent with the top-down signal, and
stabilizes recognition of the stimulus. (2) If the stimulus is
ambiguous and did not lead to a stable pattern of activity,
because no consistent description across all levels could be
found, pre-activation of one of the alternative objects (words) in
the highest area stabilizes the recognition of this object, and
marks the other parts of the stimulus as errors. In both cases,
the dynamics of the interacting neural subsystems promotes the
top-down influence across all model areas. (3) If the physical
stimulus is unspecific or missing, the top-down activation shapes
the diffuse bottom-up activation towards recognition of the
respective object. Because the dynamics of the interacting
neural subsystems strives towards consistent neural activity on
all cortical levels, it (re-)creates a detailed and specific mental
image of the recalled object.
Reference
1. Kupper R, Knoblauch A, Gewaltig M-O, Körner U and

Körner E: Simulations of signal flow in a functional
model of the cortical column. Neurocomputing 2007,
70:1711–1716, doi:10.1016/j.neucom.2006.10.085..

S11
The study of nonlocal neural populations involving
two neuron types and the effect of propofol
Axel Hutt1, Lutz Schimansky-Geier2 and Andre Longtin1
1Department of Physics, University of Ottawa, Ottawa,
Ontario, Canada, K1N 6J7
2Institute of Physics, Humboldt University, Berlin, Germany
E-mail: ahutt@uottawa.ca

BMC Neuroscience 2007, 8(Suppl 2):S11

The work derives a neural population model, which considers
excitatory and inhibitory synapses as well as excitatory and
inhibitory neurons. Then the spatio-temporal dynamics of the

Figure 1 (abstract S10)

Recognition and recall in the COREtext model. (a), characters, syllables, and words in the COREtext model correspond to edges, parts, and objects in
the visual system; (b), bottom-up mode (recognition); (c), top-down mode (recall).
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neural population is studied subject to the increase of
the inhibitory synaptic decay rate. This study is motivated by
the effect of the anaesthetic propofol, which increases the
inhibitory synaptic decay rate with increased blood concentra-
tion and may yield loss of consciousness. We find regimes
of stationary multistability and stability criteria for the
stationary states. It turns out that the increase and subsequent
decrease of propofol yields saddle-node bifurcations in a
hysteresis loop.

S12
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Eilif Muller, Johannes Schemmel and Karlheinz Meier
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We present a continuous Markov process model for spike-
frequency adapting neural ensembles which synthesizes existing
mean-adaptation approaches and inhomogeneous renewal
theory. Unlike renewal theory, the Markov process can account
for interspike interval correlations, and an expression for the
first-order interspike interval correlation is derived. The
Markov process in two dimensions is shown to accurately
capture the firing-rate dynamics and interspike interval correla-
tions of a spike-frequency adapting and relative refractory
conductance-based integrate-and-fire neuron driven by Poisson
spike trains. Using the Master equation for the proposed process,
the assumptions of the standard mean-adaptation approach are
clarified, and a mean+variance adaptation theory is derived which
corrects the mean-adaptation firing-rate predictions for the
biologically parameterized integrate-and-fire neuron model
considered. An exact recipe for generating inhomogeneous
realizations of the proposed Markov process is given.
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Recent experiments [1, 2] have suggested single synapses could
be similar to noisy binary switches. Binary synapses would have
the advantage of robustness to noise and hence could preserve
memory over longer time scales compared to analog systems.
Learning in systems with discrete synapses is known to be a
computationally hard problem. We developed and studied a
neurobiologically plausible on-line learning algorithm that is
derived from Belief Propagation algorithms. This algorithm
performs remarkably well in a model neuron with N binary
synapses, and a discrete number of ’hidden’ states per synapse,
that has to learn a random classification problem. Such a system
is able to learn a number of associations which is close to the
information theoretic limit, in a time which is sub-linear in
system size, corresponding to very few presentations of each
pattern. Furthermore, performance is optimal for a finite
number of hidden states, that scales as N1/2 for dense coding,
but is much lower (~10) for sparse coding (see Figure 1). This is
to our knowledge the first on-line algorithm that is able to
achieve efficiently a finite capacity (number of patterns learned
per synapse) with binary synapses.
The algorithm is similar to the standard ’perceptron’ learning
algorithm, but with an additional rule for synaptic transitions
which occur only if a currently presented pattern is ’barely
correct’ (that is, a single synaptic flip would have caused an error).

Figure 1 (abstract S13)

Learning capacity and learning time. (left) achieved capacity vs. the number of synapses N, with different numbers of hidden states, in the sparse
coding case: the algorithm can achieve up to 70% of the maximal theoretical capacity at N ~10000 with 10 hidden states; (right) average learning time
(number of presentations per pattern) versus number of patterns to be learned, for N = 64000: less than 100 presentations are required up to the
critical point where learning fails.
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In this case, the synaptic changes are meta-plastic only (change in
hidden states and not in actual synaptic state), and go towards
stabilizing the synapse in its current state. This rule is crucial to
the algorithm’s performance, and we suggest that it is sufficiently
simple to be easily implemented by neurobiological systems.
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The hippocampal formation plays a crucial role in organizing
cortical long-term memory. It is believed that the hippocampus
is capable of fast (one-shot) learning of new episodic information
followed by extensive time periods where corresponding
neocortical representations are trained and ‘‘compressed’’ [1].
Here, compression usually refers to processes such as chunking
spatially and temporally distributed activity patterns. We take
the complementary approach and optimize the synaptic network
by structural plasticity, e.g., replacing unused synapses, thereby
making full use of the potential connectivity [2].
We apply the frameworks of structural plasticity and hippocam-
pus-induced learning to the training of neocortical associative
networks [3]. Associative networks such as the Hopfield or
Willshaw model are at the heart of many cortex theories and
have been analyzed for a long time with respect to information
storage capacity and plausible retrieval strategies [3, 4]. For
example, it is well known that a completely connected network
can store about 0.7 bits per synapse. However, for incompletely
connected networks the capacity per synapse can be massively
reduced or even vanish, depending on the retrieval algorithm [4].
In this work we analyze how structural processes and synaptic
consolidation [5] during hippocampal training can improve the
performance of neocortical associative networks by emulating full
(or increased) synaptic connectivity. In our model the hippocampus
can store a set of activity patterns by one-shot learning. Then the
hippocampus trains the neocortex by repeatedly replaying the
patterns in a sequence. The synapses of the neocortical network are
consolidated depending on Hebbian learning. In each time step a
fraction of the unconsolidated synapses are removed and replaced
by the same number of new synapses at random locations thereby
maintaining total connectivity. We show that this procedure can
massively increase the synaptic capacity of a cortical macrocolumn
(factor 10–20 or even up to factor 200 for pattern capacity). In a
second step we analyze the model with respect to the time (or

number of repetitions) necessary to increase effective connectivity
from base level to a desired level. The analysis shows that acceptable
training time requires a certain fraction of unconsolidated synapses
to keep the network plastic.
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Learning the associations between cues and rewards (classical or
Pavlovian conditioning) or between cues, actions, and rewards
(instrumental or operant conditioning) involves reinforcement of
neuronal activity by rewards or punishments. Typically, the
reward comes seconds after reward-predicting cues or reward-
triggering actions, creating an explanatory conundrum known in
the behavioral literature as the distal reward problem and in the
reinforcement learning literature as the credit assignment problem.
Indeed, how does the animal know which of the many cues and
actions preceding the reward should be credited for the reward?
In neural terms, in which sensory cues and motor actions
correspond to neuronal firings, how does the brain know what firing
patterns, out of an unlimited repertoire of all possible patterns, are
responsible for the reward if the patterns are no longer there when the
reward arrives? How does it know which spikes of which neurons
result in the reward ifmany neurons fire during the waiting period
to the reward? Finally, how does the common reinforcement
signal in the form of the neuromodulator dopamine (DA)
influence the right synapses at the right time, if DA is released
globally to many synapses? Here, I show how the credit
assignment problem could be solved in a network of cortical
spiking neurons with DA-modulated plasticity.
The model is based on the experimental findings that DA
modulates synaptic plasticity by enhancing long-term potentia-
tion (LTP) and long-term depression (LTD): For example, in
hippocampus, dopamine D1 receptor agonists enhance tetanus-
induced LTP, but the effect disappears if the agonist arrives at
the synapses 15–25 seconds after the tetanus, thereby suggest-
ing the existence of a short window of opportunity for the
enhancement. My major hypothesis is that DA acts the same
way on the spike-timing dependent synaptic plasticity (STDP).
That is, a particular order of firing induces a synaptic change
(positive or negative), which is enhanced if extracellular DA is
present during the critical window of a few seconds.
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I show that DA modulation of STDP has a built-in property of
instrumental conditioning: It can reinforce firing patterns
occurring on a millisecond time scale even when they are
followed by rewards that are delayed by seconds. This property
relies on the existence of slow synaptic processes that act as
‘‘synaptic eligibility traces’’ or ‘‘synaptic tags’’. These processes
are triggered by nearly-coincident spiking patterns, but due to a
short temporal window of STDP, they are not affected by
random firing during the waiting period to the reward. This
‘‘insensitivity’’ of the synaptic tags to the random ongoing
activity during the waiting period is the key feature that
distinguishes my approach from previous studies, which require
that the network be quiet during the waiting period or that the
patterns are preserved as a sustained response. I also discuss
why this mechanism works only when precise firing patterns are
embedded into the sea of noise and why it fails in the mean firing
rate models. I also present a spiking network implementation of
the most important aspect of the temporal difference (TD)
reinforcement learning rule – the shift of reward-triggered
release of DA from unconditional stimuli to reward-predicting
conditional stimuli.
This study emphasizes the importance of precise firing patterns
in brain dynamics and suggests how a global diffusive reinforce-
ment signal in the form of DA can selectively influence the right
synapses at the right time. The model provides a testable
prediction on the action of DA on STDP, which will be tested by
G. Bi (Pittsburgh University) and R. Froemke (UCSF) (personal
communications).
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An explanatory model is developed to show how synaptic
learning mechanisms modeled through spike-timing dependent
plasticity (STDP) can result in longer term adaptations
consistent with reinforcement learning models. In particular,
the reinforcement learning model known as temporal difference
(TD) learning has been used to model neuronal behavior in the
orbitofrontal cortex (OFC) and ventral tegmental area (VTA) of
macaque monkey during reinforcement learning. While some
research has observed, empirically, a connection between STDP
and TD there is as yet no explanatory model directly connecting
TD to STDP. Through analysis of the STDP rule, the connection
between STDP and TD is explained. We further show that an
STDP learning rule drives the spike probability of reward
predicting neurons to a stable equilibrium. The equilibrium
solution has an increasing slope where the steepness of the
slope predicts the probability of the reward. This connection

begins to shed light into more recent data gathered from VTA
and OFC which are not well modeled by TD. We suggest that
STDP provides the underlying mechanism for explaining
reinforcement learning and other higher level perceptual and
cognitive function.
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Each somatic motor cortical area receives input from non-motor
cortical areas and from the basal ganglia. Each area projects to all
of the other areas, and each area also projects directly to the
spinal cord. There is a limited understanding of how these
different motor areas interact, and how mappings from cognitive
goals to coordinated motor behaviour are established. The role
of the basal ganglia afferents is also enigmatic. While the basal
ganglia sometimes have a profound influence on movement, the
ablation of their output nuclei does not cause striking motor
symptoms. We present the hypothesis that the basal ganglia
obtain rough sketches of effective motor patterns via reinforce-
ment learning, and that they subsequently drive the cortex in
these patterns, such that the patterns are gradually transferred to
the cortex via supervised learning. Such a transfer mechanism
may account for a number of phenomena including: 1) the way in
which activity migrates between structures as expertise develops
in some motor tasks; 2) the subtlety of motor symptoms
following ablation of basal ganglia output nuclei (as opposed to
the striking motor symptoms of basal ganglia diseases); and 3)
changes in motor cortical maps in Parkinson’s disease. The
feasibility of this mechanism is tested with a cortico-basal ganglia
model. The model produces appropriate motor patterns given
sensory and goal-related inputs, and produces progressively
more sophisticated patterns of movement as it matures. On the
basis of this model, we predict that patients should have difficulty
learning novel, complex movement patterns following ablation of
basal ganglia output nuclei.
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Spontaneous, background activity in sensory areas is often
similar in both magnitude and form to evoked responses.
Embedding responses evoked by sensory stimuli in such strong
and complex background activity seems like a confusing way to
represent information about the outside world. However,
modeling studies indicate that, contrary to intuition, information
about sensory stimuli may be better conveyed by a network
displaying chaotic background activity than in a network without
spontaneous activity.

BMC Neuroscience 2007, 8(Suppl 2) http://www.biomedcentral.com/1471-2202/8?issue=S2

Page 9 of 119
(page number not for citation purposes)



S19
Activity-homeostasis preserves synaptic
plasticity in Purkinje cell but calcium is not the
activity-sensor
Pablo Achard1 and Erik De Schutter1,2
1Theoretical Neurobiology, University of Antwerp, Belgium
2Computational Neuroscience Unit, Okinawa Institute of
Science and Technology, Onna-Son, Japan
E-mail: pablo@tnb.ua.ac.be

BMC Neuroscience 2007, 8(Suppl 2):S19

Activity homeostasis designates bio-mechanisms that regulate the
activityof aneuron through thedynamic expressionof ionchannelsor
synapses [1]. We have recently shown [2] that it is possible to
reproduce the complex activity of a Purkinje cell (PC) with very
different combinations of ionic channel maximum conductances.
However, if the global effect of homeostasis is starting to be
understood, the detail of its machinery remains unknown. Some
models [3, 4] havehypothesized thatone suchmechanismcouldwork
via the regulation of the average cytoplasmic calcium concentration.
While this hypothesis is attractive for rhythm generating neurons, it
raises many questions for PCs since in these neurons calcium is
supposed to play a very important role in long-term memory [5]. To
address this question, we generate 81 PC models, all having a similar
electrophysiological activity and all different enough from each other
in their conductance set. We demonstrate that, while the somatic
membrane voltage is stable during complex spikes, the somatic
calcium behavior is very variable from cell to cell, in agreement with
experimental results [6]. Therefore calcium is a weak candidate for
being an activity-sensor in this cell. Conversely, we show that the
calcium signal in the spiny dendrites is very robust. To further test
whether long-term depression (LTD) mechanisms are preserved for
these different models, we use a PC spine model of calcium signal
transduction pathways [7]. In all our models, conjunctive parallel
fibers-climbing fiber activation leads to a sustained calcium release
from internal stores, hence LTD induction is preserved.
Acknowledgements
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Several studies have shown that dendritic morphology and spatial
distributions of active ion channels contribute significantly to
neuronal firing dynamics and signal processing, however the relative
importance and interactions between thesemechanisms are not well
understood.Within computational models these intrinsic properties
are represented by parameters with different units and magnitudes
that interact nonlinearly to simulate experimentally observed
behaviors. Mathematical sensitivity analysis provides a tool to assess
how strongly these parameters influence model output. For a given
model neuron, the normalized sensitivity coefficient (’sensitivity’) of
its output to a particular parameter describes the percentage change
in its output for a one percent increase in that parameter. The
sensitivity magnitude indicates how much the measured output
changes under the perturbation, while its sign indicates whether the
output increases or decreases.One such sensitivity can be computed
to each parameter; its sign and magnitude may vary for models
represented by different points in a space defined by morphologic,
active membrane, and passive cable parameters.
We perform this sensitivity analysis on a compartmental model
comprising a soma and cylindrical active dendrite, with output
measured by firing rates under current injections and by firing rate
gain. Across the parameter space, sensitivity of these output variables
to perturbations of dendritic length, diameter and surface area was
compared with sensitivity to active and passive conductance
parameters. For spontaneous firing rate, sensitivity increased most
with increasing levels of persistent sodium and A-type potassium
conductance, whereas for gain, sensitivity increased most as high-
threshold calcium conductance decreased. Particularly in regions of
space with slow calcium removal from the cytoplasm in the model
cells, sensitivities of firing rates and gain to dendritic diameter and
surface area were greater than to almost all active parameters.
The sensitivity analysis was extended to a model neuron from the
precerebellar nucleus Area II of goldfish. Area II neurons are
necessary for eye velocity storage, a mechanism that displays
persistent activity after extinguishing visual or vestibular stimuli.
Parameter optimization identified sets of active and passive model
parameters consistent with Area II electrophysiology for a
morphology obtained in vivo and traced in 3D. Sensitivities to
perturbations of dendritic length, diameter and surface area were
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compared with those of active and passive parameters. These data
indicate that, as in the simple model, there are regions of parameter
space where dendritic morphology influences firing rate and gain
more strongly than active conductances or passive cable parameters.
Acknowledgements
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When neuronal circuits develop, do cellular recognition processes
ensure that only specific, ‘‘correct’’ synaptic connections form? To
assess this questionwe have examined synaptic connections between
neurons in the developing spinal cord of the hatchling frog tadpole
when neuronal circuits for reflexes and swimming are functioning.
We made electrical recordings from 500 pairs of neurons to
determine synaptic contact probabilities between 7 different neuron
types. Overall, the results from paired recordings reveal very
widespread connectivity. Where evidence is available, neurons with
dendrites receive synapses from all other neuron classes.
We then examined the anatomical distributions of the axons and
dendrites of these 7 types of neuron, more precisely their
dorsoventral positions. This allowed us to calculate the probabilities
that axons would contact dendrites and therefore be able to form
synaptic connections. When contact probabilities determined from
anatomywere compared to synapse probabilities determined directly
by electrical recording, the two were significantly correlated.
These results suggested that synapse formation may not depend on
specific recognition between axons and ‘‘correct’’ dendrites. To test if
rules based simply on contact probabilities could lead to functioning
spinal networks, we made physiological models of spinal neurons,
based on the Hodgkin-Huxley neuron model, and connected them
using the contact probabilities we had determined.Networks created

in this fashion turned out to be quite reliable: the majority produced
swimming. Purely random networks, with the same overall degree of
connectivity, were much less successful in producing swimming, even
when preserving the sensory pathway from the probabilistic rules.
Simple rules controlling axon growth may determine the initial
connections made as the nervous system develops. Our detailed
analysis implies that cellular recognition to specify correct connections
may be unnecessary for the formationof pioneer functional networks.
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Background: Phase-locked bursting and oscillations in low
frequency bands between the subthalamic nucleus (STN) and
the globus pallidus (GP) are key features of the pathophysiology
of Parkinson’s disease (PD). These dynamics may reflect
susceptibility of the basal ganglia (BG) to entrainment with
cortical oscillations or could also be a consequence of enhanced
reciprocal STN-GP coupling under conditions of dopamine
depletion.
Phase response analysis is an efficient method of characterizing
the tendency of single neurons to entrain to periodic input, and
to predict the tendency of connected networks to synchronize.
A phase response curve (PRC) describes the dependency of
shifts in spike timing that result from weak inputs on the timing
of inputs within the ongoing inter-spike interval (ISI). If,
independent of stimulus phase, a depolarizing input causes an
advance of the next spike, the PRC will be composed purely of
positive values (a Type I PRC). A Type II PRC contains both
positive and negative regions, indicating that a depolarizing input
can cause either an advance or delay of the next spike depending
on when within the ISI it occurs. Type II PRCs favor
synchronization in connected neuronal populations.
Methods and results: To investigate the phase response
properties of GP neurons, we applied simulated current

Figure 1 (abstract S22)

Phase response curves. A. PRCs for weak stimuli. B. PRCs for proximal stimuli of different amplitudes. C. PRCs for distal stimuli of different
amplitudes. D. PRCs for distal stimuli when HVA and/or SK have been varied.
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injections and synaptic inputs to a morphologically realistic 585
compartment GP neuron model containing 9 voltage-gated
conductances. Stimuli were delivered to one of seven dendritic
locations or the soma to determine whether the input site
affects significantly the shape of resultant PRCs. When inputs
were small (+/�5 pA current injections or equivalent synaptic
strengths) PRCs from all eight locations were Type I, and
excitatory and inhibitory PRCs were symmetric across zero.
(Fig. 1A.) More distal stimulus locations yielded PRCs with
increasingly attenuated and left-shifted peaks.
For distal dendritic sites, larger excitatory stimuli resulted in
Type II PRCs. (Fig. 1C.) To uncover the mechanism of this
stimulus-amplitude-dependent transition between Type I and
Type II PRCs, we analyzed differences in distal dendritic currents
between control and stimulated conditions. We found that
larger stimuli caused increased outward K+ flow through the
Ca++ activated SK channel, and hypothesized that large stimuli
delivered to small distal compartments (with high input
resistance) activate the high-voltage Ca++ channel (HVA)
which in turn activates SK. When we locally up- or down-
regulated HVA and SK in tandem, the degree of Type II
character was correspondingly increased or decreased, and the
complete removal of either HVA or SK from the dendrite yielded
identical Type I PRCs. (Fig. 1D.)
Conclusion: Our findings confirm previous work demonstrat-
ing PRC attenuation and left-shifting when weak stimuli are
applied at increasing distance from the soma. In addition, by
using realistic synaptic input, and analyzing evoked active
conductances in spatially distinct regions of a realistic model,
we characterize a mechanism in distal dendrites for Type II
phase response dynamics. As network synchronization is
observed in PD but not normal conditions, our findings suggest
the hypothesis that GP neurons in PD may receive enhanced
distal dendritic excitation and/or show an upregulation of SK
conductance.
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The cerebral cortex of mammals is organized as a set of
topographic maps, forming sensory and motor areas such as
those in the visual, auditory, and somatosensory systems.
Understanding how these maps develop and whether they
have any functional significance is critical for understanding
cortical processing.
The prototypical example of topographic feature maps is the
map of orientation preference in primary visual cortex (V1).
Models of V1 orientation map development have been very
successful in reproducing the features of biological maps. The
majority of these models are based on a principle of ‘‘Mexican-
hat’’ connectivity i.e. short-range excitatory and long-range
inhibitory connections between neurons (e.g. [1]).
However, experimental data is in striking disagreement with this
principle. There is a consensus that long-range connections
between V1 neurons are excitatory [2]. Moreover, models with

long-range excitatory connections are able to account for a wide
range of experimental data from adult V1, such as surround
modulation (e.g. [3]). Models of orientation map development
are thus based on a connectivity which is precisely opposite to
that suggested by a mounting body of experimental and
computational evidence.
It is not yet clear if the circuits used in surround modulation
models are consistent with the development of orientation
maps. It is also important to consider how the topographic
organization of orientation preference may affect surround
modulation. Since cortical circuitry is intimately tied to
topographic organization, it is likely that surround modulation
properties differ depending on the position of a cell within the
orientation map.
In order to address the above issues, we have developed the first
model that is consistent with current models of surround
modulation, yet also reproduces the features of successful
developmental models of topographic map formation. The model
consists of sheets of firing-rate-based units that represent the retina,
LGN, excitatory, and inhibitory neurons in V1. An activity-driven
Hebbian learning mechanism results in the adjustment of afferent
(retina to V1) and long-range lateral connection weights (within V1),
leading to the development of orientation selectivity organized
smoothly in a realistic orientation map.
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How does the brain represent and process color in the primary
visual cortex (V1)? Experimental evidence from macaque
monkey suggests that cells selective for color are organized
into small, spatially separated blobs in V1. This organization is
strikingly different from that of orientation and ocular
dominance maps, which consist of large, spatially contiguous
patterns.
In this paper, a self-organizing tri-chromatic model of V1 is
constructed using natural color image input. Neurons in the
modeled V1 are initially unselective, and develop multi-lobed

BMC Neuroscience 2007, 8(Suppl 2) http://www.biomedcentral.com/1471-2202/8?issue=S2

Page 12 of 119
(page number not for citation purposes)



ON/OFF receptive fields through Hebbian learning of retinal
responses to visual patterns. The model develops realistic color-
selective receptive fields, color maps, ocular dominance
columns, and orientation maps. Color-selective blobs are
located inside ocular dominance columns, and lateral connec-
tions link cells with similar orientation preferences, matching
previous experimental results. Further, the model makes a
number of predictions for future experiments, including:
1. The colormap has three types of color-selective blobs and a unique
cortical activation pattern exists for each of the pure color hues.
2. The usual blob-like organization for color emerges as long as
the training images have a higher brightness contour gradient
compared to the hue contour gradient, and the inputs are highly
correlated between the eyes. Otherwise the color blobs
regularly extend across borders of ocular dominance stripes
(contrary to macaque results).
3. Neurons in areas where red and green patches are near each other
respond to both red and green, causing them to maximally prefer
yellow, even though there are no yellow photoreceptors in the retina.
4. Cells selective for color connect to other cells with similar
chromatic preferences: Blue-selective neurons connect to blue
selective neurons, red-selective to other red-selective neurons,
and so forth.
Thus the model replicates the known data on the organization of
color selectivity in V1, gives a detailed explanation for how this
structure develops and functions, and provides concrete
predictions that can be tested in future experiments. These
findings suggest that a single self-organizing system may underlie
the development of orientation selectivity, eye preference, color
selectivity, and lateral connectivity in the primary visual cortex.
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Our world changes both in space and time, and our brain faces the
challenge to cope with these changes in both dimensions. While
substantial progress has been made on the way to understanding
the neural substrate of e.g., spatial vision or sound localization,
‘‘the field of temporal processing is still at its infancy’’ [1]. There
are many models of the neural substrate of this ability, but it is not
easy to decide which model to use based on purely neuronal data.
Psychophysical research on temporal processing makes it
possible to formulate constraints on neuronal models.
We conducted a series of human experiments to study temporal
variability under various conditions. Participants were presented
with a sequence of identical intervals, containing a single interval
which differed from the others by a small amount X at a random
position. After the presentation, they had to judge the sequence

as an even or an uneven rhythm. The minimal value of X for
which the sequence was reliably judged as "uneven" was used as
a measure for temporal variability. We found that this measure
varies considerably with its position in the sequence. Thus, we
could rule out a class of models that do not predict an
adaptation effect. Furthermore, the mean threshold increases
with the duration of the standard intervals, consistent with
former results. In a subsequent experiment, we could show that
variability does not depend on the total length of the sequence.
This implies that the sequence in not processed as a whole and
that effects of interval duration and sequence context can be
separated into different processing stages.
We propose a computational model for the first stage. While it
was long believed that timing errors increase linearly with the
interval to be processed (Weber’s law) [2], recent experiments
show that for longer and shorter intervals, deviations from
linearity occur [3]. Our model provides an explanation for both
Weber’s law and its deviations. It consists of a group of synfire
chains, layered networks that are able to transmit a wave of
neural activity through its layers with high temporal precision.
These networks are able to convert temporal information into a
quasi-spatial code. In a single chain, timing errors increase only
with the square root of the interval length. We show that the
experimentally observed error course results as the optimal
solution from competition among several synfire chains with
different transmission speeds.
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How is the activity of neurons in the sensory areas of cortex
related to our perceptual abilities? Past studies have suggested
that sensory neurons that best encode a visual stimulus are also
more influential in forming the perception of the stimulus. We
wanted to know if this relationship also extended to individual
action potentials. If some spikes encode the stimulus better than
others, then would these same spikes have more weight in
supporting the perceptual behavior?
To address this question, data from a past motion detection
experiment was analyzed [1]. In this study, two monkeys were
trained to detect the onset of coherent motion in a random dot
patch that initially contained 0% coherent motion. The coherent
motion signal occurred at a random time and the animals were
rewarded for responding within a 750 ms window. Extracellular
recordings were made from single neurons in the Middle
Temporal (MT) area. The random dot patch overlapped the
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receptive field of the neuron and the coherent motion was
matched to the neuron’s preferred direction and speed.
Importantly, the position of the random dots was only updated
once every 27 ms. Because of the slow motion update rate, the
neural activity of many of the MT neurons oscillated at the same
frequency as the motion updates. It was these oscillations that
allowed us to ask if some spikes were more influential than
others by measuring how sensory and choice related informa-
tion varied as a function of the phase of the oscillation.
To determine whether some spikes encoded the stimulus better
than others, we examined the difference between spikes on the
rising phase of the oscillation (from the trough to the peak)
compared to spikes on the falling phase (peak to trough). Using
the spike-triggered average of the motion stimulus, we found that
spikes did not equally represent sensory information. Spikes
occurring during the rising phase of the stimulus-induced
oscillation encoded stronger motion than spikes occurring during
the falling phase. Importantly, the same spikes that encoded
stronger motion were also more correlated with the animal’s
behavioral performance and reaction time. This suggests that the
spikes carrying the most reliable task related information are
more strongly linked to the behavioral decision. In addition, these
results support the hypothesis that phase could be used as a
possible encoding scheme during neuronal oscillations.
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Increased use of biologically detailed cellular and network models
by the wider neuroscience community is hampered by the variety
of simulation platforms and programming languages used to
create these models. While experimentalists and theoreticians
share common concepts for describing these physiological
phenomena a framework for specifying models is not in common
use. The Neural Open Markup Language project, NeuroML [1, 2]
http://www.neuroml.org, is an international, collaborative initia-
tive to develop standards to facilitate exchange and encourage
greater accessibility of models of neuronal systems.
The standards, which are specified in XML (eXtensible Markup
Language), are arranged in Levels, with each subsequent Level
increasing the scope of the standards. Level 1 concentrates on

neuroanatomical information (MorphML [2, 3]) and metadata.
Level 2 allows for the specification of detailed conductance
based cell models with realistic channel and synaptic mechan-
isms specified in ChannelML. Level 3 (NetworkML) describes
networks of these cells arranged and connected in three
dimensions.
One application which uses these standards is neuroConstruct,
which has a graphical interface for building and visualizing
detailed 3D network models. neuroConstruct allows the
automatic generation of script files for the GENESIS and
NEURON simulators, and can be used for replaying and
analyzing simulated cell and network behavior. Examples of
cell and network models from multiple brain areas will be
demonstrated on these two simulators, as will a preliminary
implementation of automatic generation of scripts for execution
in parallel computing environments.
The combination of these technologies allows the development
of more detailed large scale neuronal network models while
managing the huge complexity associated with these systems.
The latest version of the NeuroML specifications is available at
http://www.morphml.org:8080/NeuroMLValidator and neuro-
Construct is freely available by contacting: p.gleeson@ucl.ac.uk.
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Trends in programming language development and adoption
point to Python as the high-level systems integration language of
choice. Python leverages a vast developer-base external to the
neuroscience community, and promises leaps in simulation
complexity and maintainability to any neural simulator that
adopts it. PyNN http://pynn.gforge.inria.fr/ strives to provide a
uniform application programming interface (API) across neural
simulators. Presently NEURON and NEST are supported, and

BMC Neuroscience 2007, 8(Suppl 2) http://www.biomedcentral.com/1471-2202/8?issue=S2

Page 14 of 119
(page number not for citation purposes)



support for other simulators and neuromorphic VLSI hardware
is under development.
With PyNN it is possible to write a simulation script once and
run it without modification on any supported simulator. It is also
possible to write a script that uses capabilities specific to a single
simulator. While this sacrifices simulator-independence, it adds
flexibility, and can be a useful step in porting models between
simulators. The design goals of PyNN include allowing access to
low-level details of a simulation where necessary, while
providing the capability to model at a high level of abstraction,
with concomitant gains in development speed and simulation
maintainability.
Another of our aims with PyNN is to increase the productivity
of neuroscience modeling, by making it faster to develop models
de novo, by promoting code sharing and reuse across simulator
communities, and by making it much easier to debug, test and
validate simulations by running them on more than one
simulator. Modelers would then become free to devote more
software development effort to innovation, building on the
simulator core with new tools such as network topology
databases, stimulus programming, analysis and visualization
tools, and simulation accounting. The resulting, community-
developed ’meta-simulator’ system would then represent a
powerful tool for overcoming the so-called complexity bottleneck
that is presently a major roadblock for neural modeling.
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Modeling a single dendritic compartment: The standard
technical approach to realistic modeling of single neurons
involves dividing the cell and especially its dendrites into a series
of compartments assumed to be effectively isopotential. During
simulation a single membrane voltage is calculated for each of
these compartments. Recent cerebellar network and Purkinje
cell single cell modeling efforts in our laboratory have suggested,
however, that membrane dynamics may depend on a finer level
of control of membrane voltage within the dendrite [1].
Accordingly, we have now identified the precise dendritic
geometries and positions of excitatory and inhibitory synapses
using serial electron microscopy. This paper describes our
efforts to construct an electrical/chemical model of the resulting
fully reconstructed segments ranging from 5 to 10 microns in
length.
Technical challenges: Modeling these small dendritic seg-
ments realistically poses several technical challenges. Beyond
issues of how to represent space, the project is also inherently
multiscale, as the behavior of segments must be interpreted in
the context of the larger compartmental simulation of the
dendrite, and second, at a finer scale, molecular and cellular
processes (Ca diffusion for example), also come into play.

Completing the software tool chain: This project is being
undertaken in the context of two ongoing computational
software development projects, the GENESIS 3.0 project and
Neurospaces. GENESIS 3.0 is a major redevelopment effort
focused on the development of a state of the art Graphical User
Interface and Database structure for the GENESIS project. The
Neurospaces project http://www.neurospaces.org involves the
development and elaboration of a new open, modular frame-
work for essential tools used in computational simulations in
biology, and defines the hooks required for collaborative
software components, that work on the same modeling project.
This poster will describe the latest tools of the Neurospaces
project in the context of our efforts to simulate small segments
of the Purkinje cell dendrite. As an example, we have developed
algorithms to slice the volume obtained from serial EM into
small cylinders intended for simulation. The cylinders can be
visualized, validated and compared with the original volume. The
compartmental solver Heccer, also part of the Neurospaces
project, simulates the model, using the spatial and temporal
precision appropriate for these fine scale models.
Conclusion: The tools developed in the context of this
project, give a detailed insight in the level of control of
inhibition and excitation on membrane dynamics in a small
dendritic segment of a Purkinje cell. Additionally, in the context
of larger compartmental simulations of the entire dendritic tree,
the interpretation of the effect of these dynamics on dendritic
signal processing is likely to have important functional
consequences for the regulation of dendritic dynamics in the
Purkinje cell.
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Background: The General Neural Simulation System (GEN-
ESIS) was first released for general use in 1988 as part of the first
Methods in Computational Neuroscience Meeting at the Marine
Biological Laboratory in Woods Hole, Mass. Since its release
19 years ago, GENESIS has provided one of the foundations for
the ongoing course in Woods Hole, as well as courses offered
by the European Union, courses in Mexico, Brazil, and India and
soon in Japan, At last count GENESIS has also provided support
for courses in at least 49 universities around the world where it
has been used both as an instruction tool in realistic modeling of
the nervous system, and as a simulation based tool for
neurobiological education in general. The Book of GENESIS
[1], which was designed to support both computational and
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neurobiological instruction has sold more than 6000 copies
worldwide. This substantial support for the use of GENESIS in
instruction has also provided the base for extensive and growing
use of this software system in biological research providing the
foundation for literally hundreds of peer reviewed scientific
papers.
From the outset, the design of GENESIS has been premised on
the assumption that advancement in understanding neural
function requires the ability to build computer models based
on the actual anatomy and physiology of the neurvous system
itself [2]. GENESIS was the first broad scale modeling system in
computational biology to encourage modelers to continue to
develop and share model features and components. At the same
time, the GENESIS project was involved in proposed techno-
logical standardization efforts for testing simulation perfor-
mance and sharing of neuronal models (the Rall packs and
NeuroML).
GENESIS 3.0 and the future: With the growing interest
and involvement of both neurobiologists and technologists in
computational neuroscience, it became clear a number of
years ago that it made sense to restructure and reshape the
GENESIS simulator project. While version 1 of GENESIS and
the upgraded version 2 were both self contained modeling
systems, the decision has been made to compartmentalize the
software architecture in order to ease external contributions,
and even more importantly, for enhanced interfacing capabil-
ities with other neuroscience software tools and databases.
The technical motivation for this decision is easily appreciated
in the context of recent general advancements in gluing
languages (e.g. Swig and Python) and interfacing languages (e.g.
SOAP), as well as the level of maturity of model exchange
languages (e.g. NeuroML), and meta data exchange formats
(e.g. BrainML).
More specifically, the CBI (Computational Biology Initiative)
simulator architecture, recently developed in our lab as the
context for GENESIS 3.0 development, is an open framework
that provides a general and necessary context for the GENESIS
project to proceed. It will also allow the project to focus on
the user needs to conceive, organize, execute, and evaluate
simulations, as well as on the development of new tools to
support simulation based education, collaboration, and pub-
lication. By doing so, GENESIS 3.0 will no longer include
parsers, script interpreters, run time schedulers, numerical
engines, or other components necessary to actually run
simulations. Instead, GENESIS 3.0 is being developed with
the necessary interfaces that will, in principle, allow any
simulation system to use its features. At present GENESIS 3.0
is being developed in collaboration with two simulation tool
development projects, ‘‘MOOSE’’ under development by
Upinder Bhalla in Bangalore India, and ‘‘Neurospaces’’ under
development by Hugo Cornelis in San Antonio, Texas. This
poster will describe both the GENSIS 3 project, the overall
structure of the CBI framework, and how these efforts
support both the development of MOOSE (by Dr. Bhalla),
and Neurospaces (by Dr. Cornelis).
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One of the major tasks of a neuroscientist who is developing a
neuron model is to find suitable values for all the parameters of
the model. This is, in general, a very complex job that can take a
lot of time and that requires a lot of know-how when the
parameter tuning is done by hand. We have developed a
software tool called Neurofitter that can be used to automate
the process of parameter searching for neuron models. The user
has to provide time series data recorded during an experiment
in the form of traces. Neurofitter will then run the computer
model several times with different sets of values for the model
parameters and will compare model output traces with the
experimental data traces using the phase-plane trajectory
method [1]. This way Neurofitter maps every set of parameters
values onto a fitness value that shows how well a model is able
to reproduce the experimental data. This transforms the search
for optimal parameters into a problem that can be solved with
general optimization algorithms. The algorithms used by
Neurofitter include Evolutionary Strategies, Particle Swarm
Optimization and Mesh Adaptive Search. We will show some
results obtained using the method to fit a single compartmental

Figure 1 (abstract P5)

Voltage traces showing output of a simple single-compart-
mental model of a rhythm generating neuron in the pre-
Bötzinger complex [3]. A. Reference traces used to fit the model to.
B. A trace showing the output generated by increasing the persistent
sodium current conductance by only 20% compared to the original data.
C. Result obtained after automatic parameter fitting using Evolutionary
Strategies D. Result found by a Mesh Adaptive Search that started with
the best result obtained using Evolutionary Strategies.
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model, a simple network model and a complicated model of a
Purkinje cell [2]. The source code can be freely downloaded
from Sourceforge http://neurofitter.sourceforge.net
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When tree topology matrices are divided into subtrees where
each subtree is on a different cpu and with the constraint that
other subtrees are not connected to a given subtree at more
than two distinct points (defining a backbone path on that
subtree), the entire system remains amenable to direct gaussian
elimination. The complexity increase is twice the number of
divisions and four times the number of multiplications normally
required along the backbones due to the necessity, during the
triangularization phase, of transforming the tridiagonal backbone
into an N topology matrix. In addition, each subtree is required
to send its root diagonal and right hand side element, or, in the
case of a subtree with a backbone, the 2 � 2 matrix and right
hand sides of the backbone end points, to one of the cpus where
that information is added together to form a reduced tree
matrix of rank equal to the number of split points on the cell.
The reduced tree matrix equation is solved, giving the voltages
at the split points, and this information is sent back to the
appropriate subtrees on the other cpus. Those subtrees with
backbones can then use the N topology to quickly compute the
voltages along the backbone and everyone can complete the
back substitution phase of their gaussian elimination. Accuracy is
the same as with standard gaussian elimination on a single cpu
and any quantitative differences are attributed to accumulated
round off error due to different ordering of subtrees containing
backbones.
With this method, it is often feasible to divide a 3-d
reconstructed neuron model into a dozen or so pieces and
experience almost linear speedup. We have used the method
for purposes of load balance in network simulations when some
cells are very much larger than the average cell and there are
more cpus than cells. The method is available in the current
standard distribution of the NEURON simulation environment.
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Memory storage remains a limitation when running very large
neuronal networks (VLNN). With number of neurons n,
connectivity storage grows as n2. With connectivity densities
of 0.1–10%, 1e6 neurons will require 1e9-1e11 synapses. A
single connection requires at least an associated weight and
delay as well as additional pointers or offsets to store the
connectivity matrix. Conservatively, this will require 10 bytes
(e.g., 2 floats and 2 chars) which will then bring the total synaptic
memory load to 10 GB-1 TB. The former value may be barely
executable on a single large machine.
We have exploited an algorithmic space-time trade-off to build
large event-driven artificial-cell simulations in the NEURON
simulator by utilizing just-in-time connections (JITCONs) that
are generated at the time of presynaptic cell spiking. JITCON
utilizes a presynaptic-cell-specific random-number-generator
seed based on presynaptic-cell serial number that permits it to
generate a list of postsynaptic cell targets on the fly, and seeds
based on a multiple of presynaptic-cell and postsynaptic-cell
serial numbers for generating weights.
We have utilized the JITCON algorithm to readily run
simulations of >2e6 neurons. These simulations include a
moderate level of cellular detail with AMPA, NMDA, GABAA

and GABAB synapses, as well as multiple intrinsic properties such
as bursting, depolarization blockade and an afterhyperpolarizing
‘‘channel.’’ Note that these are event-driven simulations and
therefore do not utilize continuously integrated compartmental
neurons. Since these simulations are event-driven, there is no
overhead unless there is activity: simulation time varies widely
depending on the level of network activity. An active network of
1.2e5 cells with >8.9e6 synapses, generating >1.1e7 spikes in 1 s
simulation time, took 32.3 minutes to run on a 2.4 GHz AMD
Opteron processor. Large, active simulations still develop space
problems due to the need for a variable-size queue to
accommodate varying delivery delays. This limitation is minimized
by restrictions on the range and variability of permitted delays.
We have begun to explore algorithms that permit a nuanced
approach to the space-time trade-off. We permit individual
presynaptic cells to store their list of postsynaptic targets in a
compressed format. This additional storage can be turned on or
off on a per-cell basis. We will explore making this storage
dynamic so that a cell can maintain its connectivity list during a
period of high activity and then return the memory when its
activity is reduced. An additional direction for future develop-
ment will be the incorporation of an entire encapsulated artificial-
cell network as an independent piece of a compiled code (a mod
file in NEURON). Such a network module could then be plugged
in to other network modules or to a more detailed network that
used compartmental models or compartmental/artificial cell
hybrids, running in the main NEURON simulator. Running such
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simulations on parallel supercomputers will permit execution of
very-VLNNs of order 100 million neurons.
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Background: The pyloric network (Figure 1) is part of the
stomatogastric ganglion (STG) of crustaceans [1]. The network is a
central pattern generator (CPG) that drives the muscles of the
pylorus, which is a food filtering organ within the gastric system of
these animals. The pyloric network is one of the most researched
neural circuits and many details of it are known, including types and
numbers of participating cells, connections between these cells,
transmitters, receptors and neuron-modulators used by cells within
the network [1]. Consequently, this network is an ideal candidate to
develop detailed network simulations of neural systems.
Simulations of the pyloric network have been developed since
the 1970s [1]. However, these simulations do not include many
of the known details about the pyloric network, and produce a
behaviour that resembles at high level the behaviour of the
biological network, but ignores the behavioural details. These
earlier simulations are also application specific, and cannot be
easily modified and re-used by researchers.
Methods and results: We present here a new open source
simulation of the pyloric network. The simulation is developed using
the Neuron simulation language [2]. Each neuron is simulated using
four compartments: soma, primary neurite, axon, dendrite. The
primary neurite is connected to all three other compartments. The
connections are implemented by linking the axon outputs of
neurons to the corresponding dendrite inputs of other neurons.
The effects of neuromodulation are implemented in form of
changing characteristics of neural connections in response to
changes in the values of a multi-dimensional modulation state

variable (i.e. each component of the vector indicates the presence
and concentration of a neuromodulator, the components being
labeled by the corresponding modulator). The values of parameters
for the neural compartments are set using the STG neuron database
developed by Prinz et al [3]. To determine the right setting of
parameters for each cell type we used the simulator attached to
STG neuron database [3] to check that the output of our model
neurons matches the output of modeled neurons.
Conclusion: Our simulation is developed as open source
software, allowing other users to download the source code and
modify it. In this way other researchers may use this detailed
simulation of the pyloric network to check experimental
assumptions and also possibly to develop simulations of other
related networks (e.g. gastric mill network).
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SpiNet is a novel simulation environment for building and analyzing
large networks of spiking neurons. Heterogeneous networks with
complex architectures can be easily built and simulated without
detailed knowledge of a particular programming language or script

Figure 1 (abstract P8)

A diagram of the pyloric network. The diagram shows the participating neurons, their numbers and the connections between these neurons.
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language interpreter. SpiNet is composed of two components: a
simulation engine, written in C programming language for perfor-
mance purposes, and SpiNet network builder tool, or simply
NetBuilder, written in Matlab for expansibility purposes. The
NetBuilder tool provides a flexible and efficient graphical interface
allowing the user to easily define and set all the main network model
properties.TheNetBuilder creates thenetworkmodel fileswhichcan
thenbesimulatedwith the simulationengine.Neuronsaremodeledas
integrate-and-fire units with dual exponential synaptic conductances
and the simulation engine uses a second order Runge-Kutta method
with a linear interpolant to find spike times and recalibrate post-spike
potentials. The engine is capable of handling a vast number of
properties including dynamical synapses, long-term plasticity, sto-
chastic activity, detailed 3-dimensional architecture, external stimuli,
among others. SpiNet does not incorporate data analysis tools but
provides several channels to export simulation results for off-line
analysis by specialized data analysis software. An OpenGL graphical
engine is integrated into the simulation environment providing visual
information of the model dynamics. SpiNet is far from being as
complete and feature rich as NEST, Neuron or Genesis, but has the
benefit of facilitating the process of building and simulating hetero-
geneous network models: it is fast and easy to add new neuron
populations, change connectivity properties or assign different types
of synaptic plasticity without having to edit or write lines of code; all
changes are done within NetBuilder GUI. SpiNet is therefore a
valuable tool when analyzing large heterogeneous models where
manymodifications have tobedone inorder tobetter understand the
contributions of the different functional components involved.
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Background: Within the FACETS research project, a neuro-
morphic mixed-signal VLSI device was created [1]. It was
designed to exhibit a linear correspondence with an I&F neuron
model, including synaptic plasticity and short-term synaptic
dynamics. It operates with a speedup factor of around 105

compared to biological real time. Utilizing the existing proto-
type, networks of up to 384 neurons and the temporal evolution
of the weights of 105 synapses under STDP can be modeled.
Methods: We developed a software framework which allows
a unified access to both the hardware system and the pure
software neuro-simulator NEST, providing the possibility to
verify that the chip can be operated in a biologically realistic
regime. From within a single software scope, we can compare
and post-process results obtained from both systems, based on
identical input and network setups.
Results: We present experiments that illustrate the status of
hardware neuron model verification by comparing its dynamics to
NEST simulations. Exemplarily, Figure 1 shows the linear corre-
spondence between the hardware and the software neuron model.
Conclusion: To establish neuromorphic hardware as a valu-
able tool for neuroscience, its biological correctness has to be
proven. We provide a tool for the direct comparison of a
specific hardware system and a simulation software. Our
experimental data illustrates the functionality of the hardware
and shows its biological relevance. The resulting uniform
software interface will allow modelers to port existing network
models to the hardware system with minimal effort.
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Background: Finding genes with a similar spatial expression
pattern as a known gene could potentially reveal novel or

Figure 1 (abstract P10)

The membrane potentials of a single neuron under Poisson process input. The upper one has been simulated using NEST, the lower one is a digitization
of the analog voltage trace of the neuromorphic hardware.
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unknown genes involved in similar processes or pathways. The
Allen Brain Atlas (ABA) [1] is an effort to produce a genome-
wide mapping of the gene expression in the adult C57BL/6J
mouse brain. To date, more than 21,000 genes have been
assayed using a high-throughput in situ hybridization (ISH)
platform and the resulting image data is publicly available at
http://brain-map.org. A major goal of the ABA project is to
employ image analysis techniques to search the ABA data for
particular expression patterns such as spatial gene expression
homologues.
Methods: Each ISH image series is processed through an
automated anatomic mapping pipeline with the goal of determin-
ing expression sites and the spatial localization of these sites with
respect to a 3D reference brain. Expression statistics is then
aggregated with respect to individual 200 mm3 cubes in reference
space thereby reducing data complexity from > 2� 108 pixels per
series to ~2.5 � 104 cubes. Since every image series is spatially
mapped with accurate registration to the same 3D reference
space, we can compare expression statistics on a global scale in
approximately the same 200 mm3 spatial extent for all series. The
most straightforward approach to finding spatial homologues is
to compute the similarity between 200 mm3 grid statistics of two
genes. We conducted a pilot study computing the Pearson
similarity score between every pair of over 4200 coronal series
images. Two example searches are shown in Figure 1 with the
initial seed gene shown in the left most panel: Nov (row 1)
showing differential expression in CA1 of the hippocampus and
Etv1 (row 2) with enriched expression in layer 5.
Conclusion: We presented the functionality of NeuroBlast, a
spatial search tool for finding genes with similar expression
patterns within the ABA dataset. Preliminary testing of our pilot
study has demonstrated efficacy of searches over different
expression patterns and domain of interest. A comprehensive
version of NeuroBlast spanning the entire ABA data will be
publicly available in 2007.
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The biomechanical and neural components that underlie locust
jumping have been extensively studied [1, 2, 3, 4]. Previous
research suggested that energy for the jump is stored primarily
in the extensor apodeme and in the semi-lunar process (SLP)
[5], a thickened band of cuticle at the distal end of the tibia. As it
has thus far proven impossible to experimentally alter the SLP
without rendering a locust unable to jump, it has not been
possible to test whether the energy stored in the SLP has a
significant impact on the jump, or how that energy is applied
during the jump.
To address problems such as this we have developed a software
toolkit, AnimatLab, which allows researchers to build and test
virtual organisms. We used this software to build a virtual
locust, and then asked how the SLP is utilized during jumping,
and how manipulation or removal of the virtual SLP influences
jump dynamics (figures 1 and 2). The results show that without
the SLP the jump distance was reduced by almost half. Further,
the simulations were also able to show that loss of the SLP had a
significant impact on the final phase of the jump impulse which
prevented the full extension of the tibia against the ground.
Power for the jump during the initial phase was almost identical
between the two cases, but without the SLP the power peaked
early and there was a significant difference in the power for the
late phase of the jump.
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Figure 1 (abstract P11)

Search result examples.
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Introduction: Many computer models have been developed
to simulate a neuron, neural networks, and activation of brain
areas aimed at the elucidation of mechanisms of brain functions.
In this track there is one clear direction of modeling from a
single cell to the whole brain [1]. We developed a simulation and
visualization tool, ‘‘iBrain’’, by which we could construct,
simulate and visualize a model of the transition of brain
activation on a realistic brain anatomical atlas.
Methods: The modeling and simulation parts were constructed
by modifying the software tool for a biological cell, ‘‘A-Cell’’. Users
can construct a Brodmann area-level model through A-Cell like
GUI. The simulation algorithm is the same as that in A-Cell. In the
visualization part, an anatomical atlas of human brain was
constructed from the data of ‘‘Talairach Daemon Client’’ super-
imposing them on the human brain MRI volume of ‘‘ICBM template’’
from LONI. This allows users to see the shape and position of
various anatomical regions of the brain from mm to hemisphere
resolution in the realistic 3D brain (Fig. 1). The activation patterns
calculated in the simulation are visualized on this brain image.
Results: To test the simulator, we tried to reproduce the
activation patterns of a human’s word processing which were
measured by MEG (magneto-encephalogram). The reproduced
patterns were roughly matched to the patterns from the
experiment and we could see them visually on the iBrain.
Conclusion: Simulation and visualization of spatio-temporal
activation of brain areas on a realistic 3D brain image can be
realized by iBrain. We believe this software can help us to
understand the brain function at macroscopic level.
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There is growing interest in exploring the neurological activity
underlying valuation and decision making. Recent findings have

Figure 2 (abstract P12)

Power during jump impulse. The power during the early phase of
the jump is almost identical, but without the SLP it peaks early and the
power from the late phase of the jump is almost entirely missing. This
has a significant impact on the jump distance.

Figure 1 (abstract P12)

Percentage reduction in jump distance without semilunar
process. Loss of the SLP reduced the distance jumped by approximately
45% across the entire range of extensor tensions tested. Each point is n
= 20.
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greatly enriched behavioral investigations of the psychology of
preference and choice by revealing the specific biological
substrates of reward encoding, trust, risky choice, and other
relevant phenomena. Neurocomputational modeling allows for
precise integrations of empirical findings into detailed mechan-
isms for how specific brain operations can produce complex
cognitions and behaviors. We present a biologically realistic
spiking neural model of affective choice and judgment that
demonstrates this important explanatory role for computational
neuroscience.
Our model proposes a fundamental interplay between an
emotional arousal state encoded by the amygdala and judgments
of reward value and valuation changes computed in orbitofrontal
cortex. Inspired by findings from attention research, we model a
multiplicative modulation of reward valuation by affective
arousal, whereby highly emotive events or contexts cause an
amplification of positive or negative subjective judgments. This
modulated signal feeds into interacting opponent systems for
computing positive and negative reward prediction errors,
which we have respectively encoded through dopaminergic and

serotonergic activity. The degree to which an obtained outcome
was positively or negatively unexpected induces activity in our
modeled anterior cingulate and dorsolateral prefrontal cortical
areas regarding the behavioral relevance of the outcome, with
negative surprises indicating current behavior may need to be
modified. A consolidation of encoded valuation, saliency and
relative surprise is proposed to drive the planning of stimulus-
appropriate behavior. Finally, information regarding behavioral
saliency and prediction error feeds back to modulate emotional
arousal level itself. These modeled mechanisms help to explain
several important findings of behavioral decision research.
In particular, the model provides a rigorous biological account of
prospect theoretic loss aversion by encoding an asymmetric
influence of the effects of positive and negative outcomes on
emotional arousal, which produces disparities in subjective
valuations of equivalent losses and gains. Mechanisms for relative
valuations and neural firing saturation effects in orbitofrontal
cortex further contribute to an explanation of the shape of the
observed value function from prospect theory. The model also
suggests multiple distinct neurological mechanisms by which

Figure 1 (abstract P13)

An example of Brodmann area display in ‘‘iBrain’’.
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information framing may affect choices, including ones involving
anticipated pleasure. This allows for the proposal of a detailed
neural basis for observed interactions between affect, prior
expectations and counterfactual comparisons considered at the
behavioral level in decision affect theory. Simulations of these
important emotional decision phenomena lend support to the
specific mechanisms of cognitive-affective interaction implemen-
ted in our model, and show the valuable role computational
neuroscience can play in developing richer and more complete
explanations in cognitive psychology.
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It has been shown that directing attention towards a location
inside the receptive field of a V4 neuron induces an increase in
the stimulus response of the neuron, in the local field potential
power within the gamma frequency range and also an increase of
phase-locking. When two stimuli are presented in the receptive
field of the same neuron, the two compete and the neuron’s
response is in between the responses to each stimulus
presented alone. Attention to the location of one of the stimuli
is found to bias this competition, favouring this stimulus. The top
down attentional signal presumably comes from prefrontal
areas. In one of these areas, the frontal eye field, the neural
activity has been shown to be linked with the activity in V4 and
to be able to induce the attentional effects seen in V4. Despite
these experimental results, the basic mechanisms underlying
competition and attention are still not well understood.
We introduce a biophysical model of V4 to study this problem.
The model consists on a network of pyramidal neurons and
interneurons, connected via realistic synapses and receiving
stimulus inputs from area V2 and feedback attentional inputs.
We study parameters roles (like the synaptic conductances) on
the network dynamics and find values for which the in vivo type
of dynamics is reproduced. In presence of two stimuli, the model
results show that they compete. Applying an attentional signal
towards one stimulus is found to induce the observed
attentional effects. Interneurons are found to play an important
role in both phenomena. These network results extend our
previous conclusions regarding competition and attention but
which were at the neuronal level.
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Background: Biophysically detailed bottom-up approaches to
modelling neural networks have previously used simulated
annealing, gradient-decent or ad-hoc algorithms to constrain
the many free parameters [1]. This study explores the use of
genetic algorithms to automatically search for a known
configuration using extracellular spike recordings or intracel-
lular voltage data. Surrogate data on neural responses is
generated and the ability of the algorithms to find the (known)
neural parameters is assessed.
Materials and methods: Four cell subtypes, in a known
microcircuit of the mammalian cochlear nucleus [2], are
simulated in a network with 60 frequency channels of
auditory input. Each cell received a ’tonotopic’ projection of
auditory nerve fibres, simulated using a phenomenological
auditory nerve model response to a 60 dB SPL notch noise
stimuli. Single compartment Hodgkin-Huxley neurons and
conductance synapses were implemented in NEURON.
Detailed equations for the active voltage-dependant currents
INa, IKHT, IKLT, IKA and Ih, were derived from in vitro studies of
cochlear nucleus cells [3]. Using genetic algorithm optimisa-
tion, four cost functions using identical input stimuli were
investigated. The cost functions calculated error in either: (i)
absolute spike times, (ii) peri-stimulus time histograms, (iii)
cumulative spike counts, or (iv) average intracellular voltages
for each cell in the network. Network parameters controlling
the number, weight and distribution of the synaptic connec-
tions were used in the optimisation, but these could easily be
extended to incorporate other cell properties. In all,
30 parameters controlling 10 synaptic connections were
converted to a GA binary string.
Results: Each cost function was allowed to run for 2 � 200
generations of the GA, after which a best solution was
determined. Normalisation of the results was difficult due to
the different scale of scores produced by the cost functions and
the different binary resolutions of the parameters. Table 1
shows the performance of the cost function as judged by the
best solutions. The average intracellular voltage obtained the
best solution as determined by the parametric mean error
relative to the target parameters, although each of the cost
functions were able to converge successfully to a solution that

Table 1 (abstract P16) Genetic Algorithm Cost Function
Performance

% Diff 1Best GA Score Mean Top 100 2

Spike Times 31.08 32.8 (5.5)
PSTH 30.13 31.3 (7.1)
CSC 29.41 32.2 (12.3)
IV 23.17 28.2 (14.7)

1 Percentage difference between target values and best GA solution,
normalised for each parameter. 2 Mean (stdev) of each the top 100 GA
scores (per parameter).
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was within 30% of the target values. Cost function parameter
sensitivity was a key factor, since some parameters were visibly
under constrained. Sensitivity analysis was also performed for
each parameter in the search space around the target.
Conclusion: Success of the GA optimization was affected by
intrinsic noise in the neural model and depended on the sensitivity of
the cost function to changes in each parameter. The results have
shown the potential of genetic algorithms to constrain the
underlying synaptic parameters of BNNs from any of the chosen
sources of physiological data. More work is needed to assess the
impact of reducing the amount of information available to the cost
function and setting confidence limits for each parameter.
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The neocortex typically operates in one of two states. The
activated (desynchronized) state, typical of alert wakefulness and
REM sleep, is characterized by a high-frequency, low amplitude
local field potential (LFP). The inactivated (synchronized) state
exhibits high low-frequency power, and spontaneous transitions
between UP states of widespread depolarization and spiking, and
DOWN states of generalized silence.
Cortical responses to sensory stimuli exhibit enormous trial-to-
trial variability, much of which is state-dependent. This presents
a problem for averaging in order to find the ‘‘typical’’ response.
One solution is to classify trials (repeated presentations of the
same stimulus) into categories depending on the cortical state at
the time of the stimulus (activated vs. inactivated, UP vs.
DOWN, etc.). In this work, we are more interested in
understanding how the intrinsic dynamics associated to different
states controls population activity.
We investigated the state-dependence of sensory-evoked
responses using a dynamical systems approach. Cortical LFPs
and population spike trains were recorded from the auditory
cortex of urethane-anesthetized rats using multi-site silicon
microelectrodes. 5 ms noise click stimuli were presented, and
intervals of silence were used to investigate spontaneous
activity. Activated states were induced by electrical stimulation
of the pendunculo-pontine tegmental nucleus (PPT).
We quantified the strength of ‘‘initial’’ and ‘‘persistent’’ network
responses using multiple unit activity (MUA). In the activated

state, initial responses were more or less consistent, whereas
persistent network activity merely reflected a return to baseline.
In contrast, the inactivated state exhibited greater variability in
initial responses, and persistent activity that often reflected
transitions between UP and DOWN states. We found that a
‘‘past activity’’ variable, which summarizes recent network
activity, is highly correlated to persistent network activity
after a stimulus presentation. In the activated state, the
correlation was strongly positive, whereas in the inactivated
state, the correlation was strongly negative.
By viewing the MUA as the output of a dynamical system driven
by external sensory stimuli, we constructed a simple nonlinear
model that captures the essential dynamic differences between
the activated and inactivated states, and explains much of the
trial-to-trial variability of sensory-evoked responses. By fitting
the model to data, we were able to determine the phase diagram
associated to each kind of activity, and the bifurcation that
transitions from activated to inactivated state. Furthermore,
using the model we made predictions for initial and persistent
responses that were better than those using past activity alone.
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The dynamics of collective states observed in globally coupled
neuronal networks is still an open problem. In particular,
although it is claimed that the periodic firing state (‘‘splay state’’)
is stable only for excitatory coupling [1], counterexamples have
been found for inhibitory coupling as well [2]. Moreover, the
stability of the splay states has been analyzed only in the mean
field limit [1, 3, 4]. Our aim is to investigate simultaneously, for a
pulse-coupled network of leaky integrate-and fire neurons, the
effect of the number N of neurons as well as of the pulse-width
of the post-synaptic potentials. Finite-N networks can be
studied by suitably modifying the map-like formalism [5, 6]
usually adopted to implement numerically the model. As a
result, we find that the stability of the splay state depends
crucially on a parameter that is proportional to the width of the
delivered pulses rescaled to the average interspike interval.
More precisely, we show that the Floquet spectrum of
eigenvalues is made of two components, one of which coincides
with that one predicted by the mean-field analysis [1].
Depending on the value of the relevant parameter, the second
component may be responsible for the occurrence of instabil-
ities which in turn suggest the failure of the continuum limit
approximation. Finally, for sufficiently small pulse-width we
observe that the splay state can be stable even for inhibitory
coupling.

BMC Neuroscience 2007, 8(Suppl 2) http://www.biomedcentral.com/1471-2202/8?issue=S2

Page 24 of 119
(page number not for citation purposes)



References
1. Abbott LF and van Vreeswijk C: Asynchronous states in

networks of pulse-coupled oscillators. Phys Rev E 1993,
48:1483–1490.

2. Zillmer R, Livi R, Politi A and Torcini A: Desynchroniza-
tion in diluted neural networks. Phys Rev E Stat Nonlin
Soft Matter Phys 2006, 74:036203.

3. van Vreeswijk C: Partial synchronization in population
of pulse-coupled oscillators. Phys Rev E 1996,
54:5522–5537.

4. Mohanty PK and Politi A: A new approach to partial
synchronization in globally coupled rotators. J Phys A:
Math Gen 2006, 39:L415–L418.

5. Jin Z: Fast convergence of spike sequences to
periodic patterns in recurrent networks. Phys Rev
Lett 2002, 89:208102.

6. Bressloff PC and Coombes S: A dynamical theory of
spike train transitions in networks of integrate-and-
fire oscillators. SIAM J Appl Math 2000, 60:820–841.

P19
Analysis of coupled decision-making modules
for multisensory integration
Marco Loh, Ralph G Andrzejak and Gustavo Deco
Department of Technology, Universitat Pompeu Fabra,
Barcelona, Spain
E-mail: marco.loh@upf.edu

BMC Neuroscience 2007, 8(Suppl 2):P19

We were interested in how two coupled decision-making
modules behave. This is for example interesting in multisensory
integration, in which both auditory and visual precepts have to be
integrated into one common percept. We used a biophysically
realistic neural model consisting of integrate-and-fire neurons
with detailed synaptic channels. We studied the influence of the
strength of the cross-connection between the two decision-
making modules on the performance of the model. The
performance was assessed by how often the system can correctly
extract the stimulus even though just weak input was applied. We
found that the optimal performance of the coupled modules is
achieved by a certain cross-connection strength, which is
independent of the amplitude of the stimulus input. This means
that once an optimal cross-connection has been learned it can be
used for all types of stimulus inputs to achieve an optimal
performance. We also present the mechanism, which is
responsible for this improvement: Inconsistent constellations in
the two modules converge to the correct response. We could
also simulate the law of inverse effectiveness in our model. We
related the strength of the input bias to the multisensory
integration index and found an inversely correlated relationship
such as observed in experimental data [1]. We also investigated a
three-module architecture, in which two primary sensory areas
like the auditory and the visual one are connected by a third,
integrating module. The 3rd module could correspond to higher
processing areas such as the STS, which mediates between the
two primary sensory areas. We show that there are similar
dynamics as in the two-module case, although the necessary
coupling strength between the modules is increased. The coupling
is more indirect than in the two-module case. We conclude that
decision-making modules can be coupled to increase performance
compared to single decision-making module.
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We present a method to determine whether a correlation in the
spikes of two neurons is due to a causal connection between the
neurons or due to common input originating from unmeasured
neurons. The distinction is based on a point-process model of
how a neuron’s spiking probability can depend on both its own
spiking history and a stimulus (or other external variables).
Although the results depend on selecting a parametric model
that captures essential features of the neural response, a large
class of models can be used with the network analysis. Hence,
the analysis could be applied to probe circuitry in a large range
of neuronal systems.
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Since Stanley Milgram’s ‘‘six degrees of separation’’, the interest
in the topological structure of network graphs and implications
for their functional role experienced a dramatic surge. 40 years
later, small-world and scale-free properties, with the latter being
generally viewed as a crucial prerequisite for complex dynamical
behaviours, are identified as a unifying feature of many real-
world networks. However, the study and characterisation of
complexity at the level of neuronal populations such as cortical
microcircuits, large-scale functional networks or, ultimately, the
whole brain still remains a technically and mathematically
difficult and, therefore, widely unsolved task. Moreover, recent
research shows that small-world and scale-free connectivity are
just two out of a vast plethora of applicable graph-theoretical
measures to yield a more accurate characterisation of the
networks structural or functional properties.
In this contribution we provide a detailed comparative
characterisation of publicly available brain networks. The latter
include structural areal connectivity graphs from the cat cortex,
macaque and macaque visual cortex, as well as cellular networks
of C. elegans and corresponding subnetworks formed by
chemical synapses and gap junctions only. Graph theoretical
tools applied include node degree and correlation, edge
distance, clustering and cycle, entropy, hierarchical, centrality,
spectral and complexity measures, as well as the study of
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subgraphs and fractal properties. Moreover, extensions of these
measures incorporating weight and spatial information are
proposed and applied to graphs where such data were available.
Our analysis shows that, first, in agreement with numerous
previous studies, all investigated systems exhibit small-world
properties (i.e. small average geodesic distance and high
clustering coefficient) when relational graphs are considered.
Second, for many other measures, marked differences (e.g. for
efficiency and vulnerability) between the investigated networks
were found, thus revealing a rich universe of structural qualities.
We argue that the latter forces a re-evaluation of the question
about structural prerequisites for functionally complex dynami-
cal behaviours. Third, the incorporation of weight and spatial
information qualitatively alters some conclusions drawn from
the analysis of corresponding relational graphs, thus arguing for
a careful re-evaluation of real-world networks in the context
weighted and spatial graph theory.
In summary, our study suggests that a deeper understanding of
the functional dynamics and role, and possible differences in the
latter, of neural and brain networks necessitate their detailed
structural characterisation beyond small-world and scale-free
qualities. Moreover, a detailed graph-theoretical characterisa-
tion of structural and functional brain networks will allow to
constraint developmental mechanisms which lead to the
preference of specific network topologies over others. Finally,
studying structural and functional patterns on the global scale
with the full weight of graph theory could provide an alternative
way to argue for complexity as an emergent quality of brain
networks which goes beyond a pure description of the wealth of
structural and functional properties observed in isolated neural
systems.
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Background: Large neural network simulations are becoming
more complex to set up. They require modeling at multiple
scales, include the effects of many interacting physical processes,
encompass greater detail, and consume greater computational
resources. The drive to solve problems that rely on increasingly
complex codes will soon land us in the realm of petascale
computing. How will we manage such simulations, configure
them, and accurately aim them at the problems we’re trying to
solve? Simulation is an increasingly expensive process, with each
run providing data to inform configuration and targeting of
subsequent runs. Hence, it is vital to configure and execute
simulations efficiently in order to minimize time spent on the
computer cycles as well as time spent interpreting simulation
results and designing follow-up experiments. We are developing
a framework for interacting with and configuring large simula-
tions using image-based interfaces generated automatically from
the simulation source code.

Figure 1 shows a working prototype of some of the key
components of the interactive framework. The diagram at the
left is an automatically generated view of the probabilistic wiring
diagram showing excitatory (*) and inhibitory connections
between pyramidal, basket, and chandelier cell types. The
central image is an automatically generated physical layout of a
portion of the neurons in a larger patch of the neocortex
simulation. Circles, triangles, pluses, and exes correspond to
superficial and deep pyramidal, basket, and chandelier cells. The
mouse has been used to select two cells in the subpatch, which
caused the signal viewer shown on the right to launch (not wired
to a live simulation in this prototype).
Conclusion: The goal of the project is to create an interface
to supercomputing platforms that will enable scientists to
directly engage the live simulation during its critical setup and
initial phases and at later times for monitoring and redirecting.
This capability will enable rapid intuition building and will
improve scientists’ effectiveness in deploying productive, well-
targeted experiments across research domains.
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Background: Automated parameter search algorithms, such
as simulated annealing, seek to tune a model’s parameters to
reproduce important features of a target data set. A match
function compares the model and target data to generate a
goodness of fit and is crucial because it reflects which target
features are considered of interest. Previous work has shown

Figure 1 (abstract P22)

Framework for interacting with large simulations.
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the effectiveness of combining simulated annealing with time-
domain match functions (e.g., spike timing and least mean square
(LMS) of membrane potentials) to tune a compartmental model
of a cortical pyramidal cell [1].
Methods: Here, we assessed the applicability of LMS and spike
timing match functions to single-cell and cortical network
targets displaying epileptiform activity. To accommodate the
more time-variable nature of network activity, we also included
frequency-domain (e.g., raw and banded power spectra) match
functions with the goal of determining their relative efficacy in
identifying and constraining the model parameters important for
generating epileptiform discharges.
Results: The results of two representative cases are depicted
in Figure 1. Figure 1a shows a bursting single-cell model target
and a representative best-match found using an LMS match
function; the parameter domain subject to search varied over a
factor of 2 about the target value. Runs using larger domains,
more parameters, and other match functions, such as spike
timing, indicate that, for this target, the fraction of reasonable
matches as a function of search domain scales most poorly for
LMS. Figure 1b shows the LMS match function applied to a
network model. This search restricted the domain to exclude
the correct value of one of the parameters to simulate a real
target in which parameters are not known a priori and may be
situated outside the searchable domain. Encouragingly, the
search found the value at the boundary of the allowable space,
closest to the excluded target value.
Conclusion: Both our single-cell and network search results
demonstrate the feasibility of using simulated annealing to
identify parameters underlying behaviors related to epileptiform
bursting activity. In real intracellular target traces, lack of
knowledge about target parameter values may necessitate larger
searchable spaces, for which LMS appears to be suboptimal
compared to other match functions such as spike timing. If the
searchable space is poorly chosen, so that the true parameters
are excluded, then the search algorithm often indicates the
situation by finding parameters at the edge of the searchable
space, even for relatively complex network models as illustrated
by Figure 1b. We note anecdotally that, at least in our models, it
is easy to determine by inspection whether the automated
searches have settled on a reasonable match, which makes them

useful tools for selecting interesting areas of parameter space
even when they do not provide exact matches to the targets.
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Background: It is a widely accepted tenant that one of the means
by which the nervous system and brain encodes information about
external stimuli is via the spiking-rate of neurons. Such a spiking-rate
code necessitates the transmission of an elevated spiking-rate
through successive neurons in a structured network, such as occurs
in the auditory and visual pathways. Recent studies, however, have
raised serious questions about our understanding of the propagation
of such spiking-rate information through structured networks. In
networks consisting of successive layers of integrate-and-fire
neurons with conductance synapses with feed-forward of informa-
tion from one layer to the next, it has been found that the mean
spiking-rate in deep layers is essentially independent of the input
spiking-rate [1]. The neurons within each layer tend to synchronize
with each other, resulting in a synchronous volley of action
potentials through successive layers, reminiscent of synfire chains.
The average spiking-rate in deeper layers either decays to zero or
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LMS match function results.
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reaches a stable fixed-point, depending upon the model parameters.
This behaviour was also observed in an in vitro study using a dynamic
patch clamp [2].
Methods: A network consisting of many layers of neurons is
analysed using both analytical and computational techniques.
Within each layer the neurons (both excitatory and inhibitory)
are recurrently connected. Adjacent layers are connected to
each other through both feed-forward and feedback excitatory
connections. The neurons receive specific (or driving) excitatory
synaptic input from inputs in the previous layer and non-specific
(or background) excitatory inputs from neurons outside the
layered network. Both Poisson neurons and integrate-and-fire
neurons with conductance synapses are analysed [3]. The fixed-
point behaviour of the transmission of spiking-rate information
is analysed analytically. Dynamical aspects of the behaviour are
analysed computationally.
Results: It is found that, with a sufficient level of recurrent
excitation and background input, the response of the neuronswithin
a layer to input that is external to the layer can be described as a
threshold-linear function to a very good approximation over a wide
range of input intensities. Activity-dependent synaptic scaling is used
to determine the effective gain of the threshold-linear response. The
conditions under which spiking-rate information can be reliably
transmitted through successive layers are deduced using a fixed-
point analysis and are found to depend upon the relative amounts of
excitatory feed-forward and feedback input between layers.
Conclusion: It is found that there is a set of privileged neural
parameters allow the propagation of spiking-rate information
through deep layered networks and that this set of parameters
can arise naturally as a result of simple well-founded principles. This
represents a significant result demonstrating that the propagation of
spiking-rate information can be achieved when the feedback and
recurrent connections, that were absent in previous feed-forward
layered models, are incorporated. Also, in contrast to feed-forward
models, there is in the present model a clear rationale for the
privileged sets of neural parameters that allow the transmission of
spiking-rate information.
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We have developed a population density framework that
captures correlations between any pair of neurons in the

population. We model each population of integrate-and-fire
neurons as receiving input in the form of correlated Poisson
processes. The evolution equation for the probability density of
any pair of neurons within the population is a multivariate
integro-differential equation which we solve numerically. We
demonstrate the numerical method and compare the numerical
solutions with Monte-Carlo simulations. Traditional population
density approaches assume all neurons within a population are
independent. However, correlations that are missed by these
approaches can significantly alter network dynamics. Hence, the
correlated population density method developed here could
provide a framework to analyze how correlations propagate
through networks and could be a computationally efficient
method to accurately simulate large scale networks.
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The cell assembly hypothesis [1] postulates dynamically inter-
acting groups of neurons as building blocks of cortical
information processing. Synchronized spiking across large
neuronal groups was later suggested as a potential signature
for active assemblies [2], resulting in specific higher-order
correlations among assembly members. Mathematical concepts
for the treatment of higher-order correlations in massively
parallel spike trains have been suggested in the past, but, due to
constraints of insufficient sample sizes, estimation of higher-
order parameters from recorded data poses serious problems
[3]. As a consequence, most attempts to detect active cell
assemblies resort to pairwise interactions. However, pairwise
approaches do not imply the presence of higher-order effects in
large neuronal populations and are not sensitive for sparse
synchronous events [4]. The limited experimental evidence in
favor of the cell assembly hypothesis must to a large extent be
assigned to the lack of suitable analysis tools [5]. Massively
parallel extracellular recordings, in contrast, are nowadays
widely available.
Here we present a novel procedure that allows us to detect
higher-order correlations in binned (filtered) multi-unit spike
trains. Based on estimates of only a few low-order cumulants of
such signals we can devise a test for the presence of higher-
order correlations in the observed neuronal population. The
method circumvents the need to estimate large numbers of
higher-order parameters and, therefore, is less susceptible than
previous approaches to the problems associated with limited
sample sizes from in vivo recordings [3, 4]. The method was
tested for correlated Poisson processes where correlations of
various orders were induced by ’inserting’ appropriate patterns
of near-synchronous spikes [6]. When applied to simulated data,
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the test was found to be surprisingly sensitive, even for cases
where the effect of the higher-order patterns on pairwise
correlation coefficients c were negligible (in the range of c ~0.01,
see [4]).
We present our test for rectangular filters that mimic the
binning and/or counting that is usually applied to extracellular
spike recordings. We discuss applications with other types of
filters that could make the proposed test applicable for other
signal types, e.g. intracellular membrane potentials. Further-
more, the sensitivity and reliability of the new method for data,
where the Poisson assumptions are not strictly satisfied, is
critically discussed.
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Temporal integration of information plays a crucial role in a
variety of cognitive processes, such as sensory discrimination,
decision-making or interval timing. However, neural mechanisms
of this computation remain to be elucidated. In previous models
of temporal integration by recurrent neuronal networks [1] or
by single cells [2], neurons integrate a constant external input.
Recent lines of evidence, however, suggest that activity of in vivo
cortical neurons is driven by noisy, balanced excitation and
inhibition [3, 4]. Here we propose a recurrent neural-network
model that integrates a noisy external input. We show that the
temporal integration in this network is more accurate when it
integrates the fluctuating component of this input rather than
the mean value.
We consider a uniform recurrent network of N excitatory leaky
integrate-and-fire neurons. All the neurons are initially in the
resting state (‘off’ state); if a neuron discharges a spike, it moves
to another state (‘on’ state) where constant depolarizing
current is active, which promotes regenerative spike discharges.
Each neuron receives an external input that consists of
excitatory and inhibitory bombardments, which generates a

rapidly varying postsynaptic current I(t) = m + ��(t). Here m and
�2 are the mean and the variance of this current, respectively;
� denotes fluctuation with zero mean, which is approximated by
Gaussian white noise.
It is analytically or numerically shown that, if the strength of
recurrent connection is properly tuned, the number of neurons
in the ‘on’ state, say n, grows with time at an exact-constant
rate. When �2 is varied while m is constant, the constant growth
is kept, with its rate scaling linearly with �2. In contrast, the
constant growth is not kept when m is varied while �2 is
constant. These results indicate that n represents temporal
integration of the variance but not the mean of an external
input. We further propose that n is decoded by the firing rate of
a downstream neuron that has afferent inputs from the
recurrent network, which are mediated by NMDA current.
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Summary: We present an ionic current model, composed of
Hodgkin-Huxley type neurons and glia designed to investigate
the role of potassium in the generation and evolution of
neuronal network instabilities leading to seizures. We show that
such networks reproduce seizure-like activity if glial cells fail to
maintain the proper extracellular K+ concentration.
Methods: Our neuronal network model combines the
Hodgkin-Huxley type of formulism for the neuronal currents
with a model for the dynamics of extra and intracellular K+

concentration controlled by a glial network. The equations for
the ionic currents are adopted from the model in ref. [1]. The
extra and intracellular K+ concentrations are calculated based
on various K+ currents.
Results: We investigate the instability in cortical networks by
studying two interacting one-dimensional networks consisting of
100 pyramidal cells and 100 interneurons. The network exhibits
persistent and spatially confined activity in a parameter range
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where inhibition is balanced by excitation. We then find various
physiologic conditions under which a network displaying a stable
persistent activity can switch to seizure like states.
Conclusion: The main finding of our study is that the network
activity packet is stable provided that (1) the excitable synaptic
strength is not very high; (2) the extracellular potassium
concentration is low enough to be well in the physiological
range (i.e. the glial network is functioning efficiently); and (3)
perturbations to the network are not very strong.
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Motivation: The dynamics of neural networks in the brain is
greatly influenced by noise. In the nervous system, sources of
noise are everywhere (in the stimulus, in the uncorrelated
activity, in the synapses, in the channels), and the emergent
phenomena related to these random events such as sponta-
neous spiking and random collective behaviours are of special
importance in the study of the neural code.
Usually, networks of integrate-and-fire neurons with a noisy
external drive are studied using the Fokker-Planck equation [1].
Under the assumption of sparse random connectivity, it has been
shown that the network dynamics can be in one of two regimes,
depending on the parameters: a desynchronized stationary
regime, and a weakly synchronized oscillatory regime. However,
this approach does not seem to be fully satisfactory because it
cannot be easily applied to more general neuron models.
Mathematical approach: bridging neuroscience and
communication networks theory: We propose a frame-
work inspired by the communication network theory to study
this type of networks. In contrast with classical analysis
(considering the membrane potential of the cells), we consider
an event-based description of the network and define a Markov
process related to the times of the spikes, the countdown process.
We show that this biologically inspired model is formally
equivalent to a class of stochastic networks studied in the field
of probability theory [2, 3]. Our work consists in generalizing
the results obtained in this field to the more intricate
biologically-inspired model, and address new questions of
special interest for the biological applications under this
framework.
Spike train statistics: In this model, the probability law of
the time of the first spike is a fundamental parameter, hence we

need to characterize the spike trains statistics as fast and
accurately as possible. To this aim, we review and extend some
methods coming from stochastic analysis. For instance we show
that for classical integrate-and-fire models, the problem reduces
to finding the hitting time of a curve by the Brownian motion,
using the Dubins-Schwarz’ theorem of local martingales
representation.
Event-driven stochastic simulator: This approach leads to
a natural event-driven simulation strategy we implemented by
extending the software Mvaspike[4]. We show some simulation
results illustrating transient behaviours of the network.
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To survive, an organism must pursue multiple goals and switch
between them at appropriate times. Generating such behavioral
flexibility is an extremely important brain function, yet little is
known about how a network of neurons can pursue different
goals at different times. A network’s behavior can only change
with an organism’s goals if it receives information about those
goals as input. Thus, network responses must depend jointly on
both current stimuli and current goals. How are these sources
of information combined to generate behavior? And, given those
combinations, how can different decision criteria be implemen-
ted depending on the task at hand?
Here we present a plausible network model for visual search
that exhibits different decision criteria depending on the current
goal. The network accurately performs several different search
tasks based on the same stimulus set, and is capable of switching
between tasks without retraining.
The model consists of three layers, each directly inspired by
cortical neurobiology: (1) A layer of input or sensory neurons
whose responses to stimuli are gain-modulated depending on
current goals. Such gain modulation implies that sensory and
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goal-dependent information are combined nonlinearly, as
documented in various experiments, but the exact form of
this nonlinearity is not crucial. (2) A randomly connected layer
of non-linear neurons that acts as a reservoir computer. As in a
liquid-state machine, this layer is capable of generating widely
different response patterns. (3) A standard race-to-threshold
decision model containing two competing neural populations.
These are used to indicate the system’s decision, whether a
target is present or absent in the display, depending on which
population reaches a threshold first.
We illustrate the model’s performance in a series of visual
search tasks for which human behavioral data are available. We
show that a single fixed network can perform all of these tasks
correctly, qualitatively reproducing eight sets of experimental
observations:
1. Variations in reaction times due to the number of displayed
distractors (set size effects).
2. Differences in reaction times between conjunction and single-
feature (or pop-out) searches.
3. Differences in reaction times between target-absent and
target-present displays.
4. Reaction-time dependencies on the similarity between
distractors and targets.
5. Search asymmetries; that is, differences in reaction-time
curves when target and distractor objects are exchanged.
6. The redundant targets effect; that is, decreased reaction times
as the number of targets present increases.
7. The ability to perform both singleton search (search for an
object that stands out in some way) and directed-object search
(search for a specific object).
8. Similar reaction-time curves for search in standard, static
displays and in dynamic displays, in which the positions of all
objects change randomly with a certain frequency.
The last point is particularly significant because other models
predict large differences in reaction times between static and
dynamic conditions, whereas ours does not. We also show that
the model is robust to noise, and can perform either with
perfect accuracy or exhibit behaviorally realistic error rates,
depending on noise and training parameters.
Our model demonstrates that three key properties of cortical
neurons – gain-modulation, recurrent connectivity, and race-to-
threshold dynamics – can be combined to generate a powerful
and flexible decision-making model. We suggest that these
features, which are successful at replicating many aspects of
visual search, may be combined in a similar manner to generate
goal-dependent decisions in many other circumstances.
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Precise timing of spikes and synchronization in the millisecond
range has been experimentally observed in different neuronal

systems. Their occurrence correlates with external stimuli and
is thus considered a key feature of neural computation. The
dynamical origin of precise and coordinated spike timing,
however, is not well understood. Here we show in a modeling
study that synchronous spiking activity of subgroups can persist
and propagate in purely random networks if we take into
account the non-additive nature of dendritic input integration
that was recently uncovered experimentally. We find a
transition to stable propagation of synchronized spiking: For
additive coupling and at low strength of non-additivity,
synchronous spiking dies out; above a critical strength, stable
propagation of a group of synchronized spikes becomes
possible. We derive a map giving the average future size of a
synchronous group in terms of the current group size. For
networks with homogeneous parameters the map can be
obtained analytically and reveals that the discontinuous transi-
tion found is due to a tangent bifurcation at a critical strength of
non-additivity. We discuss the mechanism underlying this
transition and its consequences for networks with inhomoge-
neous parameters and additional external noise. Prominent
‘synfire-chain’ models for the stable propagation of synchronous
activity in cortical networks require the existence of feed-
forward structures that are superimposed on otherwise
randomly connected local cortical circuits. It is unclear,
however, whether feed-forward structures actually exist in
such local circuits. Our study suggests that additional structural
features of the network connectivity may not be required for
the propagation of synchronous spiking activity if synaptic
interactions exhibit non-additive dendritic integration.
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Highly correlated network states are often seen in multi-
electrode data, yet are predicted to be rare by independent
models. What can account for the abundance of these multi-
neuron firing patterns? Recent work [1, 2] has shown that it is
possible to predict over 90% of highly correlated network
states, even when correlations between neuron pairs are weak.
To make these predictions, both groups used a maximum
entropy model that fit only the firing rates and the pairwise
correlations (a second-order maximum entropy model), and
which was maximally uncommitted about all other model
features. This new work raises several questions. First, how
general are these results? Both previous reports largely used
retinal data. Could this maximum entropy approach also
succeed when applied to cortical slices? Although the original
model explained correlations among spikes, could it also be used
to explain the abundance of correlated states of local field
potentials (LFPs)? A second issue concerns the abundance of
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correlated states over time. Can a second-order maximum
entropy model predict sequences of correlated states?
To examine the generality of this approach, we applied a
second-order maximum entropy model to a variety of in vitro
cortical networks, including acute slices from rat (n = 3) and
human epileptic tissue (n = 1), as well as organotypic (n = 3) and
dissociated cultures (n = 3) from rat.
We explored its effectiveness in predicting correlated states of
both spikes and LFPs at one time point. On average, the model
accounted for 90 ± 6% (mean ± s.d.) of the available multi-
information, in good agreement with previous studies. In all
cases, the maximum entropy model significantly outperformed
an independent model, demonstrating its effectiveness in
explaining correlated states in cortical spikes and LFPs at one
time point. We also explored how well the maximum entropy
model predicted sequences of correlated states over time.
Here, the model often failed to account for the observed
sequence lengths. In 8/10 preparations, the distribution of
observed sequences was significantly longer (p = 0.003). We
conclude that a second-order maximum entropy model can
predict correlated states, but not their evolution over time. This
suggests that higher-order maximum entropy models incorpor-
ating temporal interactions will be needed to account for the
sequences of correlated states that are often observed in the
data.
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It has been suggested that the hippocampal theta rhythm can
contribute to memory formation by separating encoding and
retrieval of memories into different functional cycles [1]. Herein,
we investigate via computer simulations the mechanisms by
which storage of spatio-temporal input patterns is achieved by
the CA1 microcircuitry. A model of the CA1 microcircuitry is
presented using biophysical representations of its major cell
types including pyramidal cells and three types of inhibitory
interneurons: basket cells, chandelier cells and bistratified cells.
Inputs to the network come from the medial septum, entorhinal
cortex and CA3 Schaffer collaterals. Patterns of CA3 input are
stored via an STDP-type learning rule on the pyramidal cell

target synapses. The other inputs provide context and timing
information. The model simulates accurately the timing of firing
of different hippocampal cell types relative to the theta rhythm
and proposes functional roles for the different classes of
inhibitory interneurons in the storage and recall of input
patterns.
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Carbachol (CCh) is a cholinergic agonist that causes sponta-
neous theta frequency oscillations in the entorhinal cortex and
hippocampus. To better understand the mechanism by which
these oscillations are generated, we measured the effect of CCh
on phase response curves from pyramidal neurons and stellate
cells in the entorhinal cortex. Based on the measurements, it
was predicted that CCh would facilitate synchronization of a
network of pyramidal neurons but would have little or even a
desynchronizing effect on stellate cells. The pyramidal cell
results were then confirmed by coupling pairs of pyramidal
neurons using the dynamic clamp and measuring their synchrony
in control and CCh conditions.
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A central feature of the hippocampus is its rich tapestry of
population oscillations as revealed by electroecephalogrpahic
(EEG) recordings. These myriad forms of population activities
are related to various behavioural states. For example, during
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slow wave sleep and awake immobility, the rodent hippocampus
exhibits two dominant EEG rhythms, iregular activities with
dominant frequencies of 2–3 Hz and intermittent sharp waves.
These EEG activities have been implicated in memory-related
signal processes. As these population activities primarily rely on
CA3 network activities, a sound knowledge regarding the
balance between excitatory and inhibitory activities in the CA3
circuit is the key to understanding their generation.
Using thick slices of adult mice, we have produced an in vitro model
that is capable of exhibiting either spontaneous rhythmic field
potentials (SRFPs, 1–4 Hz) alone or SRFPs together with sharp wave
like events [1, 2]. We study the balance of synaptic conductances
that may underlie these population activities. Our approach is to use
the VmDmethod [3] to investigate the excitation/inhibition balance
in individual hippocampal CA3 neurons.
Our results show that 1.) there is a global inhibitory dominance
for all the neurons in slices exhibiting SRFPs alone and with
sharp wave like events, in accordance with the fact that the
SRFPs are inhibitory in nature. 2.) The inhibitory hegemony
lessens by a significant degree for neurons in the slices having
both sharp wave like events and SRFPs. This sheds light on the
importance of increased excitatory inputs in sharp wave
generation. 3.) There is a significant disparity in excitation/
inhibition balance between pyramidal cells and interneurons,
with the pyramidal cells generally receiving a lower ratio of
inhibitory inputs. This difference in excitation/inhibition balance
probably underscores the possible inhomogeneity of the neural
network. These results provide insights not only on the balance
of synaptic conductances conducive to hippocampal rhythm
generation, but also on the prospective wirings of the structure
itself. These insights can in turn be used to constrain
computational network models that simulate rhythm generation
in the hippocampus.
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Background: An important question regarding orientation
selectivity (OS) in the primary visual cortex (V1) is to know how

OS varies among different V1 neural populations and throughout
V1 layers [1, 2]. In this work we present a large-scale model
highly constrained by physiology and anatomy and use it to
address these questions.
Methods: The model corresponds to 4 mm2 of cortical area in
a 10:1 scale. It is composed of 59,821 cells arranged into six
layers (L1, L2/3, L4B, L4Ca, L5 and L6) representing the
M pathway. Six different HH-type neuron models were
constructed to simulate six different cell classes: late spiking,
non-late spiking, fast spiking, regular spiking, chattering, and
bursting neurons. These neurons were distributed in the six
layers in a realistic way with short- and long-range intra-laminar
connections as well as inter-laminar connections. Thalamic
inputs are delivered to all excitatory cells in layers 4Ca and 6.
Activation of a cortical cell is modeled by a convolution of a
sinusoidal drifting grating with a Gabor function. Neural OS
profile was determined via circular variance and half-height
bandwidth of its tuning curve.
Results: Neurons in the model show a diversity of OS
consistent with experimental data (see Figure 1).
Conclusion: Results suggest that the diversity in OS observed
across cortical layers is at least partially due to heterogeneity in
cellular electrophysiology and circuitry properties.
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Background: The elevated plus-maze (EPM) is a standard
animal model of fear/anxiety in which the rodent is initially
placed at the center of an elevated four-arm maze in which two
arms are open and two are enclosed by walls. The anxiety-
related behavior comes from the conflict between staying in a
safe place (the enclosed arms) and exploring a potentially
dangerous environment (the open arms). The rat’s anxiety level
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in the EPM is characterized by two main measures, namely the
number of times the animal enters each kind of arm and the time
spent in each kind of arm. In this work we present a modified
version of an earlier model [1] for rat exploratory behavior
based on competition between motivation and aversion and
compare the simulation results with experimental data for real
rats [2].
Methods: The model is a network based on the structure of
a plus-maze divided into squares of equal size, five per arm and
a central one [1]. Each network unit corresponds to a specific
square and the connections, only between closest neighbors,
represent the possible adjacent squares where a virtual rat
could go. The exploratory behavior is modeled by a matrix of
network weights wij whose elements represent the rat’s
tendency for exploring square i from square j. This matrix is
given by wij = Mij - Aij, where Mij is the animal’s motivation to
explore square i from square j and Aij is its aversion to move to
square i from square j. This equation was kept from the
original model but here the equations that model the way
the matrices Mij and Aij depend on he number of times Nij the
virtual rat moves from square j to square i were modified to
Mij = M/(m + Nij

bi) and Aij = A/(� + Nij
ai), where M and A are

constants which have the same values for all virtual rats and
determine, respectively, the initial values of motivation and
anxiety, m and � are parameters that vary from virtual rat to
virtual rat determining their individual differences and ai and bi

are positive exponents which determine how motivation and
anxiety respectively decay with Nij. The exponent ai can have
two different values, one when square i represents a place
inside an open arm, which we will call aio, and the other when i
represents any other square of the EPM, which we will call aia.
The exponent bi also can have two different values, one when
square i represents a place inside a closed arm, which we will
call bic, and the other when i represents any other place of the
EPM, which we will call bia. The values of the parameters were
determined by an exhaustive search using genetic algorithms
with a fitness function which combines the two anxiety
measures mentioned above.
Results: The results of the simulations agree well with
experimental data from our lab [2]. The time spent in the
arms and the number of entries into them by the virtual rat are
similar to the same measures exhibited by real rats.
Conclusion: The modified model is capable of replicating the
rat exploratory behavior in the EPM. The major weakness of the
model is its large number of parameters, which turns its
interpretation in a biological or cognitive context difficult. In
spite of this, the model can be considered as a first step for a
theoretical understanding of the basis of rodent exploratory
behavior.
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Figure 1 (abstract P36)

Comparison of the OS profile shown by the model with experimental results.
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Background: We develop a large-scale brain-inspired model
of selective visual attention, which is a generalization of our
previous developments [1, 2]. The global architecture of the
model includes a Map Representation Module for feature
detection, an Invariant Representation Module for visual scene
representation and competition among objects, and a Central
Assembly Module for top-down control of attention focus.
Map Representation Module (MRM): The input image is
projected to the MRM which includes several submodules for
representation of the pixel’s hue, brightness, and some other
visual features such as orientation and contrast; each of these
submodules uses a cubic architecture. Each representation cube
contains several vertical layers, and each layer is a grid of
Hodgkin-Huxley neurons. There is one-to-one correspondence
between input image pixels and pixels in a layer of a
representation cube. Object features are passed to the Invariant
Representation Module.
Invariant Representation Module (IRM): At the second
stage of image processing, an invariant representation with
respect to position, size, and rotation is created. This
representation enables the organization of a competition
among different objects which reflects bottom-up selective
attention. Each object is represented by a group of excitatory
locally coupled Hodgkin-Huxley neurons. Different groups
inhibit each other until only one remains active, representing
the selected object. Neurons are operating near the Andro-
nov-Hopf bifurcation. Each neuron has an independent source
of noise to produce either sparse spiking or coherence
resonance [3]. The onset frequency can be trained through
intrinsic plasticity, which has recently been observed in
experiments [4].
Central Assembly Module (CAM): The CAM is modelled
by a group of Hodgkin-Huxley neurons which also operate near
the Andronov-Hopf bifurcation. The CAM controls the
dynamics of neuronal groups representing objects in the IRM
and modulates its behaviour to realize the top-down attention
effect.
Simulations show that the system sequentially forms an
attention focus selecting the most salient object (in this case
we consider the size and brightness of the object). CAM
modulation enables control of a scan-path where the focus of
attention moves. The system also demonstrates a competition
between attention energy and external disturbance, comparable

with phenomena observed in psychological experiments, such as
Garner effect and Stroop effect.
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Experimental works have shown that the attentional modulation
of firing rates increases along the visual pathway. It has also been
shown that attention modulates the gamma-frequency synchro-
nisation. In electrophysiological experiments, these modulations
have been found in layer V4 [1] but not in layer V1 [2]. In this
modelling work, we study how selective attention modulates
neuronal activity in different layers of the visual system. We use
a two-layer model of integrate-and-fire neurons, modelling
attention as an external input biasing the competition. We study
the influence of the attentional bias on both the modulation of
the firing rates and the gamma frequency synchronisation in
both layers. We show that the gamma frequency synchronisa-
tion is much higher in the upper layer (V4) than in the lower
layer (V1). In addition, the modulation of the synchronisation is
generally stronger in the higher layer. Our findings are thus
consistent with an increase of the gamma frequency modulation
along the visual pathway. This might explain the different findings
in [1] and [2], as they measured from different layers in the
visual system. We also analyse attentional modulations as a
function of the connection strength between the two layers.
Our results show that depending on the connection strength,
either the rate modulation or the gamma frequency modulation
is stronger, suggesting that both play an active role in the
encoding of attention.
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Responses to amplitude-modulated pure tones have been used
extensively to assess temporal properties of neurons across the
auditory system. The synchronisation to the modulation
frequency has mostly been measured by an index called vector
strength. This index is based on the distribution of spikes along
the period of modulation. One obtains a low value when the
spikes occur evenly across the period and a high value when
they are sharply distributed around a single time. In the ventral
cochlear nucleus, chopper units have been found to show band-
pass temporal responses at high sound pressure level and low-
pass temporal responses at low level [1]. However, the fine
structure of the responses remains uncharacterised.
Here, we show that data obtained from chopper neurons in
response to amplitude-modulated tone exhibit more complex
synchronised discharge patterns, reminiscent of mode-locked
states. These responses can be organised around an Arnol’d
tongue structure of a periodically forced model accounting for
the sub-threshold properties of the T-multipolar cells. Numer-
ical simulations of a stochastic version of this integrate-and-fire
model give response patterns similar to the one observed
experimentally. Thus, the results tend to show that care should
be taken when considering the temporal properties of a neuron
only on the basis of its vector strength.
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The analysis of synchronization, particularly phase locking, is
being increasingly used in neuroscience to explore coordinated
brain activity. The application of this methodology to magne-
toencephalographic (MEG) and electroencephalographic (EEG)
recordings would seem promising because these two recording
techniques have great temporal resolution. However, current
methods of synchronization analysis applied to raw MEG/EEG

data may not be as physiologically sound as previously thought.
In this work we present a model of brain activity based on
random current dipoles that reproduces the main character-
istics observed in measurements of real data synchronization,
even when no synchronized activity is taking place among the
sources. In particular, we show that the enhanced local
synchronization, previously described in some studies of
epileptic seizures, may result from the activity of only a few
unsynchronized sources.
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Background: The synchrony hypothesis postulates that pre-
cise temporal synchronization of different pools of neurons
conveys information that is not contained in their firing rates.
The synchrony hypothesis had been supported by experimental
findings demonstrating that millisecond precise synchrony of
neuronal oscillations across well separated brain regions plays
an essential role in visual perception and other higher cognitive
tasks [1]. Albeit, more evidence is being accumulated in favour
of its role as a binding mechanism of distributed neural
responses, the physical and anatomical substrate for such a
dynamic and precise synchrony, especially zero-lag even in the
presence of non-negligible delays, remains unclear [2].
Here we propose a simple network motif that naturally
accounts for zero-lag synchronization for a wide range of
temporal delays [3]. We demonstrate that zero-lag synchroniza-
tion between two distant neurons or neural populations can be
achieved by relaying the dynamics via a third mediating single
neuron or population.
Methods: We simulated the dynamics of two Hodgkin-Huxley
neurons that interact with each other via an intermediate
third neuron. The synaptic coupling was mediated through
a-functions. Individual temporal delays of the arrival of pre-
synaptic potentials were modelled by a gamma distribution. The
strength of the synchronization and the phase-difference
between each individual pairs were derived by cross-correlation
of the membrane potentials.
Results: In the regular spiking regime the two outer neurons
consistently synchronize with zero phase lag irrespective of the
initial conditions. This robust zero-lag synchronization naturally
arises as a consequence of the relay and redistribution of the
dynamics performed by the central neuron. This result is
independent on whether the coupling is excitatory or inhibitory
and can be maintained for arbitrarily long time delays (see Fig. 1).
Conclusion: We have presented a simple and extremely
robust network motif able to account for the isochronous
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synchronization of distant neural elements in a natural way. As
opposed to other possible mechanisms of neural synchroniza-
tion, neither inhibitory coupling, gap junctions nor precise tuning
of morphological parameters are required to obtain zero-lag
synchronized neuronal oscillation.
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Spike correlations between neurons are ubiquitous in cortex,
but their role is at present not understood. Here we describe
the firing response of a leaky integrate-and-fire neuron when it
receives a temporarily correlated input generated by pre-
synaptic correlated neuronal populations. Input correlations are
characterized in terms of the firing rates, Fano factors,
correlation coefficients and correlation time scale of the
neurons driving the target neuron. It has been shown [1] that
the sum of the pre-synaptic spike trains cannot be well
described by a Poisson process. In fact, the total current has a
non-trivial two-point correlation function described by two
main parameters: the correlation time scale (how precise the
input correlations are in time), and the correlation magnitude
(how strong they are). Therefore, the total current generated by

the input spike trains cannot be approximated by a white noise
Gaussian process in the diffusion limit. Instead, the total current
is replaced by a colored Gaussian process with the same mean
and two-point correlation function, leading to the formulation of
the problem in terms of a Fokker-Planck equation. Solutions of
the output firing rate are found in the limit of short and long
correlations time scales. The solutions described here expand
and improve our previous results [1] by presenting new
analytical expressions for the output firing rate for general IF
neurons, extending the validity of the results for arbitrarily large
correlation magnitude, and by describing the differential effect of
correlations on the mean driven or noise dominated firing
regimes. In addition, we also study the correlated output spike
trains of two neurons receiving independent as well as common
sources of Gaussian noise. This formalism [2] describes
analytically the Fano factor of the output spike count, the
output auto-correlation function and output cross-correlation
function of the spiking response of a pair of neurons. These
results open the door to the study of spike correlations in
neuronal networks and their role in neural processing and
information transmission.
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In the stochastic integrate-and-fire (SIF) model, the distribution
of membrane potentials is subject to drift, due to the mean input
current, and diffusion, due to input variance; the firing rate is
determined as the instantaneous probability of crossing thresh-
old. Previous research has shown that when the drift term
dominates, the SIF acts like a neural resonator, amplifying
fluctuations in the mean input at multiples of the neuron’s
steady-state firing frequency. Here we show that the SIF also
displays two distinct resonances to fluctuations in the input
variance. Similar to the resonance for mean input fluctuations,
the first "drift resonance" occurs near the steady-state firing
frequency and is found only in the drift dominated (regular
firing) regime. However, the peak of this resonance occurs at
frequencies slightly higher than the steady-state firing frequency.
The second "variance resonance" differs significantly from the
drift resonance and predominates in the variance dominated
(random firing) regime. This resonance has a broader frequency
range and peaks at frequencies an order of magnitude greater
than the underlying steady-state firing frequency of the neuron.

Figure 1 (abstract P42)

Phase difference between the outer neurons as a function of the mean
delay and shape factor of the axonal delays distribution.
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Because oscillatory input that synchronously activates excita-
tory and inhibitory neurons is expected to generate disynaptic
input modulations of the variance and not necessarily the mean,
the variance resonance may play a significant role in modulating
oscillatory activity in circuits with a balance of excitation and
inhibition.
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Network oscillations between the two hippocampi are highly
synchronized. Synchronized theta is believed to be the result of
the common input from the septal region, whereas the
mechanism of the ripple synchronization is not well understood.
It was previously demonstrated using partial coherence analysis
that the "coupling" between the two CA1 regions of hippocampi
during theta oscillations is stronger than that between the
individual layers of the same hippocampus.
Hippocampal sharp wave-ripple complexes occur during slow-
wave sleep and awake immobility and are thought to be
important for memory consolidation. The delay between
simultaneously recorded ripple events from the two hippocampi
is remarkably short (1–2 ms). This observation suggests that
some sort of fast communication mechanism should connect the
two hippocampi. We demonstrate that the simultaneously
occurring ripple events in the two hippocampi are highly
coherent. This observation suggests an important role of the
commissural projections in interhemispheric network synchro-
nization. Using various anatomical methods we demonstrate
that a subset of inhibitory neurons (NPY-expressing cells),
located in the CA1, CA3 area and dentate gyrus, extensively
project not only to the contralateral hippocampus, but also to
the septal region. We use model simulations to determine to
what extent and under which conditions the highly synchronous
ripple events can be produced by long-range intra- and
interhippocampal inhibitory projections.
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We consider a model of a network of hippocampal interneurons
based on the work of Wang and Buzsaki. We construct a phase

model representation of the network, and show that this model
can give reasonably accurate quantitative information, such as
the size of basins of attraction and the maximum heterogeneity
permissible in the inherent frequencies of the neurons before
synchrony is lost. We show that predictions of existence and
stability of the synchronous solution from a two cell network
carry over to N-cell networks, either exactly or in the limit of
large N.
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Putative gap junctions between pyramidal axons have been
reported in the hippocampus as well as the neocortex. These
gap junctions are indicated in very fast oscillations (VFOs, >
80 Hz) in slow-wave sleep as well as in seizures. They could
also play a role in gamma oscillations (30–80 Hz) in the
hippocampus and other areas. Computational modeling
studies have yielded results consistent with these hypotheses
[1, 2, 3].
We explore, in greater detail than in previous studies, the
parameter dependence of the dynamics of a random neuronal
network with axo-axonal gap junctions. First, we analyze
propagation through a network of axons (without somata and
dendrites). We vary excitation levels and gap junction
conductances, and study regimes of disorderly behavior,
stimulus-driven VFOs, and re-entrant VFOs (that is, VFOs that
persist after the stimulus is removed). We also show examples
of spontaneous (noise-driven) toggling of the network between
qualitatively different oscillatory regimes. Second, we add
intrinsically bursting somata, and analyze the behavior of the
resulting system in light of our study of the isolated axonal
plexus. Finally, we discuss links between gap junction dependent
activity in the axonal plexus, very fast oscillations, and gamma
oscillations.

Figure 1 (abstract P47)

An example of re-entrant VFOs vs. stimulus-driven VFOs. Each
red dot stands for when an axon spiked. Notice the similarity between
each wave of activity for the re-entrant VFOs, while each wave is unique
for the stimulus-driven VFOs.

BMC Neuroscience 2007, 8(Suppl 2) http://www.biomedcentral.com/1471-2202/8?issue=S2

Page 38 of 119
(page number not for citation purposes)



References
1. Lewis TJ and Rinzel J: Self-organized synchronous

oscillations in a network of excitable cells Coupled
by gap junctions. Comput Neural Syst 2000, 11:299–320.

2. Lewis TJ and Rinzel J: Topological target patterns and
population oscillations in a network with random
gap junctional coupling. Neurocomputing 2001,
38–40:736–768.

3. Traub RD, Schmitz D, Jefferys JGR and Draguhn A: High-
frequency population oscillations are predicted to
occur in hippcampal pyramidal neuronal networks
interconnected by axoaxonal gap junctions.
Neuroscience 1999, 92:407–426.

P48
Determining the effect of the A-current on the
activity phase of a follower neuron in an inhibitory
network
Yu Zhang1, Amitabha K Bose1 and Farzan Nadim1,2

1Department of Mathematical Sciences, NJIT, USA
2Department of Biological Sciences, Rutgers University,
Newark, NJ, 07102, USA
E-mail: yz33@njit.edu

BMC Neuroscience 2007, 8(Suppl 2):P48

Background: The A-current is a transient outward potassium
current that is present in most vertebrate and invertebrate
neurons. When a neuron is subject to a strong inhibitory
synapse, the activity time following the rebound from inhibition
can be set by the conductance and kinetics of the A-current. As
such, the A-current plays an important role determining the
activity phase of neurons in rhythmic networks that involve
inhibitory synapses. The precise influence of the A-current in
setting the activity of neurons depends on its interaction with
the inhibitory synaptic inputs and with other intrinsic properties
of the neuron. We examine the role of the A-current in
determining the phase of activity of a follower neuron in a
rhythmic inhibitory network. Our modeling results are com-
pared with the activity of the follower pyloric constrictor (PY)

neurons in the rhythmically active crustacean pyloric network
(Fig 1a). We examine the role of the A-current in a Morris-Lecar
(ML) model plus an A-current with instantaneous activation
kinetics, resulting in a 3D model with 2 variables (v and w) from
the ML system and one variable h describing A-current
inactivation. The response of the model to an inhibitory input
from a square-wave presynaptic voltage is shown in Fig 1b.
Results: We examine the behavior of the model neuron in
response to a periodic inhibitory input. After release from
inhibition, the membrane potential moves to a "middle state"
(light blue line in Fig 1b) where the A-current becomes
activated. At this point, the trajectory encounters three
possibilities: jumping to the active state, jumping back to the
inactive state or staying in the middle state. Using phase plane
analysis, we find that the outcome is determined by several
factors: the shapes of the ML w-nullcline (w1) and the steady-
state activation curve m1 of the A-current, the time constants
�w and �h, and the inactive duration of the pacemaker. In the v-w
phase plane (Fig 2), the v-nullcline has a quintic shape in the
presence of the A-current and the middle branch represents the
middle state in Fig 1. When the trajectory reaches the middle
branch, it moves toward the stable fixed point (FP) at a rate
determined by the �w. Meanwhile, the lower knee (LK) of the
middle branch moves up as the A-current inactivates
(h decreases). If the trajectory encounters LK (resp. upper
knee-UK), it jumps to the active (resp. inactive) state. If the
trajectory does not reach LK or UK before the next inhibition
phase, it will remain on the middle branch. In the case of Fig 2,
FP is located below UK due to the steepness of the w-nullcline
and therefore the trajectory can only jump to the right branch
or remain in the middle branch. However, if FP is higher than
UK (in the w direction), it is possible for the trajectory to jump
to the left branch if it reaches UK. By following the trajectory in
the slow manifold (w-h phase plane on the middle branch) we

Figure 1 (abstract P48)

Delay to activity in the follower neuron following inhibition.

Figure 2 (abstract P48)

Fast-slow phase-plane dynamics demonstrating the effect of the A
current inactivation.
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can determine its fate before the arrival of the next inhibition
(Fig. 3). Our results show that, depending on the parameters
mentioned, the effect of the A-current can be quite complex and
non-intuitive. In particular, for large maximal conductance, the
A-current may prevent the neuron from returning to its inactive
state even when inhibited.
Conclusion: We are able to predict the effect of the
A-current on setting the activity phase of an oscillatory neuron
as a function of the shapes of w1 and m1, the values of �w and
�h, and the inactive duration of the pacemaker.
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The aim of this theoretical work is to understand how the fruit
fly uses sensory input from wings and other structures to be
able to quickly maneuver during flight. We capture in the model
the qualitative features of flight dynamics that depend on the
mechanosensory feedback.
To describe mechano-transduction in the campaniform sensil-
lum, we use a leaky integrate-and-fire neural model. Its
excitatory conductance is dependent on strain, corresponding
to a mechanically gated ion channel. The parameters of this first
part of the model were fixed with the help of previously
published physiological data on campaniform receptors, as well
as the closely related bristle sensillae.
In a second part of the model we study how the mechano-
sensory information is used in flight control. The output of
mechanoreceptors is coupled to a dynamical model of the
activation of control muscles and its effect on the wing motion.
As the mechanics of the wing hinge and its reconfiguration by
the action of control muscles is not known in detail, we adopt a

highly simplified description of the system. In this part of the
model, a nonlinear oscillator, representing the indirect power
muscles, is coupled to two linear mechanical subsystems,
representing the wing, the sclerites, and the direct control
muscles on the left and right sides. Sensory input perturbs the
dynamics of the system by altering parameters of the linear
subsystems. Motivated by the experimental data of Tu and
Dickinson [1], we take the stiffness of the control muscle to
depend on the timing of the mechanosensory spike in the
previous wingbeat cycle.
Our goal is to capture the dynamics of a saccade, a fast
maneuver in the yaw plane. In the model, the saccade is initiated
by a strong transient perturbation on the left or right side. (In
experiment, this is usually a consequence of an optical stimulus).
The saccade then continues until the left and right subsystems
are fully phase- and amplitude-synchronized. The synchroniza-
tion dynamics is driven by the coupling of the left and right
subsystems though the nonlinear oscillator, as well as by
ipsilateral and contralateral mechanosensory feedback. We
analyze the characteristic features of synchronization through
these distinct neural and muscular mechanisms, and we compare
the predicted courses of a saccade to experimental recordings.
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Background: Synchronous neuronal firing has been discussed
as a potential neuronal code. For testing first, if synchronous
firing exists, second if it is modulated by the behaviour, and third
if it is not by chance, a large set of tools has been developed.
However, to test whether synchronous neuronal firing is really
involved in information processing one needs a direct compar-
ison of the amount of synchronous firing for different factors
like experimental or behavioural conditions. To this end we
present an extended version of a previously published method
NeuroXidence [1], which tests, based on a bi- and multivariate
test design, whether the amount of synchronous firing above the
chance level is different for different factors.
Methods: In order to make a spike rate correction of an
observed amount of joint-spike-event (JSE), we define two time
scales: 1. �c, which defines the fine-temporal cross-structure of
interest and is equal to the assumed temporal extension of JSE
(~5 ms), 2. � r, which is � times slower than �c and equal to a
lower bound of rate changes (� r = �* �c,�~5). Using �c and � r
the chance amount of JSE is derived based on surrogate data.
The latter is generated by random jittering of all spikes in each
individual original spike train by an amount smaller than � r.
Hence, jittering destroys the fine-temporal cross-structure but

Figure 3 (abstract P48)

The trajectory in the slow phase space.
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maintains any other properties of each spike train like the full
auto-structure and rate co-variation. Next we compute for each
trial (m) and each factor (i) the difference between the amount
of JSE in the original and jittered spike train �fm,i. To assess if
�fm,i is different for different factors, we use a bi-, and
multivariate test (Mann-Whitney, Kruskawalis).
Results: We demonstrate based on toy data that the bi- and
multivariate version of NeuroXidence is a conservative and reliable
method for detecting modulations in the synchronous firing across
different experimental factors. To this end we used various
scenarios that had been discussed to induce false positives like rate
changes and rate co-variations, low rates and different forms of
renewal processes. Furthermore we show results based on
simultaneous recordings from awake monkeys performing a
short term memory paradigm, that modulations of synchronous
firing are correlated to behavior and task conditions.
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Background: The firing rate of projection neurons in the
insect antennal lobe (AL) increases in presence of picrotoxin
(GABA-A antagonist) or CGP54626 (GABA-B antagonist),
hence demonstrating the existence of both slow and fast
GABAergic inhibition [1]. Fast GABA-A inhibition is known to
play a key role in synchronization and spike timing precision.
Field potential oscillations and neural synchronization are indeed
disrupted when the fast GABAergic synapses are pharmacolo-
gically blocked. The role of slow GABA-B inhibition is, however,
unclear. On the one hand, spike timing precision increases
following in vitro injection of hyperpolarizing current pulses, and
higher precision is obtained for pulses of longer duration (see
Fig. 4 in [2]). Thus, in vitro experimental data suggest that slow
inhibition may enhance spike timing precision and synchroniza-
tion. On the other hand, in vivo experimental data just show the
opposite as spike timing precision increases, instead of
decreasing as expected, when the slow inhibition is pharmaco-
logically blocked (see Fig. 4 in [1]). To understand this paradox,
we have built a computational model of the insect AL.
Methods: Based on previous work [3], our AL model is a
network of quadratic integrate-and-fire (theta) neurons coupled
with slow (determined by GABA-B receptors) and fast
(determined by GABA-A receptors) inhibitory synapses. In
this study, we consider a probability of synaptic failure (p = 0.5)
and three patterns of connectivity: global (all-to-all connec-
tions), heterogeneous (random connections with 0.5 probabil-
ity) and homogeneous (random connections but with the same
number of synaptic inputs per cell).

Results: Tight synchronization and precise spike timing are
obtained (i) when the connectivity is global or homogeneous and
the neurons are coupled by fast and slow inhibition without
synaptic failure, or (ii) when the neurons are connected by fast
inhibition alone, irrespective of the pattern of connectivity and
the presence or not of synaptic failure. Asynchronous state and
imprecise spike timing are obtained with slow inhibition (i) when
the connectivity is heterogeneous or (ii) when the connectivity
is global or homogeneous and with synaptic failure.
Conclusion: Our results predict that loss of synchronization
is attributable to variance in the number of received slow
inhibitory synaptic events (whereas fast inhibition is robust to
such variability). This variance comes from heterogeneous
connectivity or from the presence of synaptic failure, both of
them being likely to occur in vivo [1]. In contrast, in vitro
injection of hyperpolarizing current pulses, as done in [2],
does not present such a variability which explains the
apparent contradiction between in vivo and in vitro experi-
mental data.
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Recently the temporal coding based on spike timing is one of
the hot issues in neuroscience. In the neural network, spike
timing depends on the external stimulus and also on the
internal network structure. In this study, we propose a
method of inferring network connectivity from multiple spike
trains. It is based on the phase model description of the spike
trains. A continuous phase variable is introduced for each of
the spike trains by assigning 2 pi phase for each of the spike
intervals and by the linear interpolation. The relative strength
of the mutual dependence allows us to estimate the relative
strength of the coupling as well as the type of coupling. We
report the results of our test on the coupled neural network
model and also on the electronic circuit experiment. When
compared with the conventional method based on the cross-
correlogram, the proposed method is much more effective in
estimating the network connectivity. At the same time, the
measurement of the effective coupling allows us to estimate
the type of coupling.
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Neurons are almost invariably embedded in complex feedback
networks. In order to study the feedback regulation of individual
neurons and their ability to accurately code sensory information
we chose to examine a simple, well understood feedback
network. Specifically, we examine here a simple network based
on the known neuroanatomical substrates underlying sensory
processing in the weakly electric fish Apteronotus leptorhynchus.
We consider here a network of 100 biophysically plausible
model neurons, embedded in an inhibitory closed loop
consisting of GABAA and GABAB mediated conductances. We
have shown previously an interaction between the GABAB

portion of this inhibitory feedback and the burst dynamics
intrinsic to ELL pyramidal cells. By including the intrinsic bursting
dynamics we are able to replicate specific in vivo results relating
to the regulation of bursting by this feedback network, and able
to examine the regulation of sensory coding by this feedback.
The GABAA component of the inhibition is able to create a
network mediated oscillation, which significantly deteriorates
coding. The GABAB component, while unable to ameliorate the
interference of the network oscillation, is able to restore
the feature detection properties of the individual units such that
the ability to accurately detect burst stimuli is improved. This
may represent a mechanism for improving the detection of prey-
like stimuli in the presence of conspecifics.
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We study a Hodgkin-Huxley type neuron model describing the
firing properties of an endogenously oscillating subthalamic
neuron [1] incorporating a low-voltage activated (T-type)
calcium current when the cell is affected by random alpha
function inhibitory inputs (frequency, �). The postinhibitory
rebound current (parameterized by its maximal conductance,
GT) caused by the brief inputs can induce output spikes in
response to two or more coincident arrivals or even a single
strong enough inhibitory arrival [2]. Thus the output firing
sequence becomes random, while the firing rate increases with
�. For small GT, the coefficient of variation (CV) of the output
spike sequence also increases with �, but when the rebound is
strong, the CV exhibits an unexpected and prominent local

maximum at a preferred input frequency. At the preferred
frequency, the firing rate has a maximum slope. Weaker input
amplitudes can increase the preferred frequency, but the cell’s
firing rate, at the preferred �, is independent of the input
strength. This phenomenon may be useful in characterizing and
identifying cells [3] that receive complex pattern of inhibitory
inputs like those in subthalamic nucleus with T-type calcium
currents [4].
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Oscillatory coordinated cellular activity is a major characteristic
of nervous system function. Recent years have witnessed a surge
of interest in the concept that synchronized activity in brain
cellular networks plays a crucial role in information processing
and behavioural responses. However, adequate frameworks to
understand the relation between brain function and behaviour
are still underdeveloped. Coupled oscillator theory offers
unique avenues to address these questions, as most of the
nervous systems can be considered fields of oscillators coupled
in different ways. In this study, we focus on the characterization
of the dynamics of epileptiform activity, based on some seizures
that manifest themselves with very periodic rhythmic activity,
termed absence seizures. Taking advantage of this long-lasting
periodic activity, our approach consists in obtaining experimen-
tally the phase response curves (PRC), which describe the
alteration of the phase due to an input at each point of the cycle,
and incorporating these into models of coupled oscillators. To
this end, we use a rat model of absence seizures that results
from injection with gamma-hydroxybutyric acid (GHB). As a
result, very rhythmic synchronized spike-and-wave (SWD)
discharges occur in the neocortex and thalamus. Intracerebral
recordings are obtained using bipolar electrodes inserted into
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the cortex and thalamus. Of 42 rats recorded, 17 were used to
estimate the PRC. PRCs were obtained by stimulating either the
thalamus or the cortex, and evaluating the alteration (advance-
ment or delay) of the oscillation in the cortex or thalamus,
respectively. The electrical stimuli used were the minimal that
allowed an identification of the stimulating artefact, so that the
phase of the stimulation could be calculated, and did not alter
profoundly the oscillation. In addition, larger stimulations were
tested for their ability to halt the SWD. Only brief (~1 second)
stopping (desynchronization) of the SWD was observed in some
cases (55%) at large stimulation intensities, phenomenon for
which no specific phase of the perturbation was noted. Because
these rats have a very low threshold for triggering a SWD, we
estimated the instantaneous phase at which a single pulse
triggered a seizure, phenomenon which occurred in ~53% of
stimulations. Just like in the above case of seizure abortion, no
particular instantaneous phase was noted in the pulses that
triggered a SWD.
The experimentally obtained PRCs, for the cortex (in response
to thalamic stimulation) and thalamus (cortical stimulation) were
approximated by a polynomial as well as by a few terms of the
Fourier expansion. In our case, these PRCs represent
the interaction function between the two oscillators involved
in the SWDs: cortex and thalamus. Incorporating these
functions into a system of two coupled differential equations
representing the time evolution of the respective phases, we are
determining the phase preferences of the stationary states and
their stability, and these results from the model are compared
with the experimental recordings.
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Coherence analysis is a tool to probe the functional connectivity
of two neural oscillators through studying the two signals
recorded from them. A sliding window cuts the two signals into
a number of corresponding epochs. The power of any given
frequency in the two signals can be expressed as a pair of
multidimensional vectors. The number of dimensions is equal to
the number of the epochs. Coherence of the two signals at that
given frequency is calculated as the squared cosine of the angle
between these two multidimensional vectors. This style of
calculation of coherence is based on the presumption that the
functional connectivity of the two oscillators would be
demonstrated as simultaneous, linearly correlated wax and
wane in the power of oscillation in identical frequencies; but
many connected neural oscillators do not exhibit this behavior.
An example is the circuitry of Globus Pallidus internus (GPi),
thalamocortical relay nucleus (TC), and thalamic reticular
nucleus (RE). In this circuit, a four Hz burst activity in GPi

triggers an eight Hz burst in TC under the effect of RE.
Therefore, GPi and TC are functionally connected but not in
identical frequencies and this aspect of their connectivity can not
be demonstrated by the conventional coherence analysis. The
present study suggests a customized version of coherence in
which the calculation of coherence can be extrapolated to the
vectors representing powers of non identical frequencies in the
two signals. This extrapolation has been tested on a model of
GPi-TC-RE and a peak in the customized coherence between
the vector of 4 Hz activity of GPi and the vector of 8 Hz activity
of TC has been demonstrated.
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The interest in stochastic processes has increased remarkably in
the last few years, in part motivated by the investigation of the
constructive role of noise in many biological systems.
A quantitative description of these phenomena often requires
the solution of complicated Fokker-Planck equations (FPE).
Here, we apply an efficient approach from computational
engineering, the finite-element method, to numerically solve
the Fokker-Planck equation in two dimensions. This approach
permits us to find the solution to complicated stochastic
problems. We illustrate our method by studying the stochastic
synchronization of neuronal oscillators, a phenomenon that has
attracted considerable attention in neuroscience recently. In
particular, we show that resonators (type II neural oscillators)
respond and synchronize more reliably when provided corre-
lated stochastic inputs than do integrators (type I neural
oscillators). This result is consistent with recent experimental
and computational work.
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Introduction: Recently a novel form of spike timing depen-
dent plasticity (STDP) was observed in GABAergic synaptic
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couplings in layer II of the entorhinal cortex. Depending on the
relative timing of pre-synaptic input at time tpre and postsynaptic
excitation at time tpost the synapse is strengthened (�t = tpost-
tpre>0) or weakened (�t < 0). Because the observed effect is the
largest at ± 10 ms, the operational dynamic range of the
observed STDP rule lies in the higher gamma frequency band
(>40 Hz), a frequency range important for several vital neuronal
tasks. In this work we study the influence of this novel STDP of
inhibitory synapses on the synchronization of two mutually
coupled interneurons (MCI) in the presence of heterogeneity
and noise. We demonstrate analytically how this synchroniza-
tion is brought about by defining the spike response curve
(SRC), which measures the nonlinear response of neuron to
pre-synaptic input. We present simulation results to demon-
strate how the unique features of the STDP increase the
robustness of synchronization even in the presence of hetero-
geneity and noise.
Results: See Figure 1.
Conclusion: STDP of inhibitory synapses promotes synchrony
between two mutually coupled interneurons thereby making it
more robust against intrinsic heterogeneity in firing frequency of
the coupled neurons.
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Electrical coupling between groups of inhibitory interneurons
appears to be ubiquitous in the cortex. Because inhibitory
interneurons are thought to play a fundamental role in
generating cortical oscillations, phase-locking dynamics of
electrical coupled interneurons has received considerable
interest. A recent experimental study showed that electrically
coupled neocortical interneurons have the ability to robustly
synchronize over a broad range of frequencies and an inability to
phase-lock in anti-phase [1]. How electrical coupling interacts
with the intrinsic properties of neurons to generate stable
phase-locked states remains unclear. Using the theory of weakly
coupled oscillators and phase-response curves (PRC) from both

Figure 1 (abstract P58)

Example demonstrating the enhancement in synchronization of mutually coupled interneurons through spike timing dependent
plasticity on inhibitory synapses. (a) Schematic diagram of reciprocally connected interneurons with self-inhibition. (b) The ratio of average firing
period of the two neurons is plotted as function of heterogeneity in intrinsic firing frequency of each neuron. The ratio (diamond) represents a dynamic
synapse, where STDP modulates the synaptic strength between the coupled neurons. The ratio in (star) represents the situation when the synaptic
strength is static. (c) The synchronization index is plotted as function of heterogeneity H for the two cases discussed in (b).
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real and model interneurons, I identify some of the intrinsic
properties of neurons that determine the stability of phase-
locked states and describe the underlying dynamical mechan-
isms. In the real and model interneurons that are examined,
wide spikes and shallow action potential afterhyperpolarizations
promote synchronous behavior; however, this property
depends critically on the shape of the PRC. I discuss the
combinations of PRC shapes and membrane potential time-
courses required for stable synchrony and for stable anti-phase
activity. I then use these results as a framework to examine how
specific ionic conductances alter stability of phase-locked states.
Reference
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Background and methods: The aim of this study was to
investigate whether eyeblinking is associated with cognitive
process or not by examining the temporal correlation between
eyeblink timing and decision-making and vocal response timing in
Stroop task. 32 subjects performed the auditory and visual
stroop tasks and their eyeblinks were recorded using EMG
monitor systems during color naming and word reading in
Stroop task.

Results and discussion: The main results are graphically
presented in Figure 1 and 2: we found a 100–200 ms delayed
synchrony between eyeblink and response timing, indicating that
eyeblinks induce the vocal response. A similar association was
found in the auditory Stroop task, indicating that eyeblinks were
closely related to the cognitive processes rather than visual
stimulation. However, the length and difficulty of the stimuli
were not correlated with eyeblinks. This study suggests that
eyeblink may get involved in mode shifting from decision-making
to response.
Reference
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Background: Neural systems think through patterns of
activity. We have recently discovered that in an isotropic
preparation of tangential slices of the middle cortical layers of
mammalian brain, spontaneously organizing episodes of activity

Figure 1 (abstract P60)

The temporal association between eyeblinks and response
time measured from all blocks (total = 480) in a subject. The
average duration for each block was 2,100 msec and the duration
between vocal response and stimulus presentation was 500-1,300 msec.
The time of occurrence of the successive stimulus after the response
was 1,200 msec.

Figure 2 (abstract P60)

The eyeblinking types can be divided into subgroups based on
the mean of eyeblink and response for all subjects (n = 32) (W:
Word Reading, AS: Auditory Stroop). ’0’ indicates the response
timing and the bin with oblique lines represents 9 subjects that have a
mean value between eye blink and response time of – 300 to -200 m/sec
in the corresponding block (total = 120, (-) means eye blink occurs
before the response).
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demonstrate a dynamical evolution: such episodes initiate with
irregular and chaotic wave activity, followed by the frequent
emergence of plane and spiral waves, and terminate with the
recurrence of irregular wave patterns [1].
Methods: We have employed techniques drawn from experi-
mental fluid dynamics to better understand these phenomena. In
voltage sensitive dye imaging from fields of neurons, we applied an
empirical eigenfunction approach, using singular value decom-
position (SVD) in both amplitude and spatial frequency domain.
Results: The temporal structure of such modes emphasize the
crystalline nature of the brain lattice – neurons are fixed in space,
and ’wave’ activity is a function of the phase relationships of the firing
neurons. Calculating the effective dimensionality as in [2] we find
that the dynamics tend to concentrate into a small number of
dominant coherent modes as these episodes organize, and then
disseminate onto a larger number of modes prior to termination.
For modes composed of voltage amplitude or spatial frequency,
the dynamics of these phenomena show a monotonic and
significant decrease in dimension during the middle of the events
(ANOVA: amplitude, F = 1950, p < 0.00001; frequency, F =
2058, p < 0.00001), and post-hoc Tukey multiple comparison
testing confirms that there is a significant decrease in
dimensionality during the middle of these episodes.
Conclusion: This analysis demonstrates that a key factor in
this dimensional evolution is not the appearance of qualitative
spirals or plane waves, but rather depends on more subtle
features within the interactions of these neurons. Further work
to define the relevant order parameters that control the
evolution of these spatiotemporal dynamics will lead to a better
understanding of cortical information processing.
Acknowledgements
Supported by NIH grants R01MH50006, K02MH01493,
R01NS036447.
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Cortical activity in awake animals manifests highly complex
behaviour [1]. It is during this regime that the main computa-
tional tasks are performed and no model is yet able to explain
how this complex dynamics is exploited to provide a fast and
accurate information processing. However, many efforts have
been devoted to the study of how such activity emerges.
Balanced networks have been introduced as a possible model to
generate dynamical states similar to the biological ones [2]. The
stability of such states was studied for current-based Integrate-
And-Fire (IAF) neurons with respect to external input and
excitatory-inhibitory synaptic strength ratio [3]. In particular,
stable asynchronous irregular (AI) states with a relatively low
level of activity have been obtained. Recently, AI states have

been observed in balanced networks of conductance-based IAF
neurons with self-sustained activity [4].
However, no simple description of the network activity dynamics
has been developed yet. First-order mean-field approximation
fails to describe these networks because of their inherent
dynamics which rely dramatically on activity fluctuations. More-
over, the thermodynamic limit is usually performed for randomly
connected networks despite the lack of biological relevance.
We introduce here a new framework in which network
dynamics as well as inherent neuron behaviour is taken into
account. We aim to obtain a reduced description of mesoscopic
balanced networks where finite size effects are not neglected.
The model is intended to describe AI states far from critical
boundaries where long-term behaviours appear. Furthermore,
we set the spatial and temporal scales of the model by using
biological data. Using the master equation formalism, we derive
a second-order mean-field set of ordinary differential equations.
The transition matrix necessary in the master equation context
is computed based on the Fokker-Plank approach. Conduc-
tance-based as well as current-based IAF neurons are con-
structed. The kernel of this formalism lays in the way activity
micro-fluctuations are modelled. We discuss different possibi-
lities and considerations in regard to this question.
This model provides at the same time an extracellular and a sub-
threshold description of finite size neuron networks. Once the
couplings will be adjusted, it will be possible to build a large-scale
model of cortical area with specific architectures, where the
fundamental unit is the randomly connected network. We
further discuss the possibility to compare large-scale behaviour
observed in voltage-sensitive dyes experiments with our model.
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Introduction: Identification of the causal relationships
between pairs of neurons plays an important role in the study
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of synaptic interactions within the nervous system at the
population level. The simplest approach uses the cross-
correlation function between pairs of spike trains. However,
cross-correlograms cannot tell whether the observed peaks or
troughs in the correlation function derive from either direct or
indirect connections, or result from a common input. This
limitation can be partly overcome with the notion of partial
correlation or conditional firing probability [1, 2].
Methods: Dissociated cortical neurons were obtained from
rat embryos and plated into high-density microelectrode arrays
(MEAs). Functional connectivity is estimated using cross-
correlation based techniques and partial-correlation. To deter-
mine a connection, and also its strength, between two
electrodes we calculated the area under the highest peak near
to zero. Its latency determines the direction in the transmission
of information.
Results: Cross-correlation based methods measure the direc-
tion of a possible connection between a pair of electrodes
meanwhile, partial correlation comes out not only with
direction but also eliminates indirect connections and gives
the real strength between two channels. However, partialization
presents some limitations when the number of neurons and
connectivity of the network increases. Depending on how big is
the network, partial correlation can show unreliable results or
even breakdown in the identification of synaptic connections. In
this work, we analyzed data obtained from cortical cultures
coupled to high-density MEAs and we compared cross-
correlation based techniques with partial-correlation analysis.
Discussion: Cross-correlation based methods are useful tools
to estimate functional connectivity at the population level.
Standard cross-correlation is applied just between pairs of
electrodes and does not consider the entire network. It is the
simplest method to infer about functional connectivity and
obtain a general overview of the network map. On the other
hand, partial correlation gives more details about the con-
nectivity. Both methods can be used to study the development
of the network or changes in the network behavior after
electrical and/or chemical stimulation.
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Introduction: The use of neuronal cultures coupled to Micro-
Electrode Array (MEA) is becoming a widely used and

recognized experimental model for studying basic properties
of information processing in neuronal systems. On the other
hand few models of interconnected neurons are used in
conjunction with such devices [1].
In this work, we present a simplified neuronal network made of
60 neurons randomly and synaptically connected. Each neuron is
coupled to a microelectrode position, and the network is
mapped to reflect the number of recording sites in a MEA.
Indeed, the actual number of neurons and connections forming
the biological network is much more than those constituting the
simplified modeled network. Nevertheless, the simulated
architecture is able to account for the neuronal dynamics
measured by means of the 60 recording channels. Comparing
the model with experimental results, it turned out that the
overall dynamics of such large networks can be captured by a
reduced (small) neuronal network with proper connectivity. In
fact, in actual measurements, we are sampling from a small
fraction of the neurons constituting the network and it seems
that the behavior of such networks can be replicated by few
representatives of them. Additionally, our approach can be also
conveniently utilized when dealing with low-density patterned
networks or interconnected sub-populations [2].
Materials and methods: All the simulations were carried out
by using the software NEURON and the results were compared
to the experimental data obtained in our laboratories. Cultured
cortical neurons from rat embryos (E18) were plated over
MEAs (from Multi Channel Systems, Reutlingen, Germany). The
post-processing analysis both for the simulated and experi-
mental data was performed by custom developed software [3].
Results: We developed a model of a bursting neuronal
network by using neurons characterized by Hodgkin-Huxley
and passive channels that, in their isolated form, exhibit spiking
activity. We showed that by changing the complexity of the
dendritic arborization and the degree of connectivity of the
network (percentage of inhibitory and excitatory synapses), it is
possible to switch from a network spiking activity to a network
bursting activity, typical of the mature cortical neuron cultures.
The simulated spike trains of one of the sixty neurons of the
network, as a function of the morphology of the dendritic tree,
are shown in Figure 1. It is evident that in the situation shown in
Figure 1a (one dendrite per neuron), a low electrical activity was
recorded: that suggests the network activity seems to be ruled
by isolated spikes. An increase in the number of dendrites makes
the behavior of the network change dramatically: with three
dendrites per neuron, the network exhibits tonic activity (Figure
1b) with a high firing rate. At a further increase in the number of
dendrites (five or nine), clusters of spikes (bursts) spaced out by
silent periods were obtained (Figure 1c and 1d).
Conclusion: A simple model of a small-scale network coupled
to MEAs is presented. Interestingly enough, network bursting
behavior using a biophysical neuron model and proper geometry
and connectivity is obtained by using spiking neurons. The model
is able to capture the overall dynamic of the network with a
reduced number of neurons demonstrating uniform spatial
behavior and redundancy in such in vitro randomly cultured
neuronal systems.
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The ability to make distinctions is one of the fundamental
capacities underlying cognition, from perception through
abstract (categorical) thought. The distinctions a cognitive
system is capable of making, should be manifested in its neural
activity. Given a set of distinctions, the natural question that
arises is whether this imposes constraints on the activity spaces
which could embed such a set. We hypothesize that an activity
space can embed a given set of distinctions only if its structure
corresponds in some sense to the set of distinctions (that is it
does not cause collapse of distinctions or undue elaborations
within domains or clusters). Thus, we reason that the homology
of an activity space approximates the rough structure of the
underlying set of distinctions that is realized by the system’s
activity. Therefore, we refer to the structure of a given activity
space as its representational capacity.
Thus we hypothesize that there will be a disparity in
representational capacity between different states of arousal
(for example wakefulness as compared to sleep). In other
words, that the structure of activity spaces becomes progres-
sively more complex as arousal increases. To test this
hypothesis we analyzed voltage sensitive dye imaging [1] data
obtained from the primary visual cortex of behaving primates:
1) Instances of activity were registered at different states of
vigilance (anesthesia/covered eyes/visual stimulation). We con-
jecture that what constitutes a state in terms of activity is

similarity (invariance) in the structure of instances of activity.
Thus, real (structure sensitive) functions could be utilized to
classify activity according to state.
2) The level sets of the typical value corresponding to a state
were calculated explicitly within a boundary of from the set of
measurements.
3) Finally, the persistent Betty numbers of such level sets, which
give the rank of the corresponding homology groups, and the
corresponding statistics were computed following [2, 3, 4, 5].
Indeed, it was found that activity is an invariant of state – activity
becomes less random, more regularly distributed in space and
time, more correlated, and has typical distribution of spectral
energy in specific spatial-temporal bands, as arousal increases.
These phenomena are very robust and thus allow not only
perfect classification of activity according to state, but also
noticeable confidence margins. Moreover the representational
capacity of the imaged cortical tissue increased with arousal –
that is the structure of activity space tends to be more complex
as arousal increases.
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The first-passage time of a diffusion process through a constant
or variable boundary has been the focus of many stochastic

Figure 1 (abstract P64)

NEURON simulations of the spontaneous activity of one neuron of the network as a function of the dendritic arborization.
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models of neuronal membrane potential dynamics. Diffusion
processes have been used extensively to model a latent process
that may only be observable through consequent renewal point
process events. The mathematical relationship between inter-
spike intervals and the first-passage time of simple diffusion
models is well-known, however this relationship becomes
increasingly more complex as the diffusion models become
more physiologically realistic, and when multivariate diffusion
processes are no longer considered to be independent. The
probability density of a diffusing particle position at a particular
point in time P(x, t) as defined by the Fokker-Planck equation
can be solved, under suitable conditions, using the method of
images. We show how the method of images can be extended to
a multivariate probability density constructed from marginal
densities modeling simple individual spiking neurons using a
copula construction that factors out the correlated (dependent)
noise structure. This in turn provides a straightforward method
for estimating multivariate spike survival and hazard functions
from simultaneously recorded single unit activity and, indirectly,
the ensemble neuron diffusion noise dependence. The analytical
approach is supported by simulated Wiener processes with drift
and applied to simultaneous single unit recordings from Heschl’s
gyrus in awake human subjects. Extensions of this approach to
more physiologically realistic diffusion models such as the
Ornstein-Uhlenbeck and Feller processes will be discussed.
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Background: It has been proposed that the cortex could be a
random superposition of synfire chains, in which waves
propagating on the synfire chains account for the majority of
the 5 Hz background activity observed in cortex [1]. This
proposal is an alternative to other recent models that treat
background activity as the stochastic firing of neurons in
response to recurrent and external input in a sparse random
network [2]. Here we study the synfire superposition model
using a leaky integrate-and-fire spiking neuron with conduc-
tance-based synapses, along with the incorporation of inhibitory
neurons into the chains, to establish whether the model is
feasible and consistent with observed neurophysiology.
Methods: Storage capacity is analysed in terms of two
constraints: spurious spiking rate stability and synfire wave
propagation stability. An expression for the (spurious) spiking
rate in response to excitatory and inhibitory background input
has been obtained using a diffusion approximation [3]. A low
spiking rate is achievable with high rates of background input in
the regime where the mean of the fluctuating membrane potential
is positioned sufficiently below the firing threshold. In this regime,
a linear relationship between background input and spurious
spiking rate is found. We use this to obtain a limit on the amount
of connectivity available to store synfire links such that the

network state of low spurious spiking rate remains stable and
below the spiking rate due to synfire waves. For a given level of
background activity (5 Hz) this equates to a limit on background
input. Next, the minimum pool size for stable wave propagation is
obtained for a given level of background input, via single-neuron
simulations that determine the probability of firing in response to
synfire wave input. This is done for plausible settings of three
independent background input parameters (excitatory synaptic
conductance, ratio of excitatory to inhibitory input connectivity
per neuron, and number of standard deviations of mean potential
below threshold). Simulations of wave propagation on synfire
chains of varying pool size in the presence of varying levels of
background input are used to verify the validity of the minimum
pool size calculation. The optimal storage capacity is then found
by minimising pool size and maximising connectivity subject to
the two constraints.
Results: The minimum pool size for wave transmission as a
function of background input as obtained by single-neuron
simulations was in close agreement with the corresponding
synfire chain simulations. High storage capacities in which the
number of synfire pools exceeds the number of neurons in the
network were found for plausible parameter choices. Cortically
realistic levels of reinforced connectivity (2 � 103—2� 104

excitatory inputs per neuron) were also found. Storage was
found to be optimised by a mean membrane potential positioned
about 3.5–3.8 standard deviations below threshold.
Discussion: The optimal position of the mean membrane
potential is due to a trade-off between stability of wave
propagation and stability of spurious firing, and is located only
a few millivolts below threshold, in accordance with in vivo
observations [4]. This implies an advantage for conductance-
based over current-based synapses in the synfire superposition
model: in the latter a much larger standard deviation is found for
the same background input level [2] implying a much less
favourable trade-off for synfire chain storage.
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Background: Neural field models of firing rate activity have
played a major role in developing an understanding of the
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dynamics of neural tissues [1]. They can be used to model
extrinsic optical imaging signals and understand how different
neuronal layers contribute to them. A two-dimensional, multi-
population approach is therefore required. At a higher level of
detail, biological data on horizontal cortical connectivity must be
well taken into account. Finally, the spatial resolution of
extrinsic optical imaging and biological connectivity studies
involving patches of neurons [2, 3] suggest a mesoscopic neural
mass approach.
Methods: We model a cortical area as a two-dimensional
neural field composed of one excitatory and one inhibitory layer
of neural masses. It is governed by a four-dimensional integro-
differential system that we write as the sum of two terms. The
first term is linear and describes the synaptic integration made
by the neural masses. The second term is the input feeding a
neural mass at a given point of the field. It sums up the
contributions of all neural masses in the field by a weighted
integral of their instantaneous firing rates. This is done through
kernels that include both quantitative ("In which proportion do
different types of neurons connect to each other?") and spatial
("How are these connections distributed on the cortical
surface?") information between each pair of neuronal types.
Neural masses are described by two average variables: the
average membrane potential (dendritic compartment) and the
average firing rate (axonal compartment), which is obtained
from the potential by a Heaviside transformation.
Results: We have considered translation invariant, rotationally
symmetric connectivity kernels and looked for rotationally
symmetric bumps and pulses solutions [1, 4]. For both
problems, the analysis falls in two parts: find solutions and
check their stability. In the case of stationary bump solutions,
expressing connectivities in terms of Bessel functions leads to
closed forms depending on the parameters of the model. But
not all these solutions are actual bumps and we need sufficient
conditions to characterize acceptable bump radii according to
other parameters values. A first step is made by writing several
local necessary conditions, e.g., the solution must be equal to the
threshold of its Heaviside voltage-to-rate transformation on the
boundaries of the bump. The same problem arises for traveling
pulses solutions. We then check the stability of bumps and
pulses solutions to a family of perturbations with separated
polar coordinates by reducing the analysis to an eigenvalue
problem. Technical computations lead to implicit formulas for
the eigenvalues. In the case of bumps it takes the simple form of
a second order polynomial.
Conclusion: The model we have proposed extends previous
related work [1, 4] in two directions: we can deal with several
populations of neural masses and perform the model analysis in
the framework of a 2D continuum as opposed to 1D. Our
analysis raises several interesting biological questions related to
connectivity functions that may be answered using optical
imaging.
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Synaptic connectivity must have a significant impact on the
dynamical behavior of neuronal networks and neural informa-
tion processing. However, not much is known about the relation
between neuronal activity and synaptic connectivity except for
networks with simple connectivity, such as all-to-all or random
connections. To clarify the issue, we first constructed a
computational model of a local cortical network with realistic
neuron models and systematically varied synaptic connections in
a paradigm of the "small-world" network. Numerical simulations
with the model showed spike activities depended on the
network topology as well as the strengths of synaptic
connections. In particular, the degree of pairwise spike
synchrony, spatially distributed, characterizes the network
connectivity. Therefore, we next tried to estimate the under-
lying synaptic structure based on spike data evoked by the
model network. We defined functional connections with a
measure of the pairwise spike synchrony, the coherence index,
to discuss how the topology of the functional connections is
related to that of synaptic connections.
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We investigate the propagation of the traveling wave fronts in a
one-dimensional integrate-and-fire network of synaptically
coupled neurons for the case of one, two and multiple spike
waves. We use an integro-differential equation characterizing
the evolution of the firing times as a function of spatial position
to determine the relationship between the speed of the
propagating wave and its acceleration. We use the evolution
equation to show that for a network of neurons with
exponential synaptic connectivity and instantly rising, then
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exponentially decaying synapses, the evolution of the propaga-
tion is fully determined by the instantaneous speed of the
traveling wave front. In this case the history of the firing map
determines the initial speed of the transient propagation; the
acceleration however depends only on the instantaneous speed,
thus greatly simplifying the understanding of the network
dynamics. This allows for a clear understanding of the conditions
required for propagation failure, as well as of the mechanisms by
which sustained transient propagation evolves towards the
stable constant-speed traveling wave solution. Expanding the
equation for the two and multiple wave cases yields further
insight on the mechanisms by which sustained transient
propagation evolves towards the stable constant-speed traveling
wave solutions. In addition, we show that the wave speed and
interspike intervals of the asymptotically stable state depend
mainly on the interaction between a few successive wavefronts.
It then follows that a unique asymptotical solution is selected
from an infinite number of theoretically possible solutions and
that this solution is independent of the initial conditions in the
neural network.
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Excitatory synapses onto CA1 pyramidal cells fail four times out
of five on average, yet the firing of CA1 neuron is elicited at
specific phases of the EEG theta cycle with a high degree of
precision when a rat is traversing a place field.
We use a multicompartmental biophysical model of several
reconstructed CA1 cells, and a model of a stochastic
glutamatergic synapse that includes facilitation and depression
to study the conditions and properties for reliable and precise
CA1 firing. The model of the synapse is tightly constrained by
experimental data obtained with minimal stimulations in vitro.
Synapses are presynaptically stimulated with CA3/entorhinal
spike trains that have been recorded in vivo in the behaving rat.
We report that under those conditions, CA1 pyramidal cells are
capable of generating precise spike patterns that are theta-
modulated. The precise timing of the pattern depends mainly on
either the recruitment of high initial probability synapses, or on
the recruitment of weaker perisomatic synapses receiving fast
bursts of 1–3 presynaptic action potentials. The patterns
generated are robust to noise, and contain a marked theta-
frequency component, even though the input spikes are not
coherent at any particular frequency. We also report that spike
patterns may include gamma-like frequency components in part
due to the synaptic dynamics, and to the presence of fast bursts
in the presynaptic inputs.
We conclude that even though afferent synapses are unreliable,
CA1 pyramidal cells are able to generate precisely timed

patterns of spiking that mimic those that are reported in vivo.
Our model further predicts that about 400 presynaptic cells are
involved in the firing of a single CA1 pyramidal cell when the rat
traverses a place field.
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Background: Principal dynamic modes (PDMs) are a primary
set of basis functions that describes the dynamics of the system.
By using PDMs, we attempt to show the differences between the
dynamics of the epileptic neuronal network and the normal
(non-epileptic) neuronal network.
Methods: The input-output data required for training and
modeling was acquired from acute slices of the rat hippocampus.
A seizure-like state was induced by perfusion with low Mg2+

artificial cerebrospinal fluid. Gaussian white-noise (GWN) was
applied as input to CA3 pyramidal neuron and the output was
measured from the same CA3 pyramidal neuron. PDMs were
computed using the Laguerre expansion technique.
Discussion: Computed PDMs of the normal neuronal net-
work confirmed that the two classical modes, integrative and
differential modes, are the most dominant modes of the
hippocampal neuronal network. As well, higher order modes
which are higher in frequency exist and are essential in
characterizing the network. In epileptic neuronal network,
these higher frequency modes become more dominant over the
integrative and differential modes. In addition, the length of
memory required to optimally compute the PDMs were
increased in epileptic network from the normal network. This
suggests changes in the synaptic connections in the epileptic
hippocampal network from the normal network.
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We study a nonlinear, one-dimensional neural field model based
upon a partial integro-differential equation, that is used to model
spatial patterns in working memory. Through the application of
Fourier transforms to the PIDE, steady states of spatially
localised areas of high activity can be represented by solutions of
a fourth order ODE. Recent research has shown a high density
of gap junctions in areas of the brain that experience epileptic
events. We extend the model by including a diffusion-like term
to model gap junctions and derive a sixth order ODE which we
use to investigate changes in the dynamics of spatially localised
solutions. We find that symmetric homoclinic orbits to a zero
steady state exist for a wide area of parameter space. Numerical
work shows families of solutions are destroyed as the strength
of the term modelling gap junctions increases.
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Midbrain dopamine neurons are involved in motivation and the
control of movement, and have been implicated in various
pathologies such as Parkinson’s disease, schizophrenia and drug
abuse. Dopamine neurons in the presence of their afferent
inputs in vivo can exhibit one of several firing modes: silence,
regular single-spike firing, irregular single-spike firing, and
bursting. Bursts in dopamine neurons are thought to convey
the reward prediction and salience signals. Dopamine neurons in
a slice preparation fire spontaneously in a regular, pacemaker-
like manner at a low frequency (~2–3 Hz). This regular firing
appears to be driven by a subthreshold oscillation caused by
interaction of a low voltage threshold, noninactivating Ca2+

current and a Ca2+-activated small conductance K+ current.
Somatic injection of depolarizing bias current can increase the
frequency of sustained firing only up to 10 Hz before the
neurons go into depolarization block. Bursts observed in vivo
have higher instantaneous frequencies. Two theories have been
advanced for how higher frequencies are achieved in vivo. One is
that during pacemaking, the natural frequencies of the soma and
proximal dendrites drive the subthreshold oscillation, whereas
during bursting the NMDA input to the dendrites amplifies the
current associated with the distal dendritic oscillation, and
drives the soma, resulting in high-frequency spiking. The other
hypothesis is that the rapidly varying synaptic input (particularly
the AMPA component) is not equivalent to a constant
depolarizing pulse but this rapid variation can drive faster
spiking that can be observed in response to a constant pulse.
We have constructed a realistic multicompartmental model to
test the contribution of intrinsic and synaptic currents in the
dendrites to the firing pattern. The oscillatory dendrites
regularize the firing pattern, decrease the frequency compared
to a model in which the subthreshold oscillation is confined to
the soma, and contribute to grouping of spikes into bursts.
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A self-adaptive, time-scale invariant single-unit spike train
analysis technique is introduced to detect burst firings in
neurons. This burst-detection method is an adaptive algorithm
that uses the characteristic firing patterns statistics within and
between bursts to identify the inter-burst period, intra-burst
period and burst duration. Bursts in this self-adaptive method
are identified when the inter-burst periods (interspike intervals

between bursts) exceed a threshold for the intra-burst periods
(the sum of interspike intervals within a burst). Iterative use of
this algorithm can also be used for the detection of finer
structure of bursts, i.e., micro-bursts within a macro-burst,
independent of the time-scale. By iterative-use of timing
statistics of the spike train, this burst-detection technique can
identify bursts not only self-adaptively but also independent of
the time-scale of the burst-firing pattern. This auto-adaptive
algorithm provides a time-scale invariant automated method for
micro-burst within a macro-burst when applied iteratively. It
succeeds to detect various micro-bursts with minimal ad hoc
assumptions or criteria about the specific structure of the burst-
firing patterns in neurons.
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A link is built between a biologically plausible generalized
integrate and fire (GIF) neuron model with conductance-based
dynamics [1] and a discrete time neural network model with
spiking neurons [2], for which rigorous results on the
spontaneous dynamics has been obtained. More precisely the
following has been shown.
i) Occurrence of periodic orbits is the generic regime of activity,
with a bounded period in the presence of spike-time
dependence plasticity, and arbitrary large periods at the edge
of chaos (such regime is indistinguishable from chaos in
numerical experiments, explaining what is obtained in [2]),
ii) the dynamics of membrane potential has a one to one
correspondence with sequences of spikes patterns ("raster plots").
This allows a better insight into the possible neural coding in
such a network and provides a deep understanding, at the
network level, of the system behavior. Moreover, though the
dynamics is generically periodic, it has a weak form of initial
conditions sensitivity due to the presence of the sharp spiking
threshold [3]. A step further, constructive conditions are
derived, allowing to properly implement visual functions on
such networks [4].

Figure 1 (abstract P76)

A view of the numerical experiments software platform raster-plot
output, considering either a generic fully connected network or, here, a
retinotopic network related to visual functions (top-left: 2D instanta-
neous spiking activity).
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The time discretisation has been carefully conducted avoiding
usual bias induced by e.g. Euler methods and taking into account
a rather complex GIF model for which the usual arbitrary
discontinuities are discussed in detail. The effects of the
discretisation approximation have been analytically and experi-
mentally analyzed, in detail.
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Contour integration is believed to be an important step in human
image processing and object recognition, and has been shown to
be performed very efficiently by the visual system. However, its
neuronal mechanisms are still not well understood. Most contour
integration models propose lateral connections between distant
orientation columns of similar orientation preference for
establishing a so-called ’association field’, which links colinearily
aligned edge elements into a single contour. However, these
models differ both in their dynamics and structure. In some
models, afferent input from visual stimuli and lateral input are
summed up, in other models these quantities are multiplied. In
addition, one finds different assumptions on the range, geometry,
and symmetry of the lateral connectivity. It is often assumed that
long-range horizontal interactions in V1 serve as the neuronal
substrate for the association field. Probabilistic models require
unidirectional lateral interactions, linking orientation columns in
only one direction, in order to get optimal contour detection
performance. In contrast, experimental findings in monkeys
rather suggest isotropic connections, spreading symmetrically
into all directions from an orientation column.
In order to analyze the range and symmetry of lateral interactions
underlying contour integration in the human brain, we compared
simulations of multiplicative and additive model dynamics with
psychophysical contour detection data. For these investigations

we used stimuli generated from association fields with different
geometries. As expected, models detect contours exceedingly
well when using the same association field for contour generation
and contour detection. However, analyzing the correlations
between human behavior and model prediction on a trial-by-trial
basis showed that human behavior is reproduced best, when
using the same association field for all contour geometries.
Furthermore it turned out that a bidirectional association field
reaching only to the nearest neighboring edge elements can not
explain the correlations found among the responses of different
subjects, while a single unidirectional association field can do so.
However, when assuming connections up to the next to-nearest-
neighbor elements, a bidirectional association field also explains
the correlations between human subjects.
The stimuli were designed such that the distance between two
neighboring elements lies within the range of long-range
connections found in V1. Hence our results allow two possible
conclusions: If contour integration relies on horizontal interac-
tions of the spatial range like in V1, a so far unknown
unidirectional linking mechanism between neuronal columns is
required. If such a unidirectional mechanism does not exist, our
results suggest that contour integration is based on interactions
on a larger spatial scale as found in higher cortical areas.
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We present ambiguous stimuli, such as a pair of superimposed
gratings exhibiting bi-stable depth ordering and binocular rivalry
stimulus, to human subjects and measure the amount of time
each of the two possible percepts dominates the other.
Parameters of the stimuli are manipulated in order to
strengthen gradually one of the percepts compared to the
other, that is, to increase the fraction of time that this percept is
dominant. For some choice of the parameters, the two percepts
become equidominant: they dominate for the same fraction of
time, or, equivalently, their mean dominance durations are the
same. When the parameter which controls the strength of the
percepts is varied from the equidominance value, its effect on
the mean dominance duration for each percept is not the same.
For the percept which becomes stronger, the mean dominance
duration increases greatly in comparison to its value at
equidominance, while for the percept which becomes weaker,
the mean dominance duration is only slightly reduced. This
result implies that as a function of the parameter that controls
percept strength, the alternation rate between the two
interpretations reaches a maximum at the equidominance
point. We show that these features naturally arise in a bi-stable
energy-based attractor model [1] where parameter manipula-
tions produce symmetrical deformations of the energy land-
scape. Based on this formalism, we construct a two-population
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rate-based model with divisively normalized inputs, which
produces behavior qualitatively similar to the one observed
experimentally. A general class of neuronal competition models
which describe rivalry during ambiguous stimulus presentation
[2, 3] exhibits the described behavior as well, as long as divisively
normalized inputs are introduced. We calculate the entropy of a
binary system in which probabilities are equal to the fraction of
dominance of each state and show that it correlates with the
alternation rate between the states in both experiments and
models, suggesting that the alternation rate is a reflection of the
uncertainty present in the system due to ambiguous stimulation.
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Estimating the degree of synchrony or reliability between two or
more spike trains is a frequent task in both experimental and
computational neuroscience. In recent years, many different
methods have been proposed that typically compare the timing
of spikes on a certain time scale to be fixed beforehand. In this
study [1], we propose the ISI-distance, a simple complementary
approach that extracts information from the interspike intervals
by evaluating the ratio of the instantaneous frequencies. The
method is parameter free, time scale independent and easy to
visualize as illustrated by an application to real neuronal spike
trains obtained in vitro from rat slices (cf. [2]). We compare
the method with six existing approaches (two spike train
metrics [3, 4], a correlation measure [2, 5], a similarity measure
[6], and event synchronization [7]) using spike trains extracted from
a simulated Hindemarsh-Rose network [8]. In this comparison the
ISI-distance performs as well as the best time-scale-optimized
measure based on spike timing, without requiring an externally
determined time scale for interaction or comparison.
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Seizures involve dynamics on a wide range of temporal scales,
from spike times on the order of milliseconds to the large
depolarizations seen in single cells that can last several tens of
seconds. At the longest time scales, these events modify the
cellular environment, altering oxygen, potassium, sodium and
other electrolyte concentrations to produce a durable but
transient modification of the network dynamics. In order to
investigate these slow dynamics we have developed a highly
simplified model that monitors the changes in ionic concentra-
tions in and around highly active cells, while disregarding the fast
dynamics responsible for action potential generation. We model
the time-dependent potassium concentration in and around a
cell resulting from flow through voltage-gated channels, pumps,
and the surrounding glial network. The flow through voltage-
gated channels is determined by time-averaging simulated
potassium currents in a Hodgkin-Huxley conductance-based
neuron. The current is a function of both intra- and extracellular
potassium concentrations and responds to changes in the
concentration gradient over a duration that is long compared to
the time associated with spiking events. On the other hand, this
response time, which can be as slow as a fraction of a second, is
still short compared to the lifetime of a network seizure and can
be considered instantaneous. Therefore we disregard the
response time and approximate the model as a pair of
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differential equations which are amenable to a complete phase
plane analysis. We report on the results of this phase plane
analysis and show comparisons with results from in vitro
experiments.
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Considerable research efforts have focused on the molecular
mechanisms of epilepsy following trauma and neurodegenera-
tion. In contrast to this cell-centric approach, we present a
range of computational network models demonstrating that
architectural factors may be critical to understanding seizure
susceptibility and other changes in neural dynamics.
The models consisted of large recurrent networks of up to
10,000 spiking neurons that included both inhibitory and
excitatory populations with inter-layer and columnar intra-
layer connectivity. Layers were toroidal so that initial networks
were homogeneous and without edges. We examined the
effects of both localized and diffuse cell deletions. In the first
case cells were removed at adjacent locations to emulate focal
trauma. In the case of diffuse cell deletion we randomly deleted
cells throughout the network. In both types of simulations, the
properties of remaining cells were held constant in order to
establish that changes in dynamics were indeed network-level
effects and that the alterations in connectivity were the critical
factor in any threshold change.
Simulations in the focal model confirmed that confined altera-
tions in structure were sufficient to change the threshold of an
entire network. We found that the lesion site acted both as an
initiation point of oscillatory activity as well as a locus that
increased the probability that existing waves will continue
propagating. The localized deletions models thus demonstrate
the possibility that structural factors may be sufficient to account
for the focal activity seen in early post-traumatic epilepsy.
The diffuse cell deletions correspond to changes following cell
death in aging and neurodegenerative conditions. Here we found
that high levels of diffuse deletions (70–90%), representing
extensive cell death, resulted in activity settling to repetitive
patterns (limit-cycle oscillations). The changes in activity seen in
these diffuse lesion models may thus help explain the increased
incidence of epilepsy with aging. That is, such seizures may be
caused by structural network changes due to age-related cell
death rather than pathology in surviving cell properties.
Interestingly, the heterogeneity of connectivity that accompanied
lower levels of diffuse deletions (40%) actually encouraged complex
persistent activity often associated with healthy cognitive processing
suggesting that heterogeneity in structure may play an important

role in initiating and maintaining such activity. It is also notable that
shifts in population dynamics took place independently of changes to
inhibitory-excitatory balance and did not require complex con-
nectivity assumptions (e.g., small-world networks). That is, the
propensity for activity to persist could be varied by structural
changes as simple as random deletions.
The findings suggest that structural considerations may be
fundamental to our understanding of trauma and age-related
epileptogenesis and that we may need to look beyond intrinsic
cell properties or inhibitory-excitatory balance in order to
identify potential therapies.
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I present a simple firing rate neural network model describing
how a rat may learn to navigate a cued rewarded T-Maze. The
model is based on a realistic approximation to the Basal Ganglia
dopaminergic system anatomy including the ’Go’ and ’No-Go’
channels which project to the thalamus and substantia nigra and
their differential feedback modulation by D1 and D2 dopamine
receptors at the cortical-striatal synapses. The model includes
an input from association layers in cortex or hippocampus
where experienced sequences are replayed when the rat finds
the reward location, as recently described by Foster and Wilson
[1]. The sequence replay creates task and expert MSN neurons in
the striatum with spatial response characteristics similar to
those reported by Barnes et al [2] in dorsal striatum and Mulder
et al [3] in ventral striatum. The system is able to produce
expert neurons in striatum which specifically respond to cues
and actions with strengths which reflects the reward predict-
abilities of the associated cues and actions. Such response
modulation by reward predictability is well known in striatum
[4]. In addition a simple action selection system is implemented
so that the system is able to make a transition from a random
choice ’exploratory’ phase to a ’goal directed’ phase as the
learning proceeds. Some behavioural characteristics of the
T-Maze learning are thereby reproduced.
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Spike-timing-dependent-plasticity (STDP)[1, 2] is a special form
of Hebbian learning [3] where the relative timing of post- and
presynaptic activity determines the change in synaptic weight.
More familiarly, the postsynaptic and presynaptic activity
correspond respectively to the derivative of the membrane
potential Vm and the NMDA channel activation [4]. We present
a model where the postsynaptic activity is modelled by the
derivative of the Ca2+ concentration. Using a model of a
pyramidal cell, attached interneuron and detailed Ca2+ dynamics,
we show that the classical STDP curve is greatly altered, in
particular, that long term depression (LTD) is markedly reduced
[5] while LTP remains close to the original expected weight-
change curve. In addition to this we have shown that by reducing
the NMDA activity in the circuit model there is a noticeable
change in the LTD/LTP magnitude in the STDP weight-change
curve. This modification causes two effects; it reduces plasticity
in the excitatory neuron but also reduces inhibition on the
excitatory neuron. Therefore we show that by decreasing
NMDA activity there is a clear reduction in LTD and LTP. This
appears much like the ‘‘classical’’ STDP curve albeit scaled down
in ratio to the reduced NMDA activity. In this study we have
shown that the inhibitory interneuron reduces the LTD part of
the STDP weight change curve. The more inhibition seen, the
less LTD in the excitatory neuron. Thus, a hypofunction of
inhibitory neurons will lead to more LTD in cortical structures
and ultimately to less cortical activity. This hypofunction could
be a possible mechanism of how administration of the NMDA
antagonist PCP causes cortical hypoactivity[6] after a time lapse
of a few days, and is already a topic of interest in the research of
schizophrenia.
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Neurons show plasticity in neuronal and synaptic properties due
to development and/or learning, affecting both the input levels
to the neuron as well as the neural excitability. However,
neurons have a limited dynamic range, i.e. the range over which
they are sensitive to the input and are not in either a quiescent
or a saturated activity state. This suggests neurons possess
control mechanisms that match neural excitability and synaptic
input levels. Recent experimental studies suggest that neurons
indeed show a homeostatic scaling of excitability (HSE) by
sensing activity levels and adapting the neural excitability via
regulation of specific membrane conductance densities. The
maintenance of sensitivity to synaptic input is also central to
learning processes. In one form of learning it has been
demonstrated that synaptic modification depends on the exact
timing of presynaptic inputs and postsynaptic spikes. The
performance of this spike timing dependent plasticity (STDP)
is expected to be affected by a decrease in the sensitivity of the
neuron to its input. At the one hand this suggests an important
role for HSE in the functioning of STDP, at the other hand it
leads to the question whether HSE could interfere with the
learning of input patterns via STDP. Here, we address these
issues by using both mathematical analysis and numerical
simulations of a neuron that shows HSE and that receives
input from synapses showing STDP. Based on experimental
results, HSE is implemented as activity-dependent shifts of the
input-output function. We use the multiplicative formulation of
STDP in which the changes in synaptic strength depend on the
synaptic strength itself. We show that while background input
levels vary greatly, HSE keeps the neuron within its dynamic
range and does not affect the synaptic weight distribution. HSE
can also easily compensate for variations in the shape of the
STDP learning window and maintain the sensitivity to correla-
tions in the input. However, in neurons without HSE, the
sensitivity to correlations in the input depends strongly on the
various parameters. The effects of HSE are further explored by
examining the neuron response to input patterns. We show that
when neural excitability is controlled by HSE, STDP leads to
changes of the synaptic weights as a function of the properties of
the input pattern, i.e. the number of inputs forming the pattern
and the strength of the correlation within the pattern. Learning
of a pattern increases the probability of it generating a
postsynaptic spike, depending on the properties of the pattern.
HSE makes the effect of learning input patterns almost
independent of the background levels. The results suggest HSE
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does not interfere with STDP and that HSE has a central role in
maintaining the learning capabilities of the neuron in its highly
plastic environment.
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Activity dependent synaptic plasticity is typically induced by
delivering a large number (~1000) of highly regular electrical
stimuli, designed to saturate the synaptic strengths. However,
natural spike trains typically contain a small number of spikes
with variable regularity. We investigate how spike patterns with
physiologically realistic spike counts generate plasticity using a
standard, biophysical model of calcium-dependent plasticity. We
find that for physiological spike patterns, there exists a resonant
frequency (fmax) that induces maximal firing rate dependent
potentiation and periodic stimuli produce substantially more
plasticity than aperiodic ones. Frequency dependent facilitation
(depression) of the synapses does not affect the fmax but
increases (decreases) the amount of plasticity; relative change in
the amount of plasticity varies with number of spikes. The model
combines the rate dependent plasticity with spike timing
dependent plasticity (STDP) and shows that the direction of
STDP depends both on the number of postsynaptic spikes that a
single presynaptic spike is paired with and on the frequency of
postsynaptic discharge. We discuss experimental tests of these
results, and their functional significance for learning under
natural, dynamical conditions.
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A lot of research has recently focused on possible functional
interpretations of the peculiar dependence of synaptic plasticity
on the relative timing of pre- and post-synaptic spikes. Here we
use a linear Poisson neuron to analytically examine how the
temporal statistics of the input signals influence the distribution
of the synaptic weights. The analysis shows that the outcome of
learning is not determined by the shape of the learning window
alone, but rather by the convolution of the learning window with
the shape of the excitatory post-synaptic potential (EPSP),
subsequently referred to as the effective learning window. This
indicates that very different learning windows may have the

same functional role depending on the shape of the EPSP.
Moreover, it offers a new interpretation of the commonly
observed asymmetry of the learning window of spike-timing-
dependent plasticity (STDP) as a mechanism for inverting
neuronal low-pass filtering as invoked by the EPSP.
For reversible input statistics, the learning rule shows a
preference for certain frequency ranges in the input signals.
If the symmetric component of the effective learning window
has the form of a low-pass filter, STDP focuses on low-
frequency components of the input signals, i.e., components
that vary slowly relative to intrinsic time scales given by the
learning window and the EPSP. This is in line with several
learning paradigms that have been proposed as mechanisms
for learning invariant sensory representations and for the
self-organized formation of visual receptive fields. Moreover,
in case the EPSP is short, the effective learning window acts
as a band pass filter, leading to the speculation that there
could be a connection between cortical rhythms and STDP
learning.
Interestingly, it turns out that irreversible input statistics, e.g.,
causal dependencies between the input signals, tend to
destabilize the weight distribution and favor oscillating weights.
This observation challenges the interpretation of the asym-
metric learning window as a causality detector.
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Spike-timing dependent plasticity (STDP) has been demon-
strated separately at both glutamatergic and GABAergic
synapses, however the result of both of these synapses
undergoing STDP simultaneously has not been examined. Here
we investigate how simultaneous STDP of excitatory and
inhibitory synapses onto CA1 pyramidal cells alters their
probability and timing of spike generation, thus regulating the
output of the hippocampus. Using a multi-compartment model
of a CA1 pyramidal neuron with excitatory and inhibitory
synapses modeled onto the proximal dendrites, we demonstrate
that when these synapses are modified by positive coincident
(+10 ms) spike-timing dependent rules there is an increase in
both the probability of generating an action potential and a
decrease in the latency from synaptic input to spiking. Modifying
both excitatory and inhibitory synapses with a negative
coincident (�10 ms) spike-timing rules decreases pyramidal
cell spiking less than if excitatory synapses were modified alone.
When excitatory and inhibitory synapses undergo positive
coincident spike-timing dependent synaptic plasticity, in the
presence of a theta rhythm, there is a decrease in the interval
between synaptic input and spiking which advances the spike
forward on the theta cycle. Thus simultaneous modification of
excitatory and inhibitory synapses alters the probability of spike
generation and the precision of spike-timing within the
hippocampus.
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Dopaminergic activity has commonly been interpreted as an
error signal in which an increased activity codes a positive error
[1] i.e. long term potentiation (LTP), and a decrease in dopamine
concentration codes a negative error [1] i.e. long term
depression (LTD). Recent experimental evidence in the cortical
and sub-cortical areas of the brain [2], propose a different
method of generating LTP or LTD by dopaminergic activity. It is
suggested that LTP or LTD are controlled not by the quantity,
but by the rate of the dopaminergic activity. A model of the sub-
cortical nuclei of the limbic system has been shown to
implement a process in which learning and reverse learning of
reward stimulus associations can be achieved. The following
nuclei are implemented: The nucleus accumbens (NAcc), with
its sub units NAcc shell and NAcc core and the ventral
tegmental area (VTA), which provides a Dopamine (DA) input
to the Nacc. During learning, bursting dopaminergic activity will
dominate and cause LTP, whereas during reverse learning, tonic
dopaminergic activity will cause LTD. This new coding of
dopaminergic activity has been implemented in the limbic system
circuitry and has successfully been shown to implement a
process in which learning and reverse learning of reward
stimulus associations can be achieved.
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Hearing loss through acoustic trauma or administration of
ototoxic drugs leads to the development of increased sponta-
neous firing rates (hyperactivity) in neurons of the auditory
pathway. Hyperactivity in the first processing stage, the dorsal
cochlear nucleus (DCN), is correlated to behavioral signs of
tinnitus, and the distribution of hyperactivity along the tonotopic
axis of the DCN corresponds to the patterns of cochlear
damage. Recently, we have proposed that the development of

hyperactivity after hearing loss is a consequence of activity
stabilization through homeostatic plasticity [1].
We now include inhibitory interneurons in our model to
reproduce the basic neuronal circuit of the DCN where
projection neurons (PNs) are inhibited by type-II and wide-
band inhibitory units. By altering the strengths of the inhibitory
connections, we can tune the PN responses to resemble the
response characteristics of DCN principal cells like type-III and
type-IV responses. We then analyze how the activity of the
model neurons is changed by hearing loss through different
kinds of cochlear damage. After hearing loss, the mean activity of
the model neurons depends on the severity of cochlear damage
and the strengths of excitation and inhibition.
In our model, homeostatic plasticity stabilizes the mean firing
rate of the PNs by scaling the strengths of excitatory and
inhibitory synapses, which also influences the spontaneous firing
rate. After hearing loss and homeostasis, the spontaneous firing
rate of PNs depends on the type and severity of cochlear
damage and on the ratio of the mean to the spontaneous firing
rate before hearing loss. Only those PN types where excitation
dominates over inhibition become hyperactive. We observe
hyperactivity in type-III and type-IV-T PNs, but not in type-IV
PNs whose mean rate is close to the spontaneous rate.
Finally, we apply our model to data from tinnitus patients [2] and
predict changes in spontaneous firing rates of auditory neurons
from the patients’ audiograms. Estimates of tinnitus pitch based
on the hyperactivity patterns in the model DCN are consistent
with observed tinnitus pitch. We conclude that hyperactivity
through the action of homeostatic plasticity after hearing loss
may be the basis for a tinnitus sensation.
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Synapses in the nervous system show dynamic behaviour in the
transmission of signals from pre- to postsynaptic neuron. The
postsynaptic response can decrease (short-term synaptic depres-
sion) or increase (short-term synaptic facilitation) during repeated
stimulation. In this study, we formulate the theoretical description of
the short-term synaptic plasticity in the calyx of Held and analyze the
role of the observed dynamics for the processing of sensory
information. Patch-clamp recordings of the pre- and postsynaptic
elements of the calyx of Held were performed in rat brainstem
slices. Experimental data suggest that the dominating dynamic
property of this synapse is synaptic depression, originating from the
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depletion of a vesicle pool by a constant factor with subsequent
recovery. The data indicate that the dynamics of recovery cannot be
described on a single time scale [1]. The synaptic dynamics can either
be modelled as a process with activity-dependent recovery rate [2]
or as originating from two releasable pools operating on different
time scales [3].
We compared the performance of two models in terms of
goodness of fit to the electrophysiological data. While the
dynamics of responses during regular spike trains could be well
described by both models, the data on the recovery after the spike
trains favour the activity dependent recovery model. Using the
models based on the experimental data we analyzed the properties
of the synapse from the perspective of information theory. From
this point of view, a synapse can be seen as a device transmitting
information from sender (a presynaptic cell) to receiver (a
postsynaptic cell) and transforming singular input events (spikes)
into analogue outputs (post synaptic potentials). We calculated the
mutual information between presynaptic spike trains and (pre-
dicted) postsynaptic responses. We analytically estimated and
numerically calculated optimal stimulation conditions (e.g. an
optimal frequency range) for temporal information coding for a
given set of synaptic parameters. The results show that, when
compared to synapses with fixed recovery rates, activity-
dependent recovery extends the frequency range, in which the
information about the interspike intervals is coded by synaptic
responses (see Figure 1). Interestingly, the effective recovery rate
as a function of stimulation frequency, estimated from the
experimental data, qualitatively agrees with the optimal recovery
rate obtained via information theory. We suggest that the activity-
dependent recovery can serve as a mechanism for adaptation of
synaptic properties to the input statistics and optimization of
transfer of relevant information through a synapse.
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Recent evidence indicates that the morphology and density of
dendritic spines are regulated during synaptic plasticity. See for
instance a review by [1]. High-frequency stimuli that induce
long-term potentiation (LTP) have been associated with
increases in the number and size of spines. In contrast, low-
frequency stimuli that induce long-term depression (LTD) are
associated with decreases in the number and size of spines.
Decreases in spine density also occur due to excitotoxicity
associated with very high levels of activity such as during
seizures.
In this work, we extend previous modeling studies [2] by
combining a model for activity-dependent spine density with one
for calcium-mediated spine stem restructuring. The model is
based on the standard dimensionless cable equation for the
changes in membrane potential in a passive dendrite. An
additional equation characterizes the activity-dependent changes
in spine density along the dendrite. For this continuum model, a
typical Hodgkin-Huxley type current balance equation repre-
sents the change in membrane potential in an isopotential
compartment representing a spine head. Both the cable
equation and the current balance equation rely on the spine
stem current to represent current flow between the spines and
the dendrite. The model also includes equations for activity-
dependent changes in the calcium concentration in spines as well
as changes in spine stem resistance that depend on the level of
calcium in an individual spine. The calcium-mediated changes in
spine density and spine stem resistance are based on a
conceptual model proposed by Segal et al. [1] where low
calcium concentrations lead to spine shrinkage and pruning, an
increase in calcium concentration leads to spine elongation and
formation of new spines, and significantly higher values cause
spine shrinkage and pruning.
We use computational studies to investigate the changes in
spine density and structure for differing synaptic inputs and
demonstrate the effects of these changes on the input-output
properties of the dendritic branch. Moderate amounts of high-

Figure 1 (abstract P90)

Information contained in postsynaptic responses of a determi-
nistic depressing synapse about the interspike intervals plotted
as function of presynaptic firing frequency. Solid line: synapse with
activity-dependent recovery rate, dashed line: a synapse with a constant
recovery time b.
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frequency synaptic activation to dendritic spines cause an
increase in spine stem resistance, which is correlated with
spine stem elongation. In addition, the spine density increases
both inside and outside the input region. The model is
formulated so that this LTP-inducing stimulus eventually leads
to structural stability. In contrast, a prolonged low-frequency
stimulation paradigm that would typically induce LTD results in a
decrease in stem resistance (correlated with spine shortening)
and an eventual decrease in spine density.
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Calcium levels in spines play a significant role in determining the
sign and magnitude of synaptic plasticity. Recent experiments
using calcium sensitive dyes have allowed measurements of
calcium transients in whole spines, however experimental
resolution does not allow imaging of the spatial distribution of
calcium within the spine [1, 2, 5]. Calcium can activate
Calcineurin or bind to CaM and consequently activate CaMKII
which is key mediator of synaptic plasticity. A main source of
calcium influx into the spine is from the NMDA receptors.
There are four different subtypes of obligatory NR2 subunits of
NMDA receptors, NR2A/B/C/D. In the mature cortex the
majority of the synaptic NMDA receptors are constituted by
NR1/NR2A and in the immature cortex by NR1/NR2B.
Experiments have shown that the subunit composition of
NMDA receptors has an influence on the sign of synaptic
plasticity, but different experiments resulted in different and
possibly conflicting results [3, 4]. NR2B has slower kinetics and
higher affinity for Glutamate than that of NR2A. In addition
NR2B receptors have a binding site for CaMKII.
For the study of the spatiotemporal dynamics of Calcium and
Calmodulin we implemented a compartmental model of the
spine head including the neck. We also simulated an intrinsic
calcium buffer and calcium pumps on the surface of the spine.
Calcium pumps and as well as NMDA receptors were simulated
by Markov models [7]. Using this model we observe the
spatiotemporal distribution of calcium and calcium-calmodulin
transients. We find that the calcium pumps as well as the
geometry of the neck affects the spatiotemporal dynamics of

calcium and consequently of calmodulin, and that different
NMDA receptor subunits differentially affect this distribution.
Finally, in the past it has been shown that stochasticity of calcium
transients can affect plasticity rules [6]. We hypothesize that the
main source of stochasticity of calcium transients at the spine
arises from the stochasticity of NMDA receptor opening and
presynaptic release. We investigate the validity of our hypoth-
esis using a stochastic model for the spine. In that way we
compare the calcium and calmodulin dynamics of the stochastic
model with those of deterministic and hybrid models.
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A number of research groups have proposed generative, Ca2+

based plasticity models in recent years. Such rules are based on
the premise that moderate, above-basal levels of post-synaptic
Ca2+ lead to long term depression (LTD) and that high levels
lead to long term potentiation (LTP). We present such a rule
and discuss its assumptions and implications.
Our rule has similarities with two models in [1] in that Ca2+ may
enter the post-synaptic density (PSD) through voltage gated
channels Ca2+(V) and NMDA receptor (NMDAR) mediated
channels Ca2+(V, NMDA). Unlike Model 1 in their study and the
model of the Shouval group [2], our model achieves spike time
dependent LTD without the requirement that back-propagating
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action potentials (BAP’s) have a long tail. Thus, we do not
assume this tail is sufficient to expel Mg2+ from glutamate-bound
NMDAR’s. In our model, LTP and LTD processes are
compounded while Ca2+ exceeds LTP and LTD thresholds
respectively. We do not use a specific function of peak Ca2+ or
the time-integral of pre- and post-synaptic interactions.
The simple formulation of our model makes fewer assumptions
about the underlying biology of NMDAR-dependent plasticity
than the models in [1] and [2], but our simulations of spike-time
dependent plasticity (STDP) experiments show similar output to
theirs. For post-before-pre spike pairings, depression is graded
because the respective time courses of Ca2+ and NMDAR-
activation are sufficiently long to interact with one another.
Ca2+(V) is spatially non-specific because it is driven by the BAP,
but NMDAR’s provide an indicator of pre-synaptic plasticity that
interacts with this Ca2+ source. We use NMDAR’s in this role
for convenience, as other molecules could serve this purpose.
This mechanism is similar to Model 2 in [1] where the two
Ca2+ sources are separate. Here, the Ca2+ sources are
combined to exceed the LTP threshold, resulting in the much-
debated LTD window at long-latency pre-before-post pairings.
Our model points to several mechanisms for experimental study.
For instance, spatially non-specific Ca2+(V) must integrate with
Ca2+(V, NMDA) in the PSD very quickly to produce LTP.
Alternatives to rapid integration at the PSD include the possibility
that plasticity-inducing processes determine the relative levels of
Ca2+ inside and outside the PSD, that Ca2+(V, NMDA) exceeds
Ca2+(V) by some margin, or that Ca2+-dependent release from
internal stores plays a role in this regard.
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The calcium/calmodulin-dependent protein kinase II (CaMKII) plays
a key role in the induction of long-term post-synaptic modifications
following synaptic activation. Experiments suggest that these long-
term synaptic changes are all-or none switch-like events between
discrete states [1]. The biochemical network involving CaMKII and
its regulating protein signaling cascade has been hypothesized to
durably maintain the evoked synaptic state in the form of a bistable
switch [2, 3]. However, it is still unclear whether different
experimental LTP/LTD protocols lead to corresponding transitions
between the two states in models of such a network. Furthermore,
the biochemical mechanisms and signaling cascades giving rise to the
non-linearities exhibited during LTP/LTD induction remain elusive.

Starting from a detailed biochemical model, a minimal model
describing the CaMKII phosphorylation (activation) level is
presented which preserves the features of a comprehensive
description. CaMKII autophosphorylation is governed by
calcium/calmodulin binding and is a highly cooperative process.
CaMKII dephosphorylation is mediated by protein phosphatase
1 whose activity is indirectly regulated by a calcium-dependent
balance of kinase (protein kinase A) and phosphatase (calci-
neurin) activity. These two competing effects are implemented
via phosphorylation- and dephosphorylation rates changing the
CaMKII phosphorylation level and are realized as simple step
functions activating above different calcium levels.
The model retains previous results [2, 3], two stable states of
CaMKII phosphorylation exist at resting intracellular calcium
concentrations. With an appropriate positioning of the de-/
phosphorylation thresholds, high calcium transients can switch the
system from the weakly-(DOWN) to the highly-phosphorylated
(UP) state of the CaMKII (similar to a LTP event) and intermediate
Ca(2+) concentrations can lead to switching from the UP to the
DOWN state (similar to a LTD event). As a basic principle, this can
be achieved if the CaMKII dephosphorylation activates at lower Ca
(2+) levels than phosphorylation. This simple approach allows us to
address whether or not a read-out system using the calcium level as
the sole input signal can account for the non-linearities exhibited
during LTP/LTD induction. It is shown that this simple realization of
the CaMKII system can qualitatively reproduce experimental
plasticity results in response to spike-timing dependent plasticity
(STDP) protocols (spike-pairs and -triplets), pre-synaptic stimula-
tion protocols and pairing protocols. Our investigations show that a
minimal model of the CaMKII protein network can account for both
induction (through LTP/LTD-like transitions) and storage (due to its
bistability) of synaptic changes. However, we suggest that the
dynamics of the global calcium time course play a crucial role for the
sign of synaptic changes alongside the crosstalk between signaling
cascades that include the one considered here.
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Dendritic spines are small protrusions from the dendritic
branches of neurons. Influenced by internal and external signals
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and forces, even adult spines are not static but dynamically
move. In this paper, we consider actomyosin-based spine
motility with calcium signaling. The simulation begins with influx
of calcium ions through glutamate receptors. Calcium Induced
Calcium Release (CICR) with IP3 (inositol-1,4,5-trisphosphate)
dynamics is also considered. The sensitivity of elasticity of
actomyosin network is assumed to follow a Hill-type function of
Ca2+ concentration. Several combinations in size of spine head
and neck, physiology of Endoplasmic Reticulum (ER), and
distribution of receptor/channels/exchangers are considered.
Different functions of a spine as absorber, pumper and/or
diffuser are observed. The computational framework used for
these studies is the immersed boundary method with advection-
electrodiffusion.
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The persistent change in synaptic efficacy, which is a basis of long
term memory and learning, depends on synthesis of new
proteins. The phenomenon of late long-term potentiation
(L-LTP), the persistent activity dependent enhancement of
synaptic efficacies, is protein synthesis dependent. The main
objective of this work is to explore a possible link between
activity dependent temporal and spatial regulation of gene
expression and life long stability of some memories despite the
rapid turnover of their molecular substrates. This work is
motivated by the following three experimental observations. 1. L-
LTP requires new protein synthesis but not new mRNAs [1, 2]. 2.
Some local mRNAs encode proteins which regulate the synaptic
functions e.g., aCaMKII-mRNA encodes the aCaMKII, which has
crucial role in activity induced L-LTP [3, 4, 5]. 3. Almost all the
components of translational machinery are constitutively loca-
lized in dendrites [6, 7, 8]. Here, we propose a hypothesis that a
molecular loop between a kinase and a translation regulation
factor acts as a bistable switch to stabilize activity induced
synaptic plasticity over long periods of time. We implement one
possible instantiation of such a loop; an aCaMKII-CPEB molecular
pair. Our proposed model of translation regulation is based on
aCaMKII induced phosphorylation of CPEB at synapses which can
trigger the cytoplasmic polyadenylation initiated translation of
aCaMKII-mRNA at synapses in CPE dependent manner. We
show that aCaMKII-CPEB loop can operate as a bistable switch.
Our results imply that L-LTP should produce a significant change
in the total amount of aCaMKII at potentiated synapses, but that
the fraction of phosphorylated aCaMKII only moderately
changes. By carrying out bifurcation analysis we identify the key
parameters that determine whether the system is in a bistable
region, this could indicate the key parameters that should be
measured experimentally. We also demonstrate that a partial
block of aCaMKII translation in the induction phase of L-LTP can
block L-LTP, but a partial block of translation in the maintenance
phase might not block L-LTP. Our results provide a possible
explanation for why the application of protein synthesis inhibitors

at the induction and maintenance phases of L-LTP can have a very
different outcome. This proposed molecular switch, based on
translation initiated by phosphorylation, provides the mechanistic
basis both for persistency and input specificity during L-LTP.
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Introduction: Synaptic depression is a type of short-term
plasticity that is observed in many rhythmically active networks
[1]. We examine the role that synaptic depression plays in
determining the phase of a group of neurons of the crab
stomatogastric nervous system. We mathematically construct
and analyze a model network consisting of an oscillator neuron
that inhibits two follower neurons. We show that constant
phase maintenance can be achieved solely through the interplay
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of the two follower neurons due to the depressive nature of
their synaptic connectivity.
Model: The network we are studying is comprised of three
neurons, AB, LP, and PY. AB is the pacemaker neuron of the
pyloric network while LP and PY are the follower neurons. The
activity of these neurons is modeled using Morris-Lecar type
first order differential equations. LP and PY receive synaptic
inputs from one another and from AB; see figure 1. The
synapses are depressing and inhibitory meaning that the strength
of the synapse weakens while the pre-synaptic neuron is active.
The set of equations used to model this network is similar in
form to that of [2].
Results and conclusion: To understand the effect of the
depressing synapses between LP and PY, we derived a set of
equations that allows us to determine the time at which LP and
PY enter their active states relative to when AB enters its active
state. This then allowed us to determine which parameters most
signifficantly contribute to the phase of LP, �LP, and the phase of
PY, �PY. We found that reciprocal inhibition between LP and PY
leads to better phase maintenance than when AB is the sole
input to these neurons. This occurs because when the
reciprocal inhibition is present, �LP and �PY are determined
mostly by the synaptic properties rather than by their
membrane kinetics. In addition, we found that when the input
from the oscillator neuron AB is not depressing, the con-
nectivity between LP and PY is in fact able to produce phase
maintenance. The essential property necessary to produce this
phase maintenance is for the synapses to increasingly recover
from the synaptic depression as the period increases. However,
phase maintenance is optimal when the synapse from AB is
depressing. Furthermore, these analytic results can be compared
to experimental data and can be used to make predications
about the biological network in the absence of synaptic
depression from the group pacemaker.
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Background: Synaptic plasticity in granule cell (GC) inputs to
Purkinje cells (PCs) has been a major and ongoing subject of
experimental investigation ever since the publication of the
Marr/Albus hypothesis of cerebellar learning. It is known that
this synaptic plasticity may very well be associated with a slow
EPSP through metabotropic glutamate receptors (mGluR)
which have been demonstrated to be central to mechanisms
for synaptic change in the cerebellum. In PCs, mGluR1 has
been studied more thoroughly than any other mGluRs. This
excitatory action is through a mixed channel which has inward
and outward components. This cation channel has also recently
been identified as a transient receptor potential channel 1
(TRPC1, [5]) which can apparently be involved in the
prolonged PC responses known as slow EPSPs. This report
describes the first effort to model the kenetic effects of these
interactions at cellular, channel and subcellular biochemical
levels in PCs. This effort is the first stage in constructing an
eventual kinetic model of long term plasticity including LTD
based on experimental data.
Methods: Experiment: Sprague-Dawley rats (14–31 days
old, Charles River) were used to prepare cerebellar cortical
slices cut 350 mm thick in coronal sections. Slices were
incubated at either 30˚C or room temperature in oxygenated
ACSF following standard procedures. Stimulation was delivered
using glass electrodes prepared from theta tubes, using a
stimulus isolater set to provide stimulation intensity between
5–100 mA and with a 2 ms duration. To generate slow EPSPs,
five pulses of train stimulation at 100 Hz were given in the
molecular layer (ML). In order to study the slow EPSPs that have
been shown to result from stimulating GC axons, in some
experiments, the ionotropic glutamate receptor antagonist, 2,3-
dioxo-6-nitro-1,2,3,4-tetrahydro-benzoquinoxaline-7-sulfona-
mide (NBQX, 5 mM) was used to block fast EPSPs. After the fast
EPSP is blocked, the amplitude of sEPSPs is stimulation intensity
dependent and saturated after it reaches 30 mA.
Computational simulations: Genesis 2.3 was used to
simulate the TRPC1 mediated sEPSP. The model was
implemented using two distinct parts. The first involved

Figure 1 (abstract P97)

Crab pyloric network.
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modeling one dendritic segment, a spine neck, and a spine
head. Averaged values from electron microscopic data were
used for the dimension of each compartment [4]. The second
part was created by Kinetikit under the path/kinetics to model
the chemical reactions between glutamate binding, mGluR
receptors and the Gaq-activated TRPC1 channels. The/kinetics
model was modified from Bhalla and Iyengar [1]. The activation
of TRPC1 channels is simulated in the spine head. Upon
stimulation, there is an increase in synaptic glutamate
concentration. This increase in glutamate concentration
activates mGluR receptors which, in turn, increases the
amount of GTP-bound G protein. These activated G proteins
will activate TRPC1 receptors. In the second modeling step,
local model was applied to the whole PC dendritic tree using
the whole cell model [2, 3].
Results: Voltage clamp data suggested that the current
through the TRPC1 channel can result in a somatic response
as large as 80 pA. The value can be used together with the time
course to guide the simulation in both local and full models. In
the local model, about 10 mV voltage response can be generated
in the dendritic compartment as a consequence of a 1.5 pA
current through the channel of TRPC1. In the full model, the
membrane potential is hyperpolarized before the synaptic inputs
were delivered at 200 ms. However, a sEPSP similar with the
one in the local model was evoked. Since the base line shift was
not in the local model, this change must result from the inclusion
of the mGluR related processes in spines. Surprisingly, the
hyperpolarization continues even after the sEPSP ended around
2 sec. This unexpected phenomenon requires further study.
Once the base line is stabilized, the channel kinetics of TRPC1 as
tuned so that the somal peak current and time course matched
experimental data.
Conclusion: The TRPC1 mediated sEPSP is successfully
simulated in the local model. An interaction was observed
between the kinetic biochemical models and the electrical
response of the full PC model that was unexpected and is now
under further study. It is likely that a more realistic model is
needed to accurately simulate this sEPSP. The current work is
the first step towards modeling the long term plasticity in PC
synapses which have important implications for cerebellar
function.
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Frequency-modulated (FM) signals are present in neural systems
that are characterized by high discharge rates and continuously-
varying stimulus parameters, such as the vestibular system. In
the medial vestibular nucleus (MVN) a rate code is used to
encode the speed of head rotation and the modulating
frequency is equal to the rotation frequency. During rotation
in the 1–10 Hz range, many neurons in the medial vestibular
nucleus (MVN) have frequency-dependent responses. The role
of synaptic processes such as summation and short-term
plasticity in the frequency dependence of MVN responses has
not been established. Vestibular afferents to the MVN are
tonically active in the range of 100 spikes/s, modulated in
proportion to head velocity. We asked whether this velocity
signal is filtered by synaptic transmission in the brainstem. We
found short-term depression and summation of the evoked
EPSPs in nearly all MVN cells. Responses to FM pulse trains were
dominated by summation of EPSPs, so that membrane potential
was approximately sinusoidal during continuous FM stimulation.
Responses were highly dependent on the modulating frequency.
In the presence of GABA antagonists, postsynaptic potential
showed a variety of frequency responses. Long-lasting EPSPs
were associated with low-pass filtering of the modulating signal.
Short EPSPs were associated with high-pass filtering. Short-term
depression resulted in distortion of the sinusoidal response.
Modeling using depression and recovery duplicated the form of
the responses but failed to simulate the frequency response. We
conclude that synaptic transmission between primary afferents
and MVN neurons may contribute to frequency filtering in the
vestibular pathway.
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Overview: A single biological neuron is able to perform
complex computations that are highly nonlinear in nature,
adaptive, and superior to the perceptron model. A neuron is
essentially a nonlinear dynamical system. Its state depends on
the interactions among its previous states, its intrinsic proper-
ties, and the synaptic input it receives. Some of these factors are
included in Hodgkin-Huxley (HH) model, which describes the
ionic mechanisms involved in the generation of an action
potential. This paper proposes training of an artificial neural
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network to identify and model the physiological properties of a
biological neuron, and mimic its input-output mapping. An HH
simulator was implemented to generate the training data. The
proposed model was able to mimic and predict the dynamic
behavior of the HH simulator under novel stimulation condi-
tions; hence, it can be used to extract the dynamics (in vivo or in
vitro) of a neuron without any prior knowledge of its physiology.
Such a model can in turn be used as a tool for controlling a
neuron in order to study its dynamics for further analysis.
Methods and results: To test whether artificial neural
networks were able to learn the dynamic behavior of the HH
model, four properties of the model were used as testing
criteria: thresholding, periodic firing, refractory period, and
anode break action potential. Three different neural network
architectures were explored: parallel and series-parallel non-
linear autoregressive models with exogenous inputs (NARX [1,
2]) and layer-recurrent networks (LRN [3]). All three archi-
tectures were able to mimic the behavior of the HH model,
provided that they had been trained previously on a similar
input. However, among them LRN was the only one that was
able to generalize to novel stimuli (Figure 1b). Furthermore,
when tested for long-term prediction, LRN outperformed other
network architectures by predicting the output for an extra 800
time steps for a positive step signal, although it was trained only
once for duration of 232 ms (Figure 1c).
Conclusion: This paper shows that ANNs can learn to behave
like the Hodgkin-Huxley model of a biological membrane. In the
future it should be possible to apply this approach to modeling
biological neurons in vitro. The main advantage of this approach
is that it does not require any prior knowledge of the
physiological properties of the neuron. After training is
completed, the neural process is encoded within the weights
of the ANN used to model the neuron. Several ANN
architectures were tested in this task, with the recurrency in
the LRN architecture proving to be the best. Online modeling
using ANNs can provide the necessary tools for capturing the
dynamical state of a biological neuron, simulate its output for
further analysis, and may provide a more powerful dynamic
clamp and online control. Such mechanisms should prove
valuable in understanding the behavior of biological neurons in
the future.
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Spasticity is characterized by hyperreflexia, clonus and hypertonic
musculature and is an impediment to functional locomotor recovery
after spinal cord injury (SCI). It is known that the structure and
biophysical properties of motoneurons are altered following SCI;
however, the physiological mechanisms underlying spasticity are not
well understood. Under control conditions motoneurons can
produce plateau potentials, which are sustained depolarizations
triggered by brief synaptic inputs. These plateau potentials are
mediated by L-type calcium currents and are known to cause
bistable behavior in the motoneurons of brain-stem intact animals
and humans. This bistable behavior endows motoneurons with a
mechanism for translating short lasting synaptic inputs into long
lasting motor output [1]. During the acute stage following SCI, rat
motoneurons lose the endogenous ability to generate plateau
potentials but at chronic stages the plateau potentials reappear [2].
Voltage gated persistent sodium and calcium currents (PICs) have
been identified as the cause of plateau potentials in the chronic stage
following SCI [3]. In the presence of PICs, a brief stimulus can
produce self sustained firing.

Figure 1 (abstract P100)

Output of the LRN trained with 232 ms of data on a positive step current, tested on (a) the training data, (b) novel test data that consists of a negative
step current, (c) 800 ms of previously unseen data that follow the 232 ms of training data.
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Two-compartment models with Hodgkin-Huxley type channel
kinetics were constructed to mimic motoneuron dynamics for
the control case and for the acute and chronic stages following
SCI. Table 1 shows the channels used in constructing the
motoneuron models.
Experimental data for injected ramp currents and injected pulse
currents were used to constrain the model parameters [2].
Computational studies were used to systematically investigate
the mechanisms underlying the generation of plateau potentials
and the firing properties in the three cases including: the
influences of the specific ionic currents, the coupling strength
between the somatic and dendritic compartments, and the
relative sizes of the two compartments.
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Short-term synaptic plasticity (STP) comprises facilitation and
depression processes. Although STP can alter the mean value
and spectral statistics of the effective input to a neuron from
presynaptic spike trains, its functional roles are not clear. In a
steady state condition, synaptic depression is generally con-
sidered to provide low-pass filtering of inputs, with facilitation
providing high-pass filtering. Here, we consider the general case
of a model neuron receiving inputs from a population of
independent Poissonian spike trains, and show using both
analytical results and simulations that dynamic synapses can add
or remove (depending on synaptic parameters) spectral power
at low frequencies. The implications of these findings are
demonstrated when a band-limited-noise rate modulation of the
Poissonian spike trains is considered. Information transmission,
as measured by the spectral coherence between the rate
modulation and synaptic input, does not depend on frequency.
This effect is also observed for the coherence between the rate
modulation and the membrane voltage of the postsynaptic
neuron. In contrast to the prevalent view, in terms of

information transmission, synaptic dynamics provide no low-
or high-pass filtering of the input under steady-state conditions.
Despite the lack of dependence on frequency, there is a balance
between facilitation and depression that optimizes total
information transmission and this balance can be modulated
by a parameter associated with some forms of long-term
plasticity.

P103
A network model that can learn reward
timing using reinforced expression of synaptic
plasticity
Jeffrey P Gavornik1,2, Yonatan Loewenstein3

and Harel Z Shouval1
1Department of Neurobiology and Anatomy the University of
Texas Medical School in Houston, TX, USA
2Department of Electrical and Computer Engineering the
University of Texas. Austin, TX, USA
3Department of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, Cambridge, MA, USA
E-mail: gavornik@mail.utexas.edu

BMC Neuroscience 2007, 8(Suppl 2):P103

Recent experimental results indicate that cells within the
primary visual cortex can learn to predict the time of rewards
associated with visual cues [1]. In this work, different visual cues
were paired with rewards at specific temporal offsets. Before
training, neurons in visual cortex were active only during the
duration of the visual cue. After sufficient training neurons
developed persistent activity for a time period correlated with
the timing of reward.
Recurrent connections in a neural network can be constructed
to set a desired network time constant that is different from the
time constants of the constituent neurons. However, it is not
known how such a network can learn the appropriate recurrent
weights. A plasticity model that is able to accomplish this must
be sensitive to the timing of reward events that, at least initially,
occur seconds after the activity in the network returns to its
basal level. In order to learn the appropriate dynamics, this
network needs to solve a temporal credit assignment problem.
In our model plasticity is an ongoing process changing the
recurrent synaptic weights as a function of their activity; in the
absence of a reward signal this plasticity rapidly decays. External
reward signals allow permanent expression of preceding
plasticity events, reinforcing only those which predict the
reward. As a result, the network dynamics are altered and it
develops time constants correlated with the timing of different
rewards. As in other reinforcement learning models the reward
signal is inhibited by the network activity to produce a stable
activity pattern.
We have implemented these ideas in both abstract passive
integrator networks and in more realistic integrate and fire
networks and obtained results that are qualitatively similar to
the experimental results. Further, we examine the implications
of different possible biophysical mechanisms and propose
experiments to test which specific mechanism are involved.
Support: NSF CRCNS grant number 0515285.
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Table 1 (abstract P101) Motoneuron model currents.

Motoneuron Soma Channels Dendritic Channels

Control INa, IK-dr, ICa-N, IK(Ca), ILeak ICa-N, ICa-L, IK(Ca), ILeak
Acute INa, IK-dr, ICa-N, IK(Ca), ILeak ICa-N, IK(Ca), ILeak
Chronic INa, IK-dr, ICa-N, IK(Ca), ILeak ICa-N, ICa-P INa-P, IK(Ca), ILeak
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Background: Following a contusion injury to the spinal cord
(SCI), motoneurons below the level of injury undergo significant
morphological and behavioral changes. Compared with unin-
jured controls, SCI motoneurons have a larger soma, fewer and
thicker primary dendrites, and less dendritic branching [1].
Behaviorally, SCI motoneurons are more excitable and exhibit
altered rhythmic firing and reflex properties [2]. While neuronal
morphology and neuronal excitability are linked, to date it is not
clear to what extent the morphological changes in motoneurons
following SCI are responsible for the altered electrical behavior.
Methods: Using the program L-Neuron, two groups (control and
SCI) of five morphologically realistic virtual motoneurons were
created. L-Neuron ‘‘grows’’ compartmental neuronal models based
on a stochastic selection of values from morphological parameter
distributions from the literature [3]. The SCI motoneuron input
parameters were identical to the control parameters except: mean
soma diameter was increased by 18%, mean number of primary
dendrites was decreased by 22% and mean primary dendrite
diameter was increased by 20% as seen experimentally following SCI
in [1]. Morphology of the neurons was then explored using
L-Measure [3] and themodels were converted intoGENESIS format
to explore their electrical behavior.
Results: The differences in the input morphological parameters
resulted in differences in several ‘‘emergent’’ morphological para-
meters of the virtual motoneuron groups which were also seen
experimentally, including: a decrease in maximum dendritic branch
order and in the total number of dendritic bifurcations in the SCI
motoneurons. Preliminary exploration of the different morphologies
inGENESIS indicates that the differences in electrical behavior can be
partially accounted for by the changes in morphology.
Conclusion: Changes in motoneuron morphology are likely to
contribute to changes in motoneuron electrical behavior
following SCI. Further exploration and quantification of the
role of morphological change in altering electrical behavior will
allow a better understanding of the interplay between form and
function in motoneurons.
References
1. Bose P, Parmer R, Reier PJ and Thompson FJ: Morpholo-

gical changes of the soleus motoneuron pool in
chronic midthoracic contused rats. Exp Neurol 2005,
191:13–23.

2. Beaumont E, Houle JD, Peterson CA and Gardiner PF:
Passive exercise and fetal spinal cord transplant both
help to restore motoneuronal properties after spinal
cord transection in rats. Muscle Nerve 2004, 29:234–242.

3. Ascoli GA, Jeffrey LK, Ruggero S, Slawomir JN, Stephen LS
and Krichmar GL: Computer generation and quanti-
tative morphometric analysis of virtual neurons. Anat
Embryol 2001, 204:283–301.

P105
Selective neural activation by field sculpting:
results from a new computer model for spinal
cord stimulation
Dongchul Lee, Michael Moffitt, Kerry Bradley
and Dave Peterson
Advanced Bionics, 25129 Rye Canyon Loop, Valencia,
California, USA
E-mail: lee.dongchul@gmail.com

BMC Neuroscience 2007, 8(Suppl 2):P105

Background: Technical advancement in computational mod-
els can provide not only theoretical tools to improve under-
standing of the mechanism of electrical stimulation, but also
evaluations of new stimulation technologies, such as novel
electrode designs, optimal polarity configurations, and stimula-
tion pulse waveforms for neurostimulators.
We report on our development and use of a new computer
model [1] to study the effect of various electrode configurations
on activation of dorsal column (DC) and dorsal root (DR)
neurons in spinal cord stimulation (SCS).
Method: A volume conductor model of a low-thoracic spinal
cord with single and multiple epidurally-positioned cylindrical
percutaneous leads was created using the finite element model
tool ANSYS from which the electric field was calculated. The
electric field results were then coupled with the NEURON
simulator to determine the activated region of spinal cord DC
and DR fibers [2]. DC and DR fiber models were adopted from
double-cable axon model [3] with various fiber sizes (5.7–15 um
diameter).
Using the model, we studied the capability to ‘‘sculpt’’ the
electric field using constant current pulse delivery fractionalized
across various contacts from multiple leads.
Results: In a longitudinal tripolar configuration (anodes placed
rostro-caudally around a cathode), a single percutaneous lead on
midline had deeper penetration of DC fibers than similar
polarity configurations on multiple leads. In contrast, dual leads
had mediolateral steering capability to selectively stimulate left
vs. right DC fibers. For three leads placed in a symmetric,
parallel mediolateral arrangement, anodes can be placed laterally
to the cathode with a variable anode-cathode separation and still
prevent DR fibers from being stimulated by cathode.
Conclusion: Our computational model was able to quantify
and provide visualizations of the volumes of activated spinal cord
fibers for multiple lead orientations and contact polarities. The
ability to determine the neural selectivity of a given electrode
configuration and fractionalization of current can provide insight
into the therapeutic possibilities of lead placement and
programming in SCS.
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Introduction: Experiments on rats show that visual cues play
an important role in the formation of place cells. Nevertheless,
rats also rely on other allothetic non-visual stimuli such as
auditory, olfactory and somatosensory stimuli. Most researchers
have seen navigation in the dark as evidence for the importance
of path integration as an additional input to place cells. Many
place cell models have been developed by combining visual and
self motion (path integration) information. However, Save et al.
have shown that olfactory cues rather than self-motion
information have been used to stabilize the place fields (PF) of
rats in the dark [1]. Based on these findings we model place cells
by combining visual and olfactory information in a feed-forward
network. We also analyze the influence of the directionality of
place cells on a goal navigation task.
Methods: In a model we develop place cells from external
visual and olfactory cues. Sensory inputs as well as place cells are
affected whenever the rat navigates in the environment, thus
closing the loop. We use a fully connected feed-forward
network to create place cells where initially random connection
weights W are used. Features X derived from visual and
olfactory cues are fed to the input layer and the best matching
unit (BMU) is found at each time step according to minimal
Euclidian distance. We update weights of the BMU by Wi

t+1 =
Wi

t + m(Xt–W
it), where m is a learning rate, m<<1. The firing rate

of place cells is calculated as the following: rit = exp(�||
Xt�Wit||2/2�2), where � defines the size of the place field.
Obtained PFs are used for goal navigation where the model rat
had to find the food source by ways of the Q-learning algorithm.

Results: An example of PFs is shown in Fig. 1A and we
observed that less directional cells were obtained by using visual
and olfactory cues as compared to the case where vision alone
was used (~13% vs. ~38%). We have also obtained that use of
olfactory information increases performance in a goal navigation
task where the model rat finds the food source faster if in
addition to the visual information olfactory cues are used (see
panel B).
Conclusion: In this study we have shown that formation of
place fields by combining visual and olfactory cues and goal
navigation by ways of simple model is possible in a closed loop
context. We also emphasize the contribution and benefit of
olfactory cues in a goal navigation task.
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Background: It is generally thought that granule-mitral cell
synapses in the olfactory bulb function to inhibit mitral cell firing,
and that this inhibition can underlie such functionally important
phenomena as lateral inhibition and synchronization [1]. Recent
electrophysiology [2] and imaging [3] studies indicate that the
location of the dendrodendritic synapse must be close to the
soma to impact the mitral cell’s firing.
Materials and methods: Our objective was to survey the
effect of dendrodendritic synapses on firing of pairs of mitral
cells sharing a granule cell using a standard, computational mitral
cell model [4].
Results: We show that depending on the location of the
dendrodendritic synapses along the mitral cell lateral dendrite,

Figure 1 (abstract P106)

(A) Example of place fields. (B) Average number of steps against number of trials needed to find a goal in 100 experiments.
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three types of inhibitory effects can be described between mitral
cell pairs: 1) A "bidirectional gate" arises when the granule cell
induces a discernible inhibitory response in both mitral cell
somas. 2) A "unidirectional gate" occurs when the granule
cell induces a discernible inhibitory response in only one mitral
cell soma. 3) An "inconsequential gate" occurs when the granule
cell does not induce a discernible inhibitory response in either
mitral cell soma.
Conclusion: Preliminary results indicate that most of the
lateral dendrite contains unidirectional or inconsequential gates.
This is important as most olfactory bulb models effectively treat
the mitral-granule dendrodendritic synapse as a bidirectional
gate and may need to account for other gating behaviors
created by considering the spatial extent of dendrodendritic
synapses.
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The dendrites of neurons in animal brains display a wide variety
of shapes and branching patterns both across different animal
species as well across different brain structures and cell types
within each species. This diversity of dendritic shapes pre-
sumably parallels the diversity of dendritic computational
functions. Although some function – structure relationships
are understood, there is no general insight in how dendritic
functions, such as the integration of synaptic signals, are fulfilled
differently by different dendritic morphologies. We have
previously developed two methods for finding dendritic
structures optimized for a given computational function ([1]
and [2]). Both methods implement a recursive algorithm that
represents dendritic morphology in a compact manner, by an L-
System as in [3]. Then, Genetic Algortihms (GAs) are used to
find L-Systems [2] or its parameters [1] so that the resulting
dendritic morphology fulfills a certain computational function
chosen by the user. Dendritic function was assessed using multi-
compartmental models using NEURON [4].
We have previously shown that this method can reliably find
dendrites that sum synaptic potentials linearly [1, 2] or react

preferentially to one temporal order of synaptic inputs [1].
Here, we first improved this method in order to generate more
realistic neural morphologies. Then we used it to systematically
explore the mapping of dendritic function to structure. In
particular, we investigated the trends in dendritic shapes when
neurons were optimized to react preferentially to the temporal
order of synaptic inputs, with a range of interval times (�t = 2,
4, 8, 16, 32, 64 ms). As previously observed, the optimized
neurons had two sets of dendrites carrying the synapses
activated 1st and 2nd in the preferred temporal order. A
systematic, but non-linear, trend emerged in the properties of
the two sets of dendrites in the electrotonic length, number of
synapses and differential filter properties when �t was varied.
We have thus established a mapping from one axis of function
space onto the space of dendritic morphologies.
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The Blue Brain Project is an attempt to reverse-engineer and
model the neocortical column, to explore how it functions
and to serve as a tool for neuroscientists and medical
researchers. The project integrates physiological experimen-
tal databases, analysis tools, modeling applications, simulation
software and 3D interactive visualization to provide a rich
environment for the systematic study and calibration of the
model to experimental data. To construct the column,
electrical models of neurons are first generated from a
combination of gene expression, ion channel, cell morphology
and electrophysiological data. These models are then placed
according to physiological data that constrains the volume
constraints, composition and connectivity of the cortical
microcircuit. Finally the column is simulated and calibrated
in an iterative process to integrate multiple levels of
experimental data. This process provides a data-driven
modeling framework for large-scale realistic simulations that
incorporates many levels of physiological detail and can be
extended to capture a wide range of experimentally-observed
phenomena.
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The Blue Brain Project is an attempt to reverse-engineer and
model the neocortical column, to explore how it functions and
to serve as a tool for neuroscientists and medical researchers. In
order to achieve the goal of automatically fitting models to the
latest data from clearly defined sources, a series of calibration
steps have been developed. Each calibration step includes a
physiological database, analysis technique and comparison to
model data. All data is scored for completeness and quality. The
aspects of the neocortical model for which calibration steps
have been implemented are: the volume and composition of the
column, ion channels, single cell electrical behavior, morphology
repair and cloning, synaptic properties, short- and long-term
plasticity, synaptic integration, polysynaptic loops, touch detec-
tion, structural and functional connectivity and emergent
phenomena. The result of the calibration process is a score
indicating the overall precision and quality of the fit. This system
provides a means to identify those areas which require
additional biological data as well as those areas where the
model is biologically accurate or in need of refinement. The
calibration process will continue to develop, as further biological
details become known, and guide the refinement of the
neocortical column model.

P111
Physical interactions between D1 and NMDA
receptors as a possible inhibitory mechanism
to avoid excessive NMDA currents
Daniel B Smith, Lawrence C Udeigwe and Jonathan Rubin
Department of Mathematics, University of Pittsburgh,
Pittsburgh, PA, USA
E-mail: rubin@math.pitt.edu

BMC Neuroscience 2007, 8(Suppl 2):P111

Coactivation of N-methyl-D-aspartate (NMDA) and dopamine
(DA) receptors generates a potentially feed-forward system that
could lead to excessive NMDA currents [1]. Through second
messenger systems, activation of NMDA receptors increases
the presence of the D1 subtype of DA receptors in dendritic
spines in striatum [2]. Likewise, activation of D1 receptors
increases the number of NMDA receptors in synaptic regions in
striatum [3, 4]. Given the potential contribution of NMDA
receptor activation to apoptosis, there must be some mechan-
ism to limit the expression of NMDA currents. This mechanism
is not yet currently known, however. Cepeda and Levine [1]
have suggested that physical interactions may serve as a limiting
mechanism to this positive feedback system. It is known that

physical interactions between D1 and NMDA receptors may
lead to formation of D1/NMDA complexes and may inhibit
NMDA currents [5]. We use both dynamical systems and agent-
based modeling techniques to investigate whether such physical
interactions are sufficient to generate a stable fixed point for
NMDA current levels or, more generally, to bound NMDA
currents.
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Results from several different experimental paradigms have been
interpreted as supporting the concept that two populations of
dopamine storage vesicles exist in the nerve terminals of
dopaminergic neurons. The goal of this work is to develop a
computer simulation model of a dopaminergic varicosity that
provides a plausible quantitative description of these popula-
tions and a possible set of rules for dopamine movement
between two populations of vesicles. We first looked at how
well a one compartment model provides accurate simulations of
published experimental data. The model allocates dopamine
among three compartments: vesicles, cytosol, and extracellular.
Dopamine moves from vesicles to extracellular (exocytosis),
extracellular to cytosol (dopamine transporter), and from
cytosol to vesicles (vesicular monoamine transporter). Synthesis
of new dopamine molecules occurs in the cytosolic compart-
ment, with new dopamine entering that compartment. Metabo-
lism of dopamine also occurs in the cytosolic compartment, with
a fraction of the dopamine in that compartment being
metabolized to DOPAC. With appropriate values for all rate
constants, this model successfully explains all data purportedly
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supporting two populations of storage vesicles in paradigms that
stimulate dopaminergic neurons at rates much faster than
physiological. However, this model does not explain other data
that support the two populations of vesicles concept. Models
with two storage vesicle compartments were evaluated for
ability to explain these data; however, none were successful. An
alternate model was developed from the one storage compart-
ment model but with the addition that the dopamine synthetic
process has a branch point where newly synthesized dopamine
is either secreted to the extracellular space or converted to
DOPAC, which is deposited into the cytosolic compartment.
This model successfully explains data regarding the specific
activity of dopamine and metabolites after injection of labeled
tyrosine into the varicosity, dopamine metabolite kinetics after
inhibition of dopamine synthesis, and preferential secretion of
newly synthesized dopamine. Thus, our model suggests that
dopaminergic varicosities have two sources of DOPAC, one
likely associated with mitochondria and the other associated
with the dopamine synthetic complex.
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Introduction: Realistic mathematical models of single neurons
are significant in assessing the contribution of specific ionic

conductances to neuronal excitability. This study presents a detailed
computational model of the Cerebral Giant Cells (CGCs), a pair of
serotonergic neurons in the feeding network of Lymnaea stagnalis,
which are critical for the expression of motor behaviour (feeding)
and the formation of long-term memory.
Methods: First, we fitted a single-compartment, Hodgkin-Huxley
model of the CGCs to two-electrode voltage- and current-clamp
data [1] using a combination of linear and non-linear least-square
fitting techniques. Then, we selectively blocked each ionic current to
assess its role in the model, thus mimicking the application of
pharmacological agents in the biological neuron.
Results: The model replicates accurately the shape of the action
potentials and the tonic firing (~0.74 Hz) of the biological neuron
(Fig. 1A). A persistent sodium current INaP and a transient low-
threshold calcium current ILVA keep the neuron spontaneously active
(Fig. 1Bi, ii). A transient potassium current IA regulates the interspike
interval, while a transient high-threshold calcium current IHVA
increases the duration of each spike (Fig. 1Biii, iv). Transient sodium
and delayed rectifier potassium currents are responsible for the
depolarizing and repolarizing phases of the action potential, as in the
classical Hodgkin-Huxley model. The available experimental data [1]
are in agreement with these conclusions.
Conclusion: The model we have developed here provides an
accurate description of the CGCs at the biophysical level and it
is a useful tool for studying the electrical properties of these
important modulatory neurons.
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Figure 1 (abstract P113)

Overview of the CGCs model and the contribution of specific currents to neuronal excitability. In A, the model has been shifted to the
right by 2 msec compared to the biological action potential.
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Background: In previous work [1, 2], we observed that the
ionic fluxes during an action potential (AP) in the squid giant
axon can be divided into three functionally separate compo-
nents. Of these, the component responsible for the depolarizing
phase of the AP, and hence its velocity, attains a minimum as a
function of the ion channel densities and the axon diameter very
near the experimental values of these parameters when the AP
velocity is constrained to be at a single value. Since the ion
channel fluxes are proportional to the metabolic energy
consumption via the ATPase Na+/K+ exchanger, this suggests
that evolution, subject to an external constraint on AP velocity,
has optimized ion channel densities and axon diameters for the
energy associated with the velocity. The energy minimum is
close to, although not identical with, a similar minimum in the
total membrane capacitance. The total capacitance consists of
the intrinsic membrane capacitance (about 0.88 mF/cm2) and a
term proportional to the active Na+ channel density (about 1
nF/mS of Na+), the so-called sodium "gating capacitance," which
arises from movements of charged segments of the Na+ protein
during conformal changes. In the present work, we investigate
and resolve the discrepancy in the locations of the energy and
membrane capacitance minima.
Methods: The Hodgkin-Huxley squid giant axon model was
simulated using NEURON and NMODL. The axon diameter and
the ion channel densities were taken as two independent
parameters, with the channel densities (consisting of voltage-
gated Na+, voltage-gated K+, and nonspecific leak channels)
varied by a common factor and parameterized by the maximum
sodium conductance. Note that this also necessitated varying
the sodium gating capacitance by this factor. Constraining the

velocity to be at a single value, we determined how the shape
and height of the action potential varied along the resulting
isovelocity curve.
Results: Our results are summarized in Figure 1. All quantities
are plotted on the 21.2 m/s isovelocity curve in axon diameter-
channel density phase space. The amount of charge per unit axial
length on the membrane capacitor at the peak of the action
potential is qP = cmVm

peak, where cm is the total membrane
capacitance per unit axial length. This charge is approximately
equal to the total depolarizing charge crossing the membrane
during the action potential, and hence is proportional to the
metabolic energy. Since Vm

peak increases with the ion channel
densities, values of cm further to the right are more heavily
weighted in the product cmVm

peak. This causes the minimum in
the charge and energy curves to be further to the left than in the
cm curve alone.
Conclusion: The discrepancy between the locations of the
energy and capacitance minima is resolved by considering the
amount of charge placed on the membrane capacitor at the peak
of the action potential. The AP peak-height rises with the ion
channel densities, and therefore, the ion flux per unit membrane
surface area across the membrane and the associated metabolic
energy also increase. When this increase is taken into account,
the location of the net charge minimum is at the same channel
densities as the depolarizing energy minimum. This also
illustrates that energy, rather than capacitance, is what evolution
has minimized.
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Myelin is a multilayered, lipid-rich coating of axons that increases
the conduction velocity of nerve impulses, contributes to
compact nervous systems, and reduces metabolic costs of
neural activity. Although usually thought of as a vertebrate
adaptation, functionally identical myelin sheaths have evolved in
several invertebrate lines. To gain insight into the possible
factors in its evolution in the different lines, we undertook a
modeling study of different configurations of myelin ensheath-
ment and its physiological parameters. Based on the hypothesis
that increased impulse conduction velocity provides a selective
advantage that drives the evolution of myelin, we focused on
parameters that speed nerve conduction. The myelin sheath was
modeled with several levels of complexity using the NEURON
simulator, ranging from approximating the effect of myelination
by changing the specific capacitance (Cm) of a uniform cylindrical
axon to a double cable model that represented the axon and

Figure 1 (abstract P114)

Action potential peak height, depolarization energy and membrane
capacitance as functions of sodium conductance.
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myelin sheath separately using NEURON’s extracellular
mechanism. Simulations were performed on a sequence of
plausible intermediate stages of myelin evolution from the
apposition of membrane from adjacent glial cells to a single layer
of myelin surrounding the axon to multiple myelin wraps with
well-organized nodes. At each stage the effects of the model
parameters on conduction velocity were assessed. We found
that a relatively small amount of myelination, even partial
coverage by a single layer of glial membrane, produced a
substantial increase in conduction velocity. For example, the
addition of one myelin wrap (2 membranes) to a small (2 micron)
diameter axon resulted in a 70% increase in conduction velocity,
suggesting that a substantial advantage of myelin could be
available to the earliest stages in myelin evolution. For the
double cable model, conduction velocity increased more rapidly
with increasing myelin wraps for larger diameter axons. This
suggests that in the transition to a myelinated nervous system, it
is large diameter axons that become myelinated first.
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Background: Nucleus accumbens medium spiny neurons
display a two state membrane potential controlled by active
channels and synaptic input. Inward rectifying potassium (KIR)
channels play a major role in maintaining one of the states, the

hyperpolarized down state. The KIR currents in 60% of these
neurons are non-inactivating whereas in the remaining, they
inactivate [1]. The significance of this difference is unknown. We
describe a computational study comparing the biophysical
properties of medium spiny neurons possessing these two
types of currents.
Methods: Two medium spiny neuron cells were modeled
using NEURON, one equipped with non-inactivating KIR

currents (henceforth, ‘‘Cell A’’) and the other with inactivating
KIR currents (henceforth "Cell B") and their behaviors were
compared in response to current injection inputs.
Results: It was observed that these two kinds of cells were
different in several notable ways. For instance, Cell B when
compared with Cell A (i) had a resting potential higher by
+0.6 mV; (ii) had a higher frequency of firing for the same
injected current (Figure 1A); (iii) hyperpolarized more for
the same injected negative current (Figure 1A); (iv) reached
firing threshold with smaller injected currents; (v) had higher
average inter-spike interval (by up to 15%) with the first
spike occurring up to 32% earlier for injected currents
matched for firing frequency; (vi) showed noticeable
differences in strength-duration curves (Figure 1B), injected
current vs spike frequency curves and voltage-current
relationships.
Conclusion: These results show that clear biophysical differ-
ences in the properties of medium spiny neurons can emerge
owing to the presence of inactivation in KIR channels and
indicate that these differences can influence state transitions
driven by cortical and hippocampal excitatory inputs. They also
suggest that the two types of neurons expressing the different
types of KIR channels may have computationally different
functions.
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Figure 1 (abstract P116)

Comparison of Cell A with Cell B. (A) Membrane response to injected currents of 0.248 and -0.2 nA. (B) The strength-duration curves of the
cells show a significant difference in trend.
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Any attempt to construct a realistic computational model of a
neuron has to face the difficult problem of assigning values to a
large number of parameters. The parameter value ranges
obtained experimentally are often insufficient to constrain the
behavior of a model; parameter values are frequently encoun-
tered that are within experimental estimates but result in vastly
dissimilar outputs.
Finding parameter values to make the model match complete
experimental waveforms may address the failure of direct
parameter estimates to sufficiently constrain parameter values.
Automated optimization techniques can be used with this
approach provided appropriate target match functions are
available. However, a sum of squared differences comparison
between traces with trains of action potentials suffers from their
narrow shape and subtle variation in peak times.
To address this issue we developed a novel match function that
uses the time-points of action potentials as fiducial points. We
tested its performance using a set of patch-clamp 500 ms
depolarizing (+800 pA) current pulse recordings from hippo-
campal CA1 pyramidal cells, using a criteria based on the notion
that traces from the same cell should be closer to each other
than to those from other cells.
We found that fiducial-point matching realized our criteria and
also outperformed other published methods, such as those
based on spike times and on voltage-gradient phase planes. Thus,
based on fiducial-point scores, CA1 pyramidal cell responses
from one cell can be systematically differentiated from those of
other cells.
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Background: During waking, serotonin (5HT) levels in the
hippocampus are high but during REM sleep hippocampal 5HT
levels drop so low that it is virtually absent. We investigate how
differing levels of 5HT affect the properties of hippocampal
pyramidal cells through analysis of biophysical models of CA1
pyramidal neurons. Studies in the hippocampal slice show that
5HT increases Ih, the hyperpolarization-activated current, by

affecting its maximal conductance and its half-activation voltage
[1]. In hippocampal pyramidal cells, Ih has been shown to have a
normalizing influence on the temporal summation of dendritic
synaptic inputs [2] that has been analyzed in modeling studies
where Ih was the only active conductance in the model cell
membrane [3, 4, 5]. Recently, dopaminergic neuromodulation of
Ih has been shown to influence excitability of pyramidal cells in
the entorhinal cortex [6]. While the action of dopamine on the
kinetics of Ih was not determined in these cells, dopamine had
the general effect of increasing Ih which resulted in a decrease of
excitability. We consider how the specific 5HT modulation of Ih
affects cell excitability in model hippocampal pyramidal neurons.
Our analysis pays particular attention to rectifying the well-
known depolarizing effects of Ih on resting potential with its
inhibitory effect on excitability.
Methods: To concentrate on the interaction of Ih with spike
generating currents, we constructed a single compartment
model neuron that contains biophysically accurate Na+,
K+-delayed rectifier and h currents with parameters set to
replicate CA1 pyramidal cell subthreshold and firing behaviors
[4]. We also constructed a simplified single compartment model
that includes Ih and the Morris-Lecar model equations for spike
generating currents in order to analyze Ih effects on cell firing
using phase plane techniques. In these models, we simulate the
changes to Ih that the slice studies indicate occur when 5HT is
present.
Results: Preliminary simulations using both the biophysical and
simplified models show that neuronal excitability decreases with
increased Ih. However, there is a voltage-dependence of the
effects of increased Ih: if cell voltage is held around �70 mV and a
current pulse is given, excitability decreases but if cell voltage is
held around �50 mV when the pulse is given, excitability
increases. We also investigate how the changes to Ih due to
variations in serotonin level affect the cell response to a stimulus.
Conclusion: While the rectifying effects of Ih on resting
potential are well understood, we concentrate on understanding
the interaction of Ih with spiking currents and its nonintuitive
effects on cell excitability. 5HT modulation of Ih suggests that
excitability and, hence, synaptic processing in hippocampal
pyramidal cells may change in different behavioral states such
as waking and REM sleep. Understanding this change in neuronal
processing during waking hippocampal activity which is involved
in memory formation and during reactivation firing in REM sleep
may lead to insight into the role of REM sleep in learning and
memory.
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Recent in vivo experiments have revealed that the action
potential threshold depends on the rate of depolarization just
preceding the spike. This phenomenon can be reproduced in the
Hodgkin-Huxley model. We analyzed spike initiation in the
(V, h) phase space, where h is the sodium inactivation variable,
and found that the dynamical system exhibits a saddle
equilibrium, whose stable manifold is the curve of the threshold.
We derived an equation of thismanifold, which relates the threshold
to the sodium inactivation variable. It leads to a differential equation
of the threshold depending on the membrane potential, which
translates into an integrate-and-fire model with an adaptive
threshold. The model accounts well for the variability of threshold
and the slope-threshold relationship. See figure 1.
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Background: Electrical stimulation of neuronal tissue has
been widely used in laboratory research and in the treatment of
neurological diseases such as Parkinson’s disease, essential
tremor and dystonia. During stimulation, cells are polarized by
the electrically-induced transmembrane potential, and the
electric field is re-distributed by the presence of the cell.
Previous studies have separately studied each aspect of this
interaction. The electrically-induced transmembrane potential
has been computed by various modeling works with various cell
shapes, cell-field orientations, and field designs. The electrical
field distribution has also been extensively studied. How do
cell-field interactions influence the efficiency of electrical
stimulation? To answer this question, we have developed a
simple spherical cell model under uniform DC electrical field
stimulation.
Materials and methods: We computed the potentials in the
extracellular medium, along the membrane (transmembrane
potential) and the cytoplasm by solving Laplace’s equation with
appropriate boundary conditions. The electrical field distribu-
tions in all regions were calculated as ~E ¼ �rV, where V is the
potential.
Results: 1. The membrane is regionally polarized by the
electrical field.
2. The extracellular electrical field is perturbed by the presence
of the cell. The transmembrane electrical field is amplified by the
low-conductive membrane. The intracellular electrical field is
partially shielded by the membrane.
3. Correlation between the transmembrane potential and the
electrical field is a complex function of the cell geometrical and
electrical properties, suggesting the two are not replaceable in
considering the efficiency of electric stimulation.
Conclusion: 1. The electrically evoked transmembrane poten-
tial not only depends on parameters that define the field, but
also depend on the electrical properties of the tissue, suggesting
that tissue inhomogeneity play a critical role for the efficiency of
stimulation.
2. The model cell perturbs the extracellular electrical field,
suggesting possible ‘‘secondary’’ effects from neighboring cells.
The model cell also shields the intracellular electrical field,
suggesting that the cell membrane plays a role in protecting
internal organelles against electrical exposure.
3. The presence of complicated interactions between the cell
and the electrical field suggest they should be considered
simultaneously in future modeling work. Specifically, it is
important to consider the reciprocal effects of the neuron to
the extracellular field distribution.

Figure 1 (abstract P119)

Sample trace of a noise-driven integrate-and-fire model with
adaptive threshold. Blue: membrane potential, red: spike threshold.
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An adaptive Exponential Integrate-and-Fire (aEIF) model [1] was
used to predict activity of cortical neurons. This model is a leaky
Integrate-and-Fire which has in the voltage equation an
additional exponential term [2] describing early activation of
voltage-gated channels combined with a second variable
introduced in the model to allow for subthreshold and spike
frequency adaptation [3].
Previously, we used the aEIF model to predict the membrane
potential of pyramidal neurons under random current injection
[4]. Moreover, similarly to the Izhikevich model [3], we know that
the model can mimic more complicated firing patterns, that is, the
model can reproduce spike trains of a detailed conductance-
based model under standard electrophysiological paradigms [1].
Here, we reproduce several firing patterns of mainly inter-
neurons from the EPFL microcircuit database [5]. The aEIF model
was used to reproduce the firing pattern of the different electric
classes of neurons under standard electrophysiological input
regime. We studied nine classes among which Delayed Initiation
Spiking, Burst Spiking, Fast Adapting or Non-Adapting Spiking [6]
and compared simulation of the aEIF model (with 9 parameters)
to a Hodgkin-and-Huxley model with 6 different ion channels.
Moreover, we wondered whether the model can be fitted
directly to experimental data. We successful fitted the aEIF
model to recordings of a Layer-II-III cells with different firing
properties.
In summary, we found different areas of the parameter space
corresponding to these specific classes. That is, the aEIF model
includes an additional mechanism that can be tuned to model
spike-frequency adaptation as well as burst activity. The
exponential term allows one to model specific behaviors such
as delayed spike initiation and offers flexibility at the level of the
threshold mechanism. At the moment a large part of the tuning
is done manually. However, once our automatic parameter
fitting procedure is in place, we expect that clustering in
parameter space could contribute to an automatic neuron
classification.
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Background: Biologically realistic neuron models are useful
tools for understanding the behavior and mechanisms of
neurons, but they are computationally expensive due to their
fine granularity. This makes them unattractive for use in
network simulations and generally leads to their replacement
by simpler ‘‘integrate and fire’’ or black box models which are
computationally cheaper, but further removed from biology. An
attractive alternative is to replace a biologically realistic model
with a ’reduced’ version containing fewer compartments. This
reduced model should largely preserve biological realism while
limiting complexity and computational cost.
Methods and results: We present a 6 compartment
’reduced’ model which preserves the electrotonic surface
area distribution of a morphologically realistic 585 compart-
ment globus pallidus ’full’ model previously developed in the
Jaeger Lab. Using an evolutionary algorithm, we searched the
parameter space of the reduced model for values of Rm, Ra,
and Cm which yield close matches to the passive properties of
the full model. The passive fitness function is based on varying
levels of current injection, at different locations, with different
frequencies. Once our search was complete, we chose the
values of Rm, Ra, and Cm that yield the best match with the
passive properties of the full model. To match the active
properties of the full model, we used an evolutionary
algorithm to search the parameter space consisting of the
various conductances shown in Table 1, along with their
relative somatic and dendritic distributions. Our fitness
function compares the FI curve, response to dendritic current
injection, and various measures of spike shape. We tested
approximately 120,000 different parameter sets, and the best
(of many good fits) is shown in Table 1 and Figure 1. The fit
between the full and reduced models is extremely good for the
measures tested, with the exception of the afterhyperpolar-
ization; we suggest that this may be due to differences in axial
resistance. Further characterization of the parameter space is
in progress.
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Background: The function of brain networks is highly
dependent on the dynamical properties of single neurons,
whose activity ranges from complex spontaneous activity
patterns such as oscillations and bursting, to a variety of

synaptic response patterns serving functions such as coincidence
detection or rebound firing. These dynamical properties vary in
time through modulation and plasticity, and are also hetero-
geneous across individual neurons of the same type. Commonly,
neurons show two to five-fold variability in the density of
voltage-gated conductances, which accounts for large variations
in dynamical behavior.
The globus pallidus (GP) is dominated by a single morphological
type of GABAergic projection neuron, which shows patterns of
spiking ranging from strongly bursting to more regularly firing in
vivo. The activity of different neurons is uncorrelated in normal
animals, but in Parkinsonian states, activity switches to
synchronous bursting. The degree to which single neuron
properties contribute to the diseased activity pattern has not
been addressed.
We study the composition of intrinsic properties that yields the
electrophysiology recorded from rat GP neurons in slice. The
GP population provides heterogeneous electrophysiology that
can be addressed by modeling. Finding intrinsic properties of GP
neurons and their distribution is a crucial step in understanding
larger-scale phenomena such as network oscillations and inter-
nuclei synchronization.
Methods: We use the PANDORA Matlab Toolbox to
automatically determine electrophysiologic measures of real
and model GP neurons from voltage traces. These measures are
collected in databases (DBs), allowing quantitative comparisons
between neurons (e.g., between model and real neurons). The
physiology DB (physDB) contains recordings from 146 real GP
neurons. The model DBs contain variations of our GP model
that consists of 500 – 600 compartments in three different
morphological reconstructions, where each compartment has 9
conductances. Each conductance can be scaled using a maximal
conductance parameter, and its dynamics are governed by
activation, inactivation and time constant curve parameters. In
earlier work, we analyzed a ~100,000-model DB by varying the
maximal value of the model’s nine conductances (mcDB). In the
present study, we compare earlier results with a model DB
obtained by varying the half-activation voltage parameter of
selected conductance activation and inactivation curves (haDB).
We used a brute-force approach to scan the entire parameter
space to identify all regions that give physiologically realistic
models and understand parameter effects throughout the

Table 1 (abstract 122) Parameter sets which yield good
matches to the full model.

Param
Set

NaF NaP Kv2 Kv3 Kv4 KCNQ SK Ca_HVA IH

Full Model 350 1.015 1 11.25 20 2 4 0.3 0.2
Reduced
Model

303.49 1.26 1.92 8.48 27.13 2.38 2.79 0.91 0.33

Units of conductance are in S/m2. {NaF, NaP} fast, persistent sodium;
{Kv2, Kv3, Kv4, KCNQ} voltage gated K+ channel families; {SK} calcium-
activated K+; {Ca_HVA} L-Type calcium; {IH} hyperpolarization
activated current

Figure 1 (abstract P122)

Fit results. Full is the output trace from the full model, and Reduced is
the output trace from the reduced model.

Figure 1 (abstract P123)

Matching real and model neuron traces. (A) Action potential (AP) amplitude, width, and firing rate measure distributions from the two model neuron
DBs are similar and match distributions from real neurons. (B) Raw traces of matching real and model neurons. (C) A model in the haDB is superior in
matching AP amplitude decay.
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specified range. mcDB was obtained by choosing 3 – 4 levels of
each of the nine maximal conductances in a geometric scale,
whereas haDB was obtained by shifting the curve half-activations
by +/� 5 mV. The measures of models in both model DBs are
matched against the measures of neurons in physDB. Each
model DB is evaluated for its quality of representing the
electrophysiological heterogeneity found in real GP neurons.
Results and conclusion: Preliminary analyses revealed that
distribution of model measures obtained by shifting the half-
activation and by varying maximal conductance were similar
(Fig. 1A), and both manipulations provided good matches to the
electrophysiological characteristics of the recorded GP neurons
(Fig. 1B). A formal analysis of the relationship between the
conductance and half-activation parameters was consistent with
the view that these parameters cause common effects within
limited ranges of membrane voltage. We found specific cases
where each manipulation had its advantages in obtaining realistic
behavior (Fig. 1C). We conclude that it is equally possible
that GP heterogeneity is caused by a continuous distribution
of either maximal conductance (ion channel density) or
half-activation curve shifts (change in ion channel voltage-sensor
sites).
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Introduction: Neuronal dendrites contain thousands of
synaptic inputs and are the first phase for signal processing.
The activation of dendritic voltage dependent currents mod-
ulates the amplitude and time course of synaptic inputs, thus
when the synaptic potential finally reaches the soma, it is a highly
transformed version of the original input. In a previous
publication [1] we simulated the effect of inhibition on the
EPSP peak under various conditions of voltage dependent
channel activation. In the present study we analyze the effects of
similar conditions on EPSP time integral and its inhibition, since
this parameter is also important in determining the firing pattern
of a neuron.
Methods: Modeling of excitation (glutamatergic) and inhibition
(glycinergic) of morphologically and physiologically character-
ized triceps surea MN 43 was executed by a NEURON
simulator. Two types of active channel (sodium and potassium)
distributions were tested: 1. Exponential decay (ED), where high
conductance density, located proximal to the soma, decays
exponentially away from the soma, and 2. Exponential rise (ER),
where proximal low conductance density increases exponen-
tially with the distance. For each model, out of a total of 11
dendrites, we ran simulations with 2, 4, 6, and 8 active dendrites,
while the other dendrites remained passive. In each case, we

executed 10 runs of randomly selected dendrites. Densities of
the sodium conductance (gNa_step) were varied relative to the
type of conductance distribution, between a minimum and a
maximum value in order to attain equal total conductance,
G (S, Siemens) in order to be able to compare the results of the
ER and ED models. In our model, the soma and the axon
remained passive and so the impact of dendritic-voltage
dependent channels on the EPSP time integral (ETI) and on
the efficacy of its depolarizing recurrent inhibition could be
distinguished. In all simulations the excitatory synapses were
activated after the inhibitory ones at various time intervals.
Results: ETI was dependent on the model of voltage
dependent channels distribution and the density of the channels
(gNa_step). However the effects were in an opposite manner: in
the ED model gradually enhancing the gNa_step(and thus G)
increased the ETI (in a range of 62–83 mV.ms), whereas in the
ER model the inverse relation was observed (in a range of 60-15
mV.ms). When slightly depolarizing inhibition is applied, the
averaged inhibition of the PSP (EPSP+IPSP) time integral (PTI)
was larger at all time intervals in the ED model than that in the
ER model (Fig 1). The relation between the PTI inhibition in the
ED and ER models and the gNa_step in single runs was similar to
the one described above for ETI; namely large gNa_step increased
the PTI inhibition in the ED model while the opposite was
observed for the ER model. In the ER model, at large time
intervals (no shunt) the depolarizing inhibition even enhanced
the PTI relative to the ETI (Fig 1).
Discussion: We conclude that the distribution of voltage
dependent channels determines the ETI and its inhibition; the
ED model being more effective in producing larger inhibition of
the PTI. A possible explanation for this result could be the
following mechanism: At the synaptic input location the EPSP
amplitude is certainly larger than its amplitude near the soma.
Therefore, since the ER model contains a high active
conductance density near these synaptic boutons, the EPSP
was augmented to a pseudo action potential. However in the ED
model, amplifying the EPSP proximal to the soma by voltage

Figure 1 (abstract P124)

The mean PTI inhibition (n = 200) as a function of time interval. At all
time intervals the inhibition of PTI in the ED model is larger than in the
ER model. Note that negative PTI inhibition means excitation (at the 22,
27, 32 ms time intervals).
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dependent channels produced a subthreshold response. A
subthreshold ETI is significantly less depressed by the active
potassium currents than supra-threshold ETI. However, inhibi-
tion of the supra-threshold response is less effective than of the
sub-threshold response. In sum, the ED model could support
larger ETI inhibition.
Reference
1. Gradwohl G and Grossman Y: Excitatory and inhibitory

synaptic inputs are modulated by the spatial dis-
tribution of dendritic voltage-dependent channels:
modelling in realistic a – motoneurons. Neurocomput-
ing 2007, 70:1680–1684.
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Muscle fibers from people suffering a myotonia condition
generate trains of action potentials when extracellular
potassium to the fiber is elevated. In milder cases of myotonia
this leads to muscle stiffness, while in more severe cases the
muscle can experience partial paralysis. The pathological
features arise mainly from mutations of the sodium channel
that causes a partial loss of inactivation. These features can be
simulated in rat skeletal muscle by applying a toxin (anemonia
toxin ATX II) in vitro to the muscle. Cannon, et al [1]
formulated a two-compartment model representing the
sarcolemma and t-tubule system of a skeletal muscle fiber,
employing Hodgkin-Huxley type dynamics, with parameter
values of mammalian muscle at room temperature, and
compared its behavior to ATX II-affected rat muscle. A
parameter, f, representing the fraction of sodium channels in
the sarcolemma with defective inactivation dynamics could be
adjusted to simulate normal, myotonic, and paralysis features
in the muscle. To better understand features of their 9
equation model, we first reduced the model to considering just
the t-tubule potential and potassium activation dynamics,
depending on the parameter f and extracellular potassium
concentration Kt. Over the physiological range in f, Kt space
we obtain regions of multiple equilibrium states, and their
bifurcation properties, mostly saddle-node and Hopf bifurca-
tions, and identify the onset of large limit cycle behavior
representing post-stimulus repetitive discharging. Because
coldness can bring on the episodic symptoms, we then
examine the sensitivity of the model to temperature, as well
as with other parameters. The reduced model is too simple to
produce paralytic effects, so we consider other interactions of
Cannon’s two-compartment model formulation. This study is

preliminary in that more dynamics is slowly being incorporated
into the model study, including spatial effects.
Reference
1. Cannon SC, Brown RH and Corey DP: Theoretical

reconstruction of myotonia and paralysis caused by
incomplete inactivation of sodium channels. Biophys J
1993, 65:270–288.
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Excitatory mitral and tufted cells (M/Ts) provide the primary
output of the mouse main olfactory bulb (MOB). M/Ts provide
excitatory input to and receive inhibitory input from GCs via the
dendrodendritic synaptic connections. These circuits provide
both recurrent and lateral inhibition among M/Ts. However,
given the large area spanned by M/T secondary dendrites as well
as the lack of evidence for a clear correlation between the
proximity of M/Ts and their odor response profiles, we asked
what mechanism could provide for specific and useful lateral
inhibitory connectivity? To address this question we conducted
whole-cell patch clamp recordings of pairs of M/Ts in the MOB.
Current steps (400 ms, 0–1200 pA) were injected into one of
the paired cells (Cell A). We then compared the firing rate of
Cell A when it was stimulated alone vs. when it was stimulated
during simultaneous activation of a second M/T (Cell B) at
approximately 80 Hz. We found that activity of Cell B
significantly reduced the firing rate of Cell A only when Cell A
was firing at frequencies between 35 and 110 Hz (19%/17 Hz
peak reduction, n = 16 pairs, p < 0.05). This effect, which we call
activity-dependent lateral inhibition, is presumably due to
activation of GCs correlated M/T cell activity and subsequent
saturation of GC output. Furthermore, activation of larger
populations of presynaptic M/Ts via extracellular stimulation in
the glomerular layer produced similar activity-dependent lateral
inhibition but of higher magnitude and occurring at lower
frequencies (25% peak reduction between postsynaptic firing
rates between 25 and 65 Hz, n = 8, p < 0.05). We then
implemented this physiologically characterized mechanism in a
network model with all-to-all connectivity. Results show that
initially correlated patterns of activity are decorrelated in a
spatially independent manner using this activity-dependent
mechanism. These results suggest that the magnitude of
inhibition received by M/Ts is dynamically determined based
on the pattern of activity within the bulb and can be used to
decorrelate similar input patterns, enhancing odor discrimina-
tion. Supported by R01 – DC005798.
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Mitral cells of the accessory olfactory bulb contain between
2–10 principal dendrites, each of which terminates in a densely
branched tuft contained in the glomerular layer. This multi-
tufted morphology has led to the proposal that tufts may serve
as local subthreshold processing stations that function indepen-
dently of one another and in relative isolation from the soma.
Consistent with this, we have found that focal synaptic
stimulation of individual tufts results in regenerative calcium
spikes restricted to the tuft (n = 7). In addition, tufts are closely
associated with local interneurons called periglomerular (PG)
cells, with which they from reciprocal dendrodendritic synapses.
In experiments in which mitral cells were patched and filled with
the calcium indicator Calcium Orange, we found a strong
covariation between tuft calcium influx and inhibition received
by mitral cells (n = 8), suggesting that tufts may self regulate
their excitability via subthreshold synaptic mechanisms. To test
this more directly, we first patched mitral cells with normal
internal and evoked inhibition by activation of tuft spikes via
afferent inputs. We then repatched with internal containing 1
mM BAPTA to buffer intracellular calcium concentration, which
should reduce release from the mitral cell (n = 5). The
magnitude of inhibition received by the mitral cell decreased by
75% ± 27% within 2 minutes of BAPTA repatch. In a final set of
experiments, we performed paired recordings of mitral and PG
cells and found that synaptically evoked tuft calcium transients
were highly correlated with the amplitude of EPSPs recorded in
PG cells. Moreover, the synaptic input to PG cells was reduced
by hyperpolarizing the mitral cell.
The above data motivate a model of synaptic integration in AOB
mitral cells in which each tuft acts as an independent processing
station capable of providing synaptic output to local interneur-
ons. We are currently exploring the computational conse-
quences of this phenomenon by modeling AOB mitral cells as
binary classifiers and exploring how dendritic transmitter release
contributes to their ability to discriminate among analog patterns.
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The low-threshold calcium current (IT) underlies burst genera-
tion in thalamocortical (TC) relay cells and plays a central role in

the genesis of synchronized oscillations by thalamic circuits.
Ascending and descending inputs to thalamic relay cells arrive on
the dendritic tree, thus the study of synaptic integration in
model cells requires simulations incorporating the electrically
active properties of the dendritic tree. We developed a 3-
compartment model of a thalamocortical cell to consider effects
of dendritic currents on the response of the cell. First, we
attribute uniform T-channel distribution for all compartments in
the model, then we find a threshold value of channel
permeability, Pca = 1.56e-4 (cm/sec) that enables generation of
a low-threshold calcium spike (LTS). By multiplying the
permeability of each section by its area we estimated the
threshold number of channels necessary to reproduce an LTS.
While we kept the total number of channels constant, we
attributed different calcium permeability to the different
compartments. Our simulations show, independent of the
Ca2+ channel distribution, for a total channel number below
the threshold value that the cell gives a passive response and
above the threshold, the model reproduces the LTS spike. In a
small range below the threshold the difference between uniform
and non uniform distributions becomes visible. In the range of
1–2% below threshold a uniform distribution of T-channels
produces a passive response while a non-uniform distribution
reproduces an LTS response. A comparison with experimental
data of firing patterns and the I-V curve of the T-current shows a
non-uniform distribution with higher density in sections near the
soma better represents the experimental data. However, the
geometry of the I-V-curve of the T-current strongly depends on
the quality of the voltage clamp. Depending on the electrode
resistance, the maximum of the I-V-curve can change from
(6 nA, �60 mV) to (3 nA, �40 mV). In addition we investigated
the influence of the cell size on firing patterns. The model shows
that with the same number of channels, the frequency of tonic
firing increases with a decrease in the cell size, while the LTS
response increases with an increase in cell size.
Acknowledgements
Supported by NSERC and CHIR.
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Thalamic relay cells receive two types of afferents: drivers,
considered responsible for relay cells’ receptive field properties,
and modulators, thought not to contribute significantly to the
receptive field properties, but, rather, to modulate thalamic
relay properties. Modulators often work by slowly modifying the
resting potential of the cell and thus determining the mode of
response: if sufficiently depolarized, tonic (more linear) or if
sufficiently hyperpolarized, burst (highly non-linear but capable
of larger signal to noise ratios and cortical activation).
Thalamic drivers have two origins. Some relay cells receive their
drivers from subcortical areas, including those in the lateral
geniculate nucleus (LGN), the ventral posterior nucleus (VP),
and the ventral portion of the medial geniculate body (MGBv).
These have been called first order relays (FO) since this is
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the first time that a particular information type is relayed to
cortex. Other relay cells receive drivers from layer 5 of cortex,
including those in the lateral posterior nucleus (LP), the
posterior medial nucleus (POm), and the dorsal portion of the
medial geniculate body (MGBd). These are known as higher
order relays (HO). Both FO and HO relays receive
modulatory inputs, mainly from brainstem areas (e.g., choliner-
gic input from the parabrachial region, noradrenergic input from
locus coeruleus, serotoninergic input from the dorsal raphé
nucleus, etc) and from layer 6 of cortex.
We sought to determine the effects of modulators in the two
types of relays, using current and voltage clamp recordings of rat
(P12–P18) thalamic cells in the whole-cell, patch-clamp config-
uration. We bath-applied general agonists for muscarinic and
serotonergic receptors and determined their effects on relay
cells of six sensory nuclei, three FO relays (LGN, VP, and MGBv)
and three HO relays (LP, POm, and MGBd).
We have recently shown that cholinergic input (by activating
muscarinic M2 receptors) hyperpolarizes about 17% of the HO
relay cells, whereas it depolarizes all FO relay cells through M1
and possibly M3 receptors. Preliminary results suggest that
serotonergic inputs also have differential effects in FO and HO
relays: 3 out of 5 cells recorded in LP are depolarized by
serotonin whereas all 4 cells from VP and LGN are depolarized.
Furthermore, we are finding that HO and FO cells differ in their
response properties. HO cells are more likely (60% of cells vs.
25% in FO; N = 23) to show spike frequency adaptation, which is
also stronger than in FO cells. Activation of muscarinic
receptors modifies the response properties of some HO cells,
largely reducing the spike frequency adaptation.
Our results indicate that modulatory influences are different in
thalamic nuclei that process information of cortical and non-
cortical origin. They suggest that HO nuclei are more likely to
be hyperpolarized when brainstem centers are active (waking,
attention), therefore being more likely to respond to cortical
inputs in the non-linear burst mode.
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Thalamic and cortical V1 layer 4 neurons are capable of firing
highly reliably and precisely upon repeated presentations of the
same visual stimulus to the retina. To compare candidate causal
mechanisms of spike-time reliability, a reconstructed multi-
compartment spiny stellate cell model with dynamic stochastic
synapses was given varying synaptic inputs. We found reliability
was primarily influenced by the number of synapses that fired
synchronously during events (synchrony magnitude), which
exhibits a supralinear relation; rather than by the rate of
synchronous firing events (event rate) or synaptic strength,
which exhibits comparatively more linear relations, even in the
absence of voltage dependent conductances. Supralinear relia-
bility highlights the efficacy of synchronous but weak synapses in

driving output spiking, and may have implications for neural
synchronicity within and between cortical areas.
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We present a new algorithm for analysis of neuronal data from
single-channel time-series. Using a novel view of stochastic
geometry to obtain a realistic model of nonlinear oscillatory
systems, we extract traces of multiple oscillations from single-
electrode extracellular recordings obtained from a representa-
tive neuron. Empiric data from neuronal recording has
supported the observation that oscillations are prevalent in
dynamics of the brain [1]. The literature on mathematical and
computational modeling of neuronal networks of coupled
oscillators is rich and includes numerous examples of successful
explanations of experimental data. A number of mathematical
approaches to model oscillatory networks of neurons take a
deterministic approach to modeling the dynamics of such
sophisticated complex biological systems where noise is
added, if at all, as a test of stability of the system and its
behavior under small perturbations. There are possible situa-
tions where the dynamics of the system depends fundamentally
on the actual non-stationary statistics and the transient nature
of ‘‘noise’’ in the system. The most natural mathematical
theories in this context involve nonlinear dynamics and
probability theory, which has been the subject of research in
describing networks as well as individual neurons. The key
theory that enables us to achieve a mathematically rigorous
synergy between an ideal geometric theory and the biological
reality is a recent merging of stochastic analysis and ergodic
theory, known as the theory of Random Dynamical Systems
(RDS) whose systematic foundations are laid out in the seminal
work of L. Arnold [2]. The far-reaching ideas of RDS require a
demanding technical mastery of stochastic analysis and ergodic.
Our geometric and topological view will illustrate some of the
remarkable theoretical and numerical achievements that RDS
offers for biologically realistic modeling of nonlinear dynamics,
while at the same time, it illuminates the ideas behind its
algorithmic development.
References
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We study the evoked potential of the local neuronal circuits of
the left temporal lobe surrounding the auditory cortex in
response to two types of simple auditory stimuli. We wish to
gain deeper insight into the systems-level functional and
behavioral consequences of sensation of a tone that includes a
cooperative population of neurons in electrocorticogram
(ECoG) recordings. Available experimental data does not
have the necessary flexibility and the rich variety of parameter
adjustments in the single-electrode recordings needed in order
to make the data amenable to conventional analysis. These
constraints and potential imperfections in data pose new
challenges in the mathematical, computational and statistical
aspects of data analysis and modeling. We use the experi-
mental setting called the odd-ball paradigm, to collect intracra-
nial electrophysiological recordings using an 8 � 8 grid. The
evoked response potentials that are then analyzed using
algorithms that utilize methods of information theory. The
extracted patterns of auditory response are used to elucidate
cortical substrates of "auditory attention and decision-making".
While data analysis was performed for the cases of attention
as well as inattention, the analysis used the data from
inattention for statistical purposes to contrast with data for
selective attention. This approach was useful to fine-tune
optimization parameters, and to exploit a sharper computa-
tional rendering of the Principle of Economy of Resources. The
main results presented here are: (1) a computational-
mathematical methodology to study auditory cortical response
to brief tones in the presence of attention; (2) an application of
(1) to neurobiology that provides an algorithm to estimate the
transmission time of an auditory stimulus from cochlea until
the auditory cortex (approx. 50–60 msec).
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The long-term utility of levodopa (l-dopa) treatment against PD
is known to be limited by its subsequent induction of dyskinesia
(l-dopa-induced dyskinesia or LID). Up to now, few treatment
strategies have been identified to reverse LID and restore l-dopa
efficacy in dyskinetic patients. Among various mechanisms, l-
dopa sensitization (‘‘priming’’) may play an important role in the
development and maintenance of LID. Disregulation of dopa-
mine (DA) synthesis, release and clearance of extracellular DA
(due to DA neuronal death and consequent ‘‘ectopic’’ synthesis
and release by 5-HT terminals) is thought to lead to exaggerated
fluctuations in the synaptic DA concentrations and consequent
neurobiological alterations during chronic intermittent l-dopa
treatment. These fluctuations, in turn, induce long-term,
synaptic alterations in the striatum and other brain areas
comprising the basal ganglia. Previous studies have shown that
long-term sensitization to cocaine can be reversed by injecting a
dopamine receptor agonist, followed by a 5-HT2 or 5-HT3
antagonist approximately 3.5 hours later [1, 2]. To the extent
that cocaine addiction may share similar neurobiological
mechanisms with LID, it is reasonable to examine a regimen
of the DA agonist pergolide followed by the 5-HT2 antagonist
ketanserin at the peak of acute withdrawal over a treatment
period and reverse sensitization to l-dopa. Based on our
previous finding that this specific drug combination regimen
can reverse previously-established behavioral and molecular
markers of cocaine or methamphetamine sensitization in rats
[3], we determined the striatal mRNA expression profiles
associated with l-dopa-induced dyskinesia in rats and its reversal
by the pergolide-ketanserin regimen. 6-Hydroxydopamine
(6-OHDA)-lesioned rats were treated with l-dopa twice a day
for 21 days (days 1 – 21) to induce abnormal involuntary
movements (AIM), a model of LID. Subsequently, they were
treated subcutaneously once a day for 2 weeks with one of the
following. Group A received pergolide followed by ketanserin;
Group B received pergolide followed by saline; Group C, the
control group, received saline on both occasions. The expres-
sion levels of mRNA were measured for 27,342 genes. The
normalized values provide triplets of positive numbers D =
{ (A(n), B(n), C(n)) : n = 1,2,... 27342}. This paper reports progress
in application of new mathematical methods for exploring this
genome-scale gene expression data. The main geometric idea is
to represent the data as a collection of points in a space that
parameterizes congruence classes of triangles in the plane. The
distinguishing advantage of this approach is in extracting
significant (biological) features and patterns of triangle shapes
that are not typically discernible by commonly used statistical
analyses. This method is applied to the data set D, where a
relatively small group of genes are identified and tabulated.
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Theoretical aspects: This paper reports progress in con-
struction of a new network structure, called the InfoMax Gene
Network, for exploring genome-scale inter-relationships among
families of genes in order to specify pathways activated during
the experiments that perturb a control system. The basic
mathematical theory, called Empirical Topology, provides the
conceptual framework to estimate the affinity of families of
genes according to their purported function in the course of
perturbations. In the empirical topology approach to systems
biology, the set of genes is endowed with a certain geometric
structure, so that a genomic space is constructed according to
representations of systems-level information carried by the gene
expression data, as ’perturbed signals’ carry information
regarding the noise or other factors underlying the perturbation
relative to the control group. Consideration of constrained
symmetries in empirical topology of the genome space provides
a representation that is ’essentially unique’ relative to the
entropy contents of each possible signal. Application of
information theory to the above-mentioned signals provides a
collection of gene families in the genomic space that indicate the
nodes of the InfoMax Gene Network.
Experimental and biological aspects: In our previous
research we have determined the striatal mRNA expression
profiles associated with dyskenesia and its reversal by the
pergolide-ketanserin regimen. In experiments designed to
investigate the systems biology of pergolide-ketanserin drug
action, dyskinetic rats are treated subcutaneously once a day:
for group A, the rats receive pergolide followed by ketanserin;
for group B, the rats receive pergolide followed by saline; for
group C, the control group, the rats receive saline on both

occasions. 6-Hydroxydopamine (6-OHDA)-lesioned rats were
treated with l-dopa twice a day for 21 days (days 1 – 21) to
induce abnormal involuntary movements (AIM), a model of LID.
The expression levels of mRNA are recorded for 27,342 genes.
The normalized values provide triplets of positive numbers D =
{ (A(n), B(n), C(n)) : n = 1,2,... 27342}. In this application,
empirical topology on the genomic space is constructed
according to the representation of the gene expression data A
and B as ’perturbation of the signal’ carried by the control group
C. The constrained symmetries in empirical topology of the rat
genome are shown to be certain permutations of the values in
the data, and suitable choices of such symmetries provide an
organization of the three data sets that is ’unique’ relative to the
entropy contents of the signals. The InfoMax Gene Network is
further constructed according to the above-mentioned theory.
The biological advantage of this approach is in extracting
significant functional/pathway features that are inherent in the
data sets and do not require guesses or additional hypotheses
that could be hard to verify under present circumstances of gene
array technology. We present tables of gene families and their
information-theoretic relationships, as well as the correspond-
ing biological interpretation in the context of gene-protein
networks and pathways.
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Introduction: Perceptual abilities in humans are shaped by
attention. Assessing the underlying mechanisms is barely
possible due to the distributed nature of cognitive processing.
One of the gateways to selective attention is negative priming
(NP), a slowdown of the reaction to previously ignored stimuli
in a range of 10 to 40 milliseconds. Variants of NP reveal the
active processing of irrelevant stimuli up to a semantic level. The
occurrence of the effect is, however, sensitive to details of the
experimental conditions, making it difficult to vary parameters
experimentally. Due to the sparse insight, modeling remains to
some stage arbitrary. To formulate a well-grounded model, we
focus on (1) detailed computational modeling, (2) a psychophy-
sical view in the brain with EEG-recordings, (3) elaborated data
analysis.
Computational model: One of the aims of this study is the
test of the imago-semantic-action model, a general model for
decision making in action planning. It explains priming effects
both positive in the case of stimulus repetition and negative in
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the case of ignored repetition, with only one general mechanism
accounting for selective attention. A global adaptive threshold
defines the actual action alternatives and finally the decision
between them. The model computes activation strengths in a
semantic space.
Psychological experiment: We recorded about 40 minutes
of 64-channel EEG-data from 9 female and 7 male persons
between 22 and 42 years, average 25 years. Subjects were
shown a total of 840 trials each consisting of a display of two
superimposed pictograms out of eight different stimuli. The
target stimulus appeared in green, whereas the distractor
stimulus was shown in red. Subjects had to name the target and
reaction time was determined via microphone. The reoccur-
rence of stimuli of the precedent display defined the priming
condition. A repetition of the target led to a speedup, whereas
the change of a stimulus from distractor to target resulted in a
slowdown. All effects resulted in significant reaction time
differences.
Results: Performing standard event-related-potential (ERP)
analysis as well classification by machine learning algorithms
and independent component decomposition, we could narrow
neural correlates in time and in space. Frontal processes are
believed to mediate other brain functions, but may not show any
amplitude dependency on the priming condition. Left-hemi-
spheric parietal electrodes showed visually strong evidences.
This agrees with the fact that a multilayer perceptron taking
tenfold cross validation was able to correctly classify more than
90% of the ERPs by time series of 25 parietal electrodes,
whereas 25 frontal electrodes only produced a correct
classification of 68%. Additionally independent component
analysis revealed for several subjects a strongly localized dipole
in the left hemispheric parietal region that is only present in
negative priming trials. These results question inhibition based
models in favor of retrieval based models in terms of classical
explanations of priming effects. The imago-semantic-action
model asserts its position as a comprehensive model as regards
concrete brain activity.
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Background: Both EEG and the blood-oxygen-dependent
contrast (BOLD) signal used in fMRI are believed to reveal re-
entrant signaling among complexly connected and dynamically
reconfigured neural networks. As such, both signals show
measurable responses to changes in global brain state.
Simultaneous EEG and fMRI were collected during quiet waking
rest after which subject’s were asked to fall asleep. Using
stochastic phase synchronization between low frequency
amplitude envelopes (<0.2 Hz) created from alpha-band
(8 – 12 Hz) filtered scalp EEG data and BOLD time series
calculated from regions of interest in left and right visual cortex,
we examined the feasibility of integrating information contained
in both these signals.
Both the BOLD signal and the low frequency EEG envelope data
from left and right visual cortices show increased synchroniza-
tion in the descent into sleep (stage 1; Figure 1).

Figure 1 (abstract P136)

BOLD signal and low frequency EEG envelope data. (Left) BOLD synchronization index over time between left and right visual cortex. (Right)
Regional synchronization using low frequency EEG.
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Conclusion: It has been suggested that low frequency
oscillations (<30 Hz) in scalp-recorded EEG organize spatially
disparate regions [1] and data further suggests that slower
rhythms can entrain such high frequency activity [2]. Recent
data shows that low frequency oscillatory activity in the BOLD
signal (<1 Hz) correlates activity in functional neural networks.
Based upon these data, we suggest that very low frequency
oscillation (0.1 Hz) common to both EEG and BOLD fMRI can
be used to link the temporal resolution of neurophysiological
activity seen in EEG to the excellent spatial resolution of the
BOLD signal to create a fuller picture of neural functional
activity.
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EEG oscillations are found in several structures of the olfactory
system, like the olfactory epithelium (OE), olfactory bulb (OB)
and pyriform cortex (PC). From the theoretical side a possible
way to study mechanisms responsible for the origin of these
oscillations is the construction of biologically detailed computa-
tional models, which can exhibit oscillatory neural activity and
allow simulations of EEG measurements which can be compared
with real data. In this work we present a large-scale biologically
detailed model of the olfactory system consisting of models of
OE, OB and PC and use it to study relationships between EEG
oscillations in these three areas and the respiratory rhythm. The
OE model contains 2500 olfactory sensory neuron models
(OSNMs) distributed in a 50 � 50 square grid. The OB model
has two cell layers, a 8 � 8 grid of mitral cell models and a
10 � 10 grid of granule cell models. The PC model has 96
pyramidal cell models distributed in a 16 � 6 grid and 225
interneuron models arranged in three layers with 75 model cells
in each one of them. These three layers are called, respectively,
multipolar cell layer, horizontal cell layer and globular cell layer.
We developed a function that generates a receptor current in
the OSNM based on a respiratory frequency and odor
concentration. This receptor current is injected directly at the

soma of an OSNM, simulating the effect of a stimulus. The
responses of the OE, OB and PC were measured in terms of
raster plots and simulated EEG records. In OE and OB, EEG
records were made by single point electrodes placed at the
centers of both the OE and OB models. In PC, the EEG was
calculated as the average of the extracellular field potentials
measured by a simulated grid of 8 � 5 point electrodes placed at
the surface of the PC model. The results show that the slow
components of the electrical oscillations produced in OB and PC
are directly associated with the respiratory frequencies and odor
concentrations at the receptor layer while the fast components
are related with the intrinsic synaptic activity at each neural layer.
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Background: Multivariate autoregressive (MAR) models can
be used in the identification of causal relations from functional
MRI time series. Connectivity information is extracted from
large neural networks combining graphical modeling methods
and Granger causality. The aim of this paper is to demonstrate
the feasibility of working with the MAR models to identify
functional circuits in the human motor system, and demon-
strates their application to data of motor performance in
patients with Parkinson’s disease (PD).
Methods: In this work we incorporate a family of linear
methods called penalized linear regression that were designed
to deal with problems having a large set of variables (i.e. brain
structures) and a relatively small set of observations (i.e. fMRI
time points). One parkinsonian patient with early stage akinetic
PD was studied by fMRI during the "drug-off" state and after
reaches the ‘‘drug-on’’ state (table 1).
Results: The statistically most relevant connections from the
connectivity matrix, in parkinsonian state, are summarized in the
realistic rendering shown in Figure 1. These results indicate that
the components of the basal ganglia-thalamus-cortical circuit
were functionally connected to each other, but also functional
connections in the cortico-cerebello-thalamo-cortical pathway
are evidenced.
Conclusion: In opposition to widely spread methods for
connectivity analysis, the proposed algorithm does not rely on
preconditioned connections between regions from anatomical
models. The penalized regression techniques expand the basic
idea of ordinary least squares by means of the addition of new
terms to the minimization equation. Our results support that
MAR models form a valuable and feasible approach to study
functional circuits in the human motor system, in normal and
disease condition.
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Background: Independent component analysis (ICA) is a well
accepted blind source separation technique in electroencepha-
lography (EEG) analysis to separate the independent sources of
the electrical brain activity. Usually, the number of electrode
channels in EEG analysis is selected arbitrarily in the cortical
region of interest without any systematic study.
Methods: The number and location of scalp electrodes in a
visual discrimination task were optimized by using ICA on a
publicly available EEG database [1], a collection of 31-channel raw

data from 14 human subjects who performed a go-nogo
categorization task and a go-nogo recognition task on natural
photographs. The data were artifacts removed, average refer-
enced, baseline removed, bandwidth (0.5 – 35 Hz) filtered, and
epoched with 100 ms before and 1000 ms after the presentation
of the cue. Three different sets of data consisting of 31, 16, and 8
channels with respect to the 10–20 international electrode
placement criterion were generated for each of the categoriza-
tion and recognition tasks. ICA was performed and event related
potentials (ERPs) and 2-D maps of the independent components
were compared for each of the data sets in the two tasks.
Results: Separate comparisons of ERPs and 2-D maps of the
independent components in the target and non-target categoriza-
tion task show thatmost of the components do not have a significant
difference with increasing the number of channels from 8 to 31.
However, for a number of the components, there exists some
performance difference using 8 and 16 channels; but no significant
difference between 16 and 31 channels. Similar results were
observed in the recognition task and in different participant groups.
Conclusion: This study suggests that it was not helpful to
include more than 16 channels in the visual discrimination task.
Therefore, it is possible to reduce time, physical and computa-
tion efforts, and subject discomfort by using smaller number of
electrodes when a systematic optimization is performed.
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Figure 1 (abstract P138)

Realistic rendering of effective connections in the motor system. Note involvement of areas related to motor performance. M1: Primary
motor cortex, S1: Primary somatosensory cortex, PM: Premotor cortex, SMA: Supplementary motor area, ASC: Associative parietal cortex, STR:
Striatum, TAL: Thalamus, CER: Cerebellum.

Table 1 (abstract P138) Effects of L-Dopa treatment on
strength of inter-regional path coefficients

Connection OFF Medication ON Medication

ASC – PRE 0.035 0.789
TAL – PM 0.062 0.154
TAL – SMA 0.093 0.256
STR – TAL 0.018 -0.386
TAL – SMA 0.093 0.256
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We propose a biological cortical column model, at a
mesoscopic scale, in order to explain and interpret biological
sources of voltage-sensitive dye imaging signal. The meso-
scopic scale, corresponding to a micro-column, is about
50 mm. The proposed model takes into account biological
and electrical neural parameters of the laminar cortical layers.
Thus we choose a model based on a cortical microcircuit,
whose synaptic connections are made only between six
specific populations of neurons, excitatory and inhibitory
neurons in three main layers, following [1] and [2]. For each
neuron, we use a conductance-based single compartment
Hodgkin-Huxley neuron model [3].
We claim that our model will reproduce qualitatively the same
results as the optical imaging signal based on voltage-sensitive
dyes, which represents the summed intracellular membrane
potential changes of all the neuronal elements at a given cortical
site [4]. Furthermore, this voltage-sensitive dye imaging has a
submillisecond temporal resolution that allows us to explore the
dynamics of cortical processing. An example of data of V1 dye-
signal in a cat, after a visual local stimulation, is shown in Figure
1. Therefore, the temporal dynamics of the measured signal will
be carefully studied as being of primary interest for the
proposed model identification.
Methods: We use the NEURON software to implement our
cortical column model of about 102 neurons and run simula-
tions. Larger-scale models are going to be developed with the
event-based simulator MVASPIKE, or with a specific optimal
software, thanks to PyNN.
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We have recorded the local field potentials (LFPs) from 12 sites
in the motor thalamus of 4 patients with essential tremor who
were undergoing surgery for implantation of deep brain
stimulation (DBS) electrodes for the treatment of their tremor.
By band-pass filtering the LFPs (20 – 40 seconds of recording at

Figure 1 (abstract P140)

Voltage-sensitive dye optical imaging allows a real-time visualization of large neuron populations activity. Left: Temporal evolution of
the dye optical signal. Right: Response curve in one position of the map, same time scale.
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each site) and applying a continuous wavelet transform on the
filtered signals, we detected the presence of marked inter-
mittency in the theta frequency band (4 – 8 Hz) at many of these
sites (see Fig. 1). We have also computed the temporal
variations of wavelet power to demonstrate that the inter-
mittency is characterized by sudden bursts of power separated
by intervals of very low power or almost quiescent periods. In
addition, the kurtosis of the probability density functions of the
LFP signals was used as a measure of the degree of intermittency
at each site and revealed a wide variation ranging from 3.4 to
37.5. The larger the kurtosis, the greater is the intermittency in
the signal. The origin and significance of the intermittency are
presently unclear. It has been postulated that the cerebello-
thalamo-cortical loop may be responsible for the generation of
6 – 9 Hz oscillatory electromyographic activity observed during
voluntary movements, and possibly the bursts of theta
oscillatory activity observed in the thalamus of these patients
may be related to fluctuations of activity in this circuit.
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We propose a hypothesis to account for the symptoms of
schizophrenia in a statistical dynamical systems framework. We

propose that the symptoms of schizophrenia are related to
alterations in the depth of the basins of attraction, and the
statistical effects of spiking neurons, which together influence
the stability of cortical attractor neural networks. The cognitive
symptoms such as distractibility, working memory deficits and
poor attention could be caused by instability of persistent
attractor states in prefrontal cortical networks. The negative
symptoms, which include a lack of affect and reduction of
emotions, may be related to the concomitant decreased firing
rates in cortical areas such as the orbitofrontal cortex and
anterior cingulate cortex that occur when the depth of the
basins of attraction are reduced. The positive symptoms
including delusions, paranoia, and hallucinations could arise
because the basins of attraction are shallow in temporal lobe
semantic memory networks. This would lead thoughts to move
too freely around the attractor energy landscape, loosely from
thought to weakly associated thought. These hypotheses were
investigated in a model of a cortical attractor network based on
integrate-and-fire neurons and synaptic currents activated by
AMPA, NMDA and GABA receptors [1]. It was found that a
decrease in the NMDA receptor conductance leads to a
decrease in the stability of working memory states, an increase
in distractibility, and lower firing rates, and can potentially
account for both the cognitive and negative symptoms. We
observed a flat energy landscape associated with the positive
symptoms of schizophrenia when, in addition to a reduction in
the NMDA conductance, the GABA conductance was reduced.
This caused the dynamical system not only to switch between
the high firing rate attractor states, but also sometimes to jump
from spontaneous activity into one of the attractor states. The
findings are consistent with the neurophysiological effects of
dopamine, which can influence NMDA and GABA currents. In
this approach we thus start with a statistical dynamical systems
framework, and use this to help understand how some of the
different symptoms of schizophrenia might arise.
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Background: Deep brain stimulation (DBS) is a widely used
clinical treatment for various neurological disorders, and
particularly movement disorders. The procedure involves
implanting a four contact macro-electrode into disorder-specific
targets within the brain, thereby creating a depth electrode

Figure 1 (abstract P141)

Wavelet analysis of the LFP signal from the thalamus of a
patient with essential tremor. Upper panel – Time series of the LFP
signal; Middle panel – Wavelet power spectrum; Lower panel –
Temporal variation of wavelet power; For this signal, the kurtosis is
equal to 6.98.
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brain interface (EBI). In order to maximise the therapeutic
effect, the current parameters and contact configurations need
to be tuned for each patient, a process which is accomplished by
systematic trial and error. The difficulty of this process is
confounded by the fact that in vivo visualisation of the current
spread is impossible.
Methods: We constructed a three-dimensional model of DBS
using the finite element method, in order to compensate for the
restrictions on the physiological study of the EBI in situ. We
focused on the quantitative investigation of the changes in the
electric field created during a number of both currently used and
hypothetical configurations of the quadripolar electrode.
Results: Our results show that contact configuration has a
significant effect on the shape and strength of the electric field
created in the neural tissue. For example, monopolar stimula-
tion creates a far-field dipole capable of stimulating relatively
larger volumes of neural tissue, whilst bipolar stimulation
creates a near-field dipole more suited to stimulating smaller
volumes of tissue. Furthermore, by using the normally isolated
"spare" electrode contacts, it is possible to further shape the
field in order to better focus the electrical current.
Conclusion: In conclusion: (1) monopolar stimulation stimu-
lates a larger volume of tissue than bipolar stimulation; (2) as the
active contacts move further apart in bipolar stimulation, the
field expands; (3) grounding the spare contacts shrinks the
volume of tissue stimulated; (4) and using two contacts with the
same polarity generates a stronger field than other settings,
including monopolar setting. This provides a quantitative
assessment on how to shape the electric field in DBS in order
to optimise the therapeutic effects and minimise the undesirable
side effects.
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Background: Seizure activity is often accompanied by an
increase in the number of intrinsically bursting neurons [1]. The
N-methyl-D-aspartate (NMDA) receptor, a channel known to
be involved in many seizure models, represents one mechanism
by which intrinsic bursting may arise, since 30–50% of these
channels are bound at ambient concentrations of glutamate. In
adult rat, intrinsic bursting has been induced in pyramidal
neurons of the prefrontal cortex (PFC) through a combination
of NMDA and dopamine type 1 (D1) receptor agonist [2]. Here
we used the in vitro mouse neocortex and a computational
model to further investigate the basis for bursting in the context
of epileptiform activity.

Results: In mouse frontal cortex, application of 8–10 mM
NMDA and 2–5 mM D1 agonist SKF 38393 elicited intrinsic
bursting in ~50% of pyramidal neurons. A computational
pyramidal neuron model consisting of five compartments with
the sodium, potassium, calcium-activated potassium and NMDA
channels was used to investigate the conditions necessary for
bursting. In this model D1 agonist caused an amplification of the
NMDA current. Our simulations indicate that increasing the
NMDA receptor conductance transformed a regularly spiking
neuron into a burster (see fig. 1). Interestingly, the bursting
behavior appeared only when both NMDA receptor and
calcium-activated potassium conductance were included.
Conclusion: The NMDA receptor is associated with produc-
tion of intrinsic bursting behavior in mouse cortical pyramidal
neurons, and, together with a calcium-activated K conductance,
is sufficient to cause spontaneous bursting in a computational
model of pyramidal neuron. These and previous results indicate
that the NMDA receptor has the potential to drive the bursting
behavior that characterizes seizures.

Figure 1 (abstract P144)

Experimental and Model Neuron Firing Behaviour.
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Recently a number of groups [1, 2] have reported on the
existence of pathological High frequency oscillations (HFO’s)
(oscillations in the frequency range of 80–200 Hz, termed as
Ripple band and oscillations in the frequency range of 200 Hz
and above, termed as Fast Ripple band) in the epileptic brain
both in in-vivo and in-vitro experiments. Our goal in this study is
to study the statistical modulation of HFOs during epileptogen-
esis in order to characterize their function in progression to
seizures in the epileptic brain.
In this study we define a HFO event as a subset of wave having
significant high frequency component with low wave amplitude.
HFO are detected from data recorded at a sampling rate of
12000 Hz for the entire duration of epileptogenesis which lasts
anywhere from about 3–6 weeks.
Statistical analysis on the HFO suggest that occurrence of HFO’s
occur primarily during the 12 hour dark cycle whereas the
HFO’s primarily seem to occur during the 12 hour day cycle in
the control rat The video recording shows that the rat is
primarily in active and exploratory state during the dark cycle.
These observations suggest that HFO in epileptic rats are
correlated with the state of arousal.
Spatial correlation of HFOs in different regions of the brain is
also investigated with cross-correlogram. Comparison of cross-
correlogram of the post-stimulus HFO in the epileptic rat to the
pre stimulus HFO (control) suggests modification in the
circuitry in the hippocampus, evidence for which in in-vitro
experiments were provided by [3].
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Background: Experimental reports have appeared which
challenge the dogma that epileptic seizures arise as a
consequence of neuronal hypersynchronization. We sought to
explore what mechanisms that desynchronize neuronal firing
could induce epileptic seizures.
Methods: We constructed a computer model of the neuronal
network in the CA3 region of hippocampus, a region in the brain
frequently associated with seizure generation. The model
incorporates two distinct inhibitory hippocampal feedback
circuits that have recently been reported [1]. Selective changes
in the distribution of interneurons in the hippocampus of
patients with epilepsy have also been reported [2, 3]. Such
changes could result in pathological alteration to synchroniza-
tion of excitable cells with a potential causative role in epilepsy.
Results: When inhibition by interneurons that synapse on
pyramidal dendrites was decreased, highly localized seizure-like
bursting was observed in the CA3 region similar to that which
occurs experimentally under GABAergic blockade. In contrast,
when interneurons that synapse in the axosomatic region were
similarly decreased, no such bursting was observed. However, when
this transient inhibition was increased, normal coordinated spread
of excitationwas interrupted by high frequency localized seizure-like
bursting. The increase of this inhibitory input resulted in decreased
cell coupling of pyramidal neurons. A decrease in phase coherence
was initially observed until seizure-like activity initiated causing a net
increase in coherence as has been observed in epileptic patients.
Conclusion: In addition to producing electrical behavior consis-
tent with other models of epileptogenesis, our results indicate how
preservation or relative augmentation of a particular inhibitory
circuit could produce initial desynchronization ultimately initiating
neuronal activity characteristic of partial seizures in which the
aberrant electrical activity originates from and remains restricted to a
limited region of the brain. Our analysis of these results also resolved
conflicts in previously reported experimental results between brain
slice and in vivo recordings of epileptiform activity. These results
provide a possible pathway in which a decrease in synchronization
could provide the trigger for inducing epileptiform activity.
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Contemporary approaches to controlling bursting behavior in brain
slice models of epilepsy have typically emphasized spatially simplified
strategies such as uniform DC fields or chaos control techniques
using a single stimulating electrode. While such approaches have
produced some promising results in these models, the recent
development of multielectrode stimulating array systems for
neuroprosthesis applications suggests that spatiotemporal
approaches to controlling seizures in vitromay present opportunities
for more flexible and robust control of ictal activity in slice models
(as well as in potential clinical applications). We investigate several
such control strategies in a spatially distributed model network of
integrate-and-fire neurons based on Izhikevich’s Simple Model [1].
This model was designed to mimic neocortical networks consisting
of interconnected excitatory and inhibitory neurons. We show that
waves of synchronous activity within the model can be blocked by
regions of spatiotemporally asynchronous firing mimicking activity
that could reasonably be generated by amicrostimulation array. This
desynchronization of seizure-like activity can be produced over a
range of stimulation parameters and in networks with mixed or
purely excitatory connections, suggesting that these effects may also
be reproducible in neocortical slices in vitro.
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The study of visual perception abounds with examples of surprising
results, and perhaps none of these has generated more controversy
than the speed of object recognition. Some complex objects can be
recognized with amazing speed even while attention is engaged on a
different task. Some simple objects need lengthy attentional scrutiny,
and performance breaks down in dual-task experiments [1]. These
results are fundamental to our understanding of the visual cortex, as
they clearly show the interplay of the representation of information
in the brain, attentional mechanisms, binding and consciousness.

We argue that the lack of a common terminology is a significant
contributor to this controversy, and define several different
levels of tasks as: Detection – is a particular item present in the
stimulus, yes or no?; Localization – detection plus accurate
location; Recognition – localization plus detailed description of
stimulus; Understanding – recognition plus role of stimulus in
the context of the scene.
It is clear from performance results that detection is not possible for
all stimuli, and the difference must be in the internal representation
of the different stimuli. For detection to be possible, the fast, feed-
forward activation of a neuron (or pool of neurons) must represent
the detected stimulus, which is consistent with the experimental
finding that only highly over-learned and biologically relevant stimuli
or broad stimulus categories can be detected. In detection tasks
localization is poor or absent [2], so location needs to be recovered
based on this initial representation. Given that detailed location and
extent information is only available in the early processing areas, this
must be accomplished by the ubiquitous feedback connections in the
visual cortex. Once the location of a stimulus has been recovered
and distracters inhibited, one or more subsequent feed-forward
passes through the system can create a detailed representation of
the selected stimulus.
Here we present a computational demonstration of how attention
forms the glue between the sparse, fast, and parallel initial
representation that supports object detection and the slow, serial,
and detailed representations needed for full recognition. The
Selective Tuning (ST)model of (object based) visual attention [3] can
be used to recover the spatial location and extent of the visual
information that has contributed to a categorical decision. This
allows for the selective detailed processing of this information at the
expense of other stimuli present in the image. The feedback and
selective processing create the detailed population code corre-
sponding to the attended stimulus. We suggest and demonstrate a
possible binding mechanism by which this is accomplished in the
context of ST, and show how this solution can account for existing
experimental results.
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Starting with Hebb’s investigations the time domain was an
important apparatus to study neuronal activity. Increases or
decreases in firing rate, precise spike timing sequences or
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particular spike time patterns were perceived as the only
reliable measures of neural code. Despite considerable efforts
and some success, the time approach does not seem to offer
responses to several questions. What is the meaning of the time
code in terms of behavior? Is the time domain consistent enough
to measure complex neuronal activity?
One can answer these questions by measuring spike directivity
in neurons as rats learned a T-maze procedural task. Based on in
vivo recordings we recently demonstrated that spike time alone
does not reflect the richness of neuronal activity [1, 2, 3].
Additionally, we showed that the electrical flow has direction-
ality which becomes organized with behavioral learning.
We performed neuron simulations with plausible models of
biophysically realistic neurons and demonstrated that mutual
information between input signal and sodium flux is about two
times that between input signal and output spikes during each
spike within a millisecond-level time domain [2]. Consistent with
this model and previous analyses we reveal that complex coding
occurs in expert neurons and spike directivity analyses are able
to reliably predict future animal actions [4]. This important
feature in the spatio-temporal domain characterized by subtle
changes in spike directivity at certain moments in time
represents basic steps towards reading the neural code and
marks a final requiem for spike timing era.
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Our contribution: We propose a bio-inspired MT model
working in a fully spiking mode: our MT layer receives spiking
inputs coming from a previous spiking V1 layer. The MT layer
integrates this information to produce spikes as output.
Interestingly, this spike to spike model allows us to study and
model some of the dynamics existing in V1 and MT, and due to
the causality of our cell representations it is also possible to
integrate some top-down feedback. This model differs from
existing ones such as e.g. [1] and [2], that generally have
analogue entry and consider motion stimuli in a continuous
regime (as plaids or gratings) discarding dynamic behaviours. In
this model we also propose an implementation for the inhibition
done between cells in V1 and MT. The interaction between V1
cells is done both for neighbouring cells with the same velocity
and for cells with the same receptive field but different velocity
orientations. On the other hand, the inhibition between MT
cells is done to help the model in the detection of the pattern

motion direction. The architecture and details of our model are
shown in Figure 1.
Interest of a spike to spike model: We are interested in
validating the behaviour of our model with:
Grating and plaids.We will compare our results with e.g. [1] and [2].
Dynamic. The activation of MT cells is not constant in time, it
suddenly increases when the motion direction is changed. We
study the dynamical effects as described in [3].
Motion recognition. We will show how the spiking output of MT
can be successfully used to recognize biological motion starting
from real video sequences [4].
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Figure 1 (abstract P150)

Architecture of model here presented. The first layer is formed as
an array of direction-selective V1 complex cells tuned for different
speeds and directions of motion. Each V1 complex cell is modelled with
a motion energy detector following [5]. The second layer of the model
corresponds to a spiking MT cell array. Each MT cell has as input the
spike trains of the V1 complex cells inside its receptive field; all the V1
cells considered inside the MT receptive field have the same orientation,
the model data being based on biological findings [2]. The dashed lines
represent the interactions between V1 and MT cells. The values of the
weights wi are adjusted (they could also be found through learning as
STDP) to tune the MT neuron for a certain motion pattern direction.
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Understanding the response properties of single neurons is
seriously limited by the available experimental time and the rate
[bit/s] at which information can be gained from the neurons. A
substantial improvement in the latter can be achieved by
speeding up the presentation of stimuli.
We show how the novel technique of Bayesian Binning [1] can
be used to find the optimal stimulus presentation rate of a
continuous sequence of stimuli.
This method applied to neurons in high-level visual cortical area
STSa gives optimal presentation rates of approximately 56 ms/
stimulus (18 stimuli/s) which is significantly faster than conven-
tional presentation rates, allowing a better sampling of stimulus
space. We relate these results to findings obtained with the
Bayesian Bin Classification method [2, 3], which can be used to
select the optimal time window for the analysis of the
continuous response stream. Both methods will soon be freely
available as standalone command-line applications or Matlab/
Octave plugins.
The optimal window duration is equal to the stimulus duration
near the best presentation rate. Interestingly, this duration also
corresponds to the peak of spike efficiency [bit/spike] of a rate
code whose firing rates match those found in visual neurons
(area STSa).
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The superior temporal sulcus (STS) of the macaque monkey
contains several distinct motion sensitive visual areas. Neurons
in these areas are typically responsive to specific kinds of motion
patterns such as a direction, optic flow, or biological motion.
Recent fMRI data from the monkey suggests that the fundal
surface of the STS (FST) contains neurons tuned for opponent

motion. However, this has not yet been confirmed electro-
physiologically. Here, we present single-unit recordings con-
firming that a large subpopulation of neurons within area FST
are tuned for opposite directions of motion and are equivalently
tuned for opponent motion.
The tuning properties of this population of FST neurons are
markedly different from those typically observed in MT, one of
the principal input areas to FST. When tested with translating
random-dot patterns, the FST neurons responded strongly to
motion in two opposite directions but were weakly driven or
inhibited (relative to static response) by motion in the
orthogonal directions. In contrast, MT neurons are highly
direction selective, responding strongly to one direction and
weakly to motion in the opposite direction. Hand-mapping
revealed that FST neurons have spatially homogeneous recep-
tive fields with respect to direction selectivity. Specifically, each
neuron was selective for two opposite directions of motion at
all locations within the receptive field.
Further, when tested with a type of opponent motion stimulus
called transparent motion, in which two random-dot patterns
translate in opposite directions in the same depth plane, the FST
opponent motion tuning curves were matched to the direction
tuning curves in response pattern and amplitude. In MT, the
response pattern is matched but the response amplitude is
significantly weaker for transparent motion stimuli.
We propose that the tuning properties of the opponent motion
responsive FST neurons reported here can be reproduced by
performing a linear transformation followed by a static
nonlinearity on the output of a population of MT neurons. In
this model, an FST neuron sums the output of MT neurons that
prefer two opposite directions of motion and subtracts the
output of MT neurons preferring the two orthogonal directions.
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Bistable visual stimuli such as Rubin’s vase/face or the Necker
cube refer to the phenomena of spontaneously alternating
percepts while viewing the same visual image. The uncoupling
between the stimulus and percept offers a means for under-
standing neural basis of visual perception. Here we asked
whether pooling the responses of a large population of MT
neurons over time and space could improve the predictability of
perceptual decisions during ambiguous visual stimulation. Two
well trained rhesus monkeys indicated the perceived direction
of rotation of bistable structure-from-motion (SFM) stimuli by
pushing one of two levers. During this task, multi-channel
intracortical recordings including single-unit activity (SUA),
multi-unit activity (MUA), and local field potentials (LFP)
were collected from area MT. We sorted the neural data
according to the monkeys’ behavioral choices and employed
statistical algorithms to classify brain states (i.e., the subjective
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interpretation of a bistable stimulus). Classification was
performed with linear discriminant analysis with leave-one-out
cross-validation. We found that SUA, MUA and LFP all had a
rather modest capability of predicting the monkeys’ perceptual
report when considered in isolation. We developed dynamic
models for spatio-temporal integration of distributed neural
signals. We found that the discriminative information of
neuronal population activity accumulates over time and
the combination of simultaneously collected data greatly
improved the prediction accuracy of each of the signals. The
accuracy and statistical power of determining the monkeys’
perception increased with the number of channels as well as
with the types of neural signals used for analysis. Our results
demonstrate that simultaneous collection of multiple neural
responses in area MT can improve the determination of
perceptual states.
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In human vision, the perception of localized stimuli is strongly
influenced by the presence and nature of surrounding elements.
It has been suspected that these contextual effects are linked to
the processes of image segmentation and recognition, by
enhancing the representation of specific configurations of
elementary features which are typical for certain objects or
other important aspects of a visual scene. In this contribution,
we show that psychophysical detection thresholds for stimulus
configurations comprising four Gabor patches of different
orientations and spatial frequencies are strongly related to the
probabilities that these configurations occur in ‘natural’ images.
This almost perfect match holds for patch distances of 2.8
degrees of visual angle, whereas for 1.4 degrees of visual angle
we find strong inhibitory effects, actually leading to increased
thresholds for all configurations. Our results suggest that natural
image statistics capture specific patterns of local interactions in
early, feature-specific layers in visual cortex. This finding
indicates that the zoo of contextual interactions actually
observed both in psychophysics and electrophysiology may be
interpreted in a more systematic way by a careful analysis of the
statistical properties of our environment.
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Populations of neurons in the brain encode information about
the external environment as time-cell series of spikes.

A fundamental question in systems neuroscience is how this
information can be decoded by a downstream neural system.
Since the responses of different neurons are statistically
correlated [1], it is possible that such correlations convey
important information and thus need to be taken into account
by any decoding algorithm. Although coding by correlations may
increase the capacity of a neural population to encode
information, it may greatly complicate its decoding. In fact, it
is possible that all neurons within the population interact with
each other, and that their interaction cannot be described only
in terms of "pair-wise" or low order interactions between
neurons, but it reflects a genuine higher order interaction
among a larger population. In such case, the number of
parameters describing such correlations would increase expo-
nentially with the population size drastically increasing the
complexity of the codes we want to investigate. On the other
hand, it is also possible that a downstream system can access all
the information available in the population activity even when
taking into account only low-order correlations among neurons.
In this way, the brain could exploit some of the representational
capacity offered by correlation codes, but at the same time limit
the complexity needed to decode it.
Conceptualizing neurons as communications channels, we can
quantify how much Shannon’s mutual information, I, is available
to a decoder that is observing the neural responses and who
knows the true stimulus-response probabilities. We can also
compare it with a lower bound, Ik, of how much information
could be decoded by a decoder that assumes some simpler
structure of correlation taking into account only statistical
correlations between neurons up to the k-th order [2, 3].
A principled way to construct such models from experimental
data is to build the maximum-entropy response probability
among those with the same marginal probabilities (and thus
correlations) up to order k as the real population responses.
We quantify the importance of higher order correlations as the
decoding cost (I-Ik) of neglecting higher order correlation.
We demonstrate that, by using appropriate bias correction
statistical techniques [4], this lower bound can be made data-
robust and computed with the limited number of trials typically
recorded in neurophysiology experiments. With 200 trials per
stimulus, we could compute the contribution of information
conveyed by all higher order correlations for a group of up to
10 neurons. Taken together, these results suggest that the
application of the method proposed here will unravel the role of
high order correlations among neurons in sensory coding, thus
giving an insight into the complexity of the coding.
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Introduction: Biological experiments have shown that olfac-
tory receptor neuron responses to an odour stimulus vary
substantially, even between two ORNs expressing the same
receptor type [1]. This variation is likely the result of
heterogeneity in geometrical as well as electrical and odour/
receptor-dependent properties. The total response relayed to
the olfactory bulb, which is a sum of many convergent ORN
responses, will depend on the distribution of variation in single
ORN responses. This distribution is not known, but may be
estimated through modelling.
Methods: For modelling the ORNs we used biophysical
equations based on experimental data [2], whose parameters
belong to three different sets describing the odorant-receptor
interaction (R; especially the dose at half-maximum conduc-
tance Cg/2 expressed in log molar), the geometrical shape and
size (G) and the electrical characteristics (E) of ORNs. We let
the parameters of these equations vary stochastically accord-
ing to probability distributions which were chosen to
correspond to experimental data, as established by Rospars
et al [2]. The firing frequency distributions of a population of
ORNs stimulated by a given odorant at various concentrations
were investigated in two cases: (i) ORNs expressing a single
olfactory receptor type (stochastic variation of only G and E),
and (ii) a population of ORNs expressing many receptor types
(stochastic variation of G, E and R). The current model only
gives the steady-state frequency distributions as a function of
the strength of the odour stimulus, and the stimulus is a single
odorant.
Results: We find that the frequency distributions become
rather different for the two cases. (i) The firing frequencies of a
simulated population of ORNs expressing the same receptor –
for instance, receptor neurons projecting to the same
glomerulus in the olfactory bulb – are normally distributed.
The mean value and standard deviation of the frequency
distribution increase with odour stimulus strength, up to a
limit. (ii) Frequency responses of a simulated population of
neurons expressing different receptors are approximately
lognormally distributed for weak odour stimuli and near
normally distributed for strong odour stimuli. Both families of
distributions can be described mathematically, with equations
detailing the distribution of frequencies in the response
depending on odour stimulus strength.

Conclusion: The current model is, to our knowledge, the first
computational model of the population of ORNs – i.e. of what
the olfactory bulb "sees". As the bulb is specialized for the type
of input provided by the ORNs, we believe our model could be
valuable both for generating input to computational models of
the olfactory bulb, as well as for improving understanding of the
olfactory system as a whole. Our mathematical descriptions are
much simpler to implement than the original biophysical model,
and can be used for both modelling and theoretical work.
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Recent advances in multi-electrode recording techniques in
freely-behaving animals allow the simultaneous monitoring of
large-scale neural activity patterns. Analysis of such complex
high-dimensional datasets presents challenges as the efficiency
of traditional statistical is greatly decreased when the numbers
of dimensions becomes very large. To address this issue, we
employed a series of projection methods, such as Multiple
Discriminant Analysis (MDA), Principal Components Analysis
(PCA) and Artificial Neural Networks (ANN), and compared
them with non-projection multivariate statistical methods such
as Multivariate Gaussian Distributions (MGD). We use two
simulated data sets of monkey cortical activity during face
perception or arm movements, and recorded data sets from
mouse hippocampus during exposure to startling episodic
events to illustrate how different network-level ensemble
patterns can be projected and classified in low-dimensional
encoding subspaces. We investigate how over-fitting of training
data sets, which can occur when due to experimental
constraints the number of training data points is much smaller
than the number of recorded units, can be prevented by using
regularization methods. Evaluation of discrimination accuracy of
these methods indicates that the projection methods outper-
form the multivariate methods that operate in the original large-
dimensional parameter space (MDA > PCA > ANN > MGD).
We also show that the computations implemented by the
projection methods reflect the hierarchical features implemen-
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ted in the simulated neural data sets. We conclude that
subspace projection methods, in particular MDA and PCA,
are effective not only in extracting essential features from
complex data sets, but also in allowing the visualization of the
neural network-level encoding patterns and their temporal
dynamics.
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A common stimulus reconstruction paradigm involves first
computing the receptive fields of recorded neurons (using both
spike trains and the presented stimuli), and then using the
receptive field information together with neuronal activity in
order to "predict" the pattern of stimuli based on local stimulus
features. Some brain regions (such as hippocampus) undergo
remapping of receptive fields, depending on context. How do
downstream neurons integrate the mosaic of individual neuronal
responses, with potentially varying receptive fields, to extract
global characteristics of presented stimuli?
In rodent dorsal hippocampus spatial information is encoded by
place cells, i.e. pyramidal cells that fire in a restricted convex
area of the spatial environment, and are mostly silent outside.
The receptive fields of individual place cells (place fields) can be
thus thought of as small convex domains in a two-dimensional
environment. The place fields for the same neurons re-map from
one spatial environment to another.
In this work we show how certain global features of a spatial
environment can be computed from hippocampal spiking activity
alone. In particular, we consider a variety of two-dimensional
environments which differ in the number of obstacles (or holes)
constraining the region accessible to a freely-foraging rat.
Assuming only basic properties of hippocampal place fields, we
construct an algorithm that distinguishes between these
different environments by computing standard topological
invariants (homology groups) from population spiking activity.
These invariants precisely determine the numbers of obstacles/
holes in the environment – and can be computed without ever
using any position-tracking information, or any other feature of
the rat’s trajectory through space. In particular, we never
compute place fields or any other correlations between cell
firing and external stimuli.
We tested the algorithm using simulated data, staying as close as
possible to physiological parameters seen in real data. For each
of five distinct environments, open field and N-obstacle
environments for N = 1,..,4, we simulated place cell spike trains
corresponding to a random walk. (Place fields in different
environments were completely unrelated.) The algorithm
correctly identified each environment from the population

spiking data. Furthermore, on shuffled data sets, the computed
homology groups reflected high-dimensional, non-physical
environments. We have thus shown that global features of the
spatial environment can be reconstructed from hippocampal
place cell spiking activity alone.
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Background: To what extent do pairwise correlations exist in
sensory systems? Neurons communicate independently, pair-
wise, or as large populations through features including spike
rates and interspike intervals. Previous nonlinear decoders of
the acheta domestica cercal system estimated stimuli using
responses of single primary afferent neurons and interneurons
(Z. Aldworth, T. Ganje: private communication). Here, we
develop new decoders based on multi-unit data to quantify the
interdependence of the interneuron responses. Our first
decoder estimates stimuli from a joint probability distribution.
Our second decoder assumes interneurons can be decoded
independently. Through the correlation measure �I developed
by Latham et al. [1], we demonstrate that the joint decoder
reveals more information about the stimulus than the indepen-
dent decoder.
Methods: We present repetitions of white noise sensory
stimuli to the preparation and record spike trains extracellulary.
After spike sorting, we quantize the times of spikes to create
short patterns based on interspike intervals. We approximate
marginal, conditional, and joint probabilities of stimuli and
responses to measure correlations between pairs of neurons.
For the independent interneuron decoder, we calculate the
individual stimulus-conditioned response distribution. For the
decoder which assumes the interneurons are dependent, we
calculate the joint stimulus-conditioned response distribution.
With Bayes’ theorem, we create an estimate of the joint
response and stimulus distributions for each of the two
decoders.
Conclusion: Substantial �I values indicate significant pairwise
correlations in cricket cercal interneurons. Our results imply
that decoders which incorporate correlation are needed to
understand the processing of sensory stimuli in the cricket
cercal sensory system.
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The calyx of Held is a giant glutamatergic synapse located in the
medial nucleus of the trapezoid body (MNTB) of the mammalian
auditory brainstem. It is an important model system for studying
short-term plasticity because each postsynaptic MNTB neuron
receives only one giant synapse, and it is possible to record both
pre- and postsynaptic events simultaneously. Physiological
experiments show that the evoked excitatory postsynaptic
current (EPSC) from the calyx displays a significant depression in
response amplitude during a sustained stimulus train [1]. This
observation is the result of interactions between various pre-
and postsynaptic components occurring across multiple time-
scales. Hundreds of readily releasable vesicles (RRVP) aggregate
at the different active zones on the presynaptic terminal. The
stochastic release of neurotransmitter from the RRVPs
(triggered by influx of calcium ions during action potentials,
APs), can exhaust the supply of vesicles. Simultaneously, the
depleted RRVPs are constantly replenished by a large vesicle
reserve pool, and this replenishment is also enhanced by a
calcium-dependent process (mediated by the presynaptic APs).
The amplitude of the presynaptic AP-evoked calcium ion
concentration is affected by inactivation and facilitation of
voltage-gated calcium channels as well as activation of pre-
synaptic metabotropic glutamate receptors (mGluRs).
In this study we extend our deterministic, multiple time-scale
model of the calyx of Held [2, 3] to a stochastic version. We use
information theory to measure the amount of information
transmitted between pre- and postsynaptic compartments [4].
A series of long, homogeneous Poisson spike trains with mean
frequencies up to several hundred Hertz are used to stimulate
the calyx model. This spike train is repeated many times,
allowing the calculation of the conditional and unconditional
entropy of the postsynaptic EPSC amplitude in response to
presynaptic interspike intervals (ISI). The mutual information, a
measure of the information content of the postsynaptic
response (EPSC) about the afferent spike train (ISI), is then
computed in terms of conditional and unconditional entropies.
The results show that the information content in the
postsynaptic response is influenced by the degree of variation
of presynaptic calcium ion concentration. Rapid onset and
recovery from facilitation maintains high information transfer
rates across the frequency range. Suppression of calcium
transients by slowly recovering inactivation and mGluR activa-
tion results in less information transmission, but prevents
depletion of the RRVPs. Fast-acting postsynaptic receptor
desensitisation also contributes to information transmission,
but in a competitive way to facilitation.
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Background: Adaptive rescaling adjusts the sensitivities of
sensory responses for efficient signal transmission under varying
stimulus conditions. The possibility that rescaling could improve
the performance of the vestibulo-ocular reflex (VOR) after
sensory loss has not been investigated.
Materials and methods: We recorded from isolated vestib-
ular neurons in alert cats that had recovered from peripheral
vestibular damage. Stimuli consisted of rotation at 1 Hz with
peak velocities of 10–120 deg/s. The sensitivities and dynamic
ranges of vestibular neurons were measured.
Results: Significant rescaling was seen both ipsilateral and
contralateral to the damaged side. When the peak velocity
increased by a factor of 8, the average sensitivity to rotation of
the sample of neurons decreased by roughly a factor of 2. The
dynamic ranges of central neurons and of the VOR appeared to
increase at higher peak velocities.
Conclusion: Our results suggest that after vestibular damage,
adaptive rescaling improves signal transmission by central
vestibular neurons and may act to restore the dynamic range
in the response of the VOR to rotation at high speeds.
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Although granule cell activity is crucial in defining the informa-
tion processing performed by the cerebellum, in vivo single unit
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recordings of granule cells are scarce. Granule cells, which make
more than half of all neurons in the brain, are not currently
amenable to in vivo recordings due to their small size. To
compensate for this lack of experimental data we performed an
optimization analysis that predicts the dynamics of granule cell
activity during delay eyelid conditioning. We used a simplified
version of a model developed by Mauk and Donegan to optimize
granule cell activity given that we have available eyelid
conditioned responses for interstimulus intervals ranging from
100 to 750 ms. The solutions found by the optimization
algorithm converge on three important aspects of stimulus
evoked activity of the granule cells: (a) during stimulus
presentation different granule cells become active at different
times, (b) for the majority of granule cells the duration of the
stimulus evoked responses is not dependent on the duration of
the stimulus and (c) peaks of granule cell activity are preceded
and/or followed by inhibition. While the first feature has been
suggested to be the byproduct of interactions between granule
and Golgi cells, the latter two predictions are novel. The utility
of these predictions is supported by tests in a detailed simulation
of the cerebellum.
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Previously we evaluated the metabolic cost inherent in action
potential velocity and found squid sodium channel density to be
at an energy-efficient, optimal level [1]. However, in addition to
velocity it is sensible to conjecture that metabolic energy must
also pay for information transmission. Indeed Levy and Baxter
[2] used an optimization perspective that demonstrated the
average firing rate of forebrain cortical neurons corresponds to
an optimized value of bits per unit of metabolic energy.
These two distinct optimizations force us to ask: (1) Are these
two optimizations distinct, and (2) how – in the biophysical
sense – has Nature (natural selection) addressed these two
optimizations.
The key insight, which can be seen in [3], is that a substantial
fraction of metabolic energy must be devoted to ion fluxes that
seem to do nothing. Specifically, the overlapping sodium and
potassium currents are neutralizing but the ion fluxes them-
selves must, eventually, be reversed by the Na-K ATPase pump.
We will present biophysical simulations showing that velocity
and the energy devoted to velocity can be separated from the
energy devoted to information. At the heart of this answer is the
presumed ability of Nature to evolve voltage-dependent
potassium channels with a range of possible onset delays and
the possibility of action potentials that need little if any voltage-
dependent potassium channels.
When we create a variable artificial delay of potassium channel
activation, we affect both the information rate and the metabolic
costs with little or no effect on velocity or its cost. In particular,
by altering the delay of the voltage-dependent potassium
conductance, we alter the neutralized currents without altering
the sodium current of the wave front. Thus nature can

independently evolve signalling systems that pay for velocity
and independently pay for information.
The cost of higher information rates is an increasing function of
neutralized currents. Thus we conclude the two optimizations
are separately evolvable and it is easy to identify distinct
examples in nature.
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The pyloric network in the lobster stomatogastric ganglion
(STG) produces rhythmic activity generated by a pacemaker
group of electrically coupled neurons AB (anterior burster) and
PD (pyloric dilator). The AB neuron is an intrinsic burster and is
smaller than the two PD neurons, which can either spike
tonically or burst if isolated from AB. We explored the
23-dimensional parameter space of a 4-compartment model of
this pacemaker kernel to examine why it includes two types of
neurons with different properties, and how its behavior depends
on their cellular and synaptic properties. The model consisted of
one AB coupled to one PD model neuron, each with a somato-
neuritic and an axonal compartment. Our computational
exploration started with a hand-tuned pacemaker model [1]
and systematically varied maximal conductances of membrane
currents, axial conductances, and the electrical coupling
strengths. To reduce computation time, the parameter space
of each individual neuron was first explored separately. Every
parameter set for an individual model neuron was simulated and
classified as functional if it produced biologically feasible spiking
or bursting (for PD) or bursting (for AB) activity. Specifically, we
were looking at the period, amplitude, burst duration, number
of spikes per burst, and spike frequency, which all had to be
within limits determined in our physiological experiments.
Furthermore, in order to be classified as "good," the models
had to exhibit proper responses to STG deafferentation (i.e.,
neuromodulator deprivation) as well as current injections (also
determined in our experiments). Functional single neuron
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parameter combinations were then joined with a range of
coupling strengths and again tested with current injections and
model deafferentation. Many different parameter sets per-
formed successfully under all tested conditions. This suggests
that the properties of a pacemaker kernel with multiple neurons
do not have to be narrowly tuned to achieve functional and
robust pacemaker output. Furthermore, our step-by-step
approach to selection of "good" models, allowed us to
determine criteria that are crucial for classification (e.g., proper
activity with and without neuromodulation) and others that
seem redundant (e.g., response to current injections).
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Neuronal network modeling and experiments indicate that the
same physiologically relevant patterns of the network activity
can be observed for quite different sets of neuronal parameters.
These findings imply that parameters, each of which affects
network functionality, co-vary in real networks; i.e. the
variations of these parameters must be concordant. Finding
such concordant variations can advance our understanding on
how the properties of individual neurons determine network
functionality. In particular, they may explain variability of
neuronal parameters observed in living systems, and show
possible paths for homeostatic regulation.
In this study, we sought local interrelations between neuronal
parameters that did not change network output by using the
implicit function theorem. This theorem, under certain condi-
tions, establishes the existence and uniqueness of such
interrelations, and specifies them in linear approximation. By
assessing such interrelations at different points in the parameter
space of a model of the leech heartbeat central pattern
generator (CPG) [1], we found a linear correlation between
neuronal parameters that preserve a primary output character-
istic of this CPG, the cycle period. The correlated parameters
were the maximal conductance of the spike-mediated synaptic
current, and of the hyper-polarization activated inward current,
Ih. We also found that this linear correlation was different for
model neurons with different endogenous activity: silence,
bursting or tonic spiking. For neurons of one type, however,
the correlation was similar.
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Experimental analysis in our lab has provided a quantitative
description of the spatiotemporal pattern of inhibitory
synaptic input from the heartbeat central pattern generator
(CPG) to segmental motor neurons that drive heartbeat in the
medicinal leech. To begin the process of elucidating the
relative roles of this pattern of input and motor neuron
intrinsic properties and electrical coupling in the elaboration of
the heartbeat fictive motor pattern, we constructed a
conductance-based ensemble model of all the segmental
heart motor neurons and their known synaptic inputs. Our
focus was intersegmental and side-to-side coordination of the
asymmetric motor pattern: motor neurons on one side fire
nearly in synchrony (synchronous coordination), while on the
other they fire in a rear-to-front progression (peristaltic
coordination). The model reproduces the general trends of
the two intersegmental phase relations among motor neurons,
but the match with the living system is quantitatively poor,
particularly for the peristaltic coordination mode where the
phase progression among the segmental motor neurons in
the model is only half that observed in the living system. Thus
the realistic inputs (experimentally determined) do not
produce similarly realistic output in our model.
Modeling experiments, indicate that the most important
determinant of the intersegmental and side-to-side phase
relations among the heart motor neurons in the model was
the spatiotemporal pattern of synaptic inputs, yet phasing was
influenced by electrical coupling between the motor neurons in
each segment, intersegmental conduction delays in the pre-
motor interneurons, intra-burst synaptic plasticity, and intrinsic
membrane currents of the motor neurons.
Understanding the shortcomings of the model required that we
establish experimentally the precise timing of motor neuron
activity in each segment with respect to CPG activity. This
analysis show quantitatively how motor neurons in the model
fail to fire at the appropriate time with respect to their synaptic
inputs and suggest that the intrinsic properties of the model
motor neuron are simplistic.
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Neuro-physiological experiments on monkeys [1] have reported
highly irregular persistent activity during the performance of an
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oculomotor delayed-response task. These experiments show
that during the delay period the ISI’s coefficient of variation (CV)
of prefrontal neurons is above 1, on average, and larger than
during the fixation period, regardless of whether the cue is
preferred or nonpreferred.
Previous models [2, 3] of spontaneous and selective persistent
activity in the cortex based on excitatory synaptic feedback do
not reproduce this feature because the excitatory feedback
during persistent activity brings neurons in a region of the f-I
curve in which the firing is relatively independent from
fluctuations and hence the CV is small. To overcome this
problem, we introduced two ingredients: (1) a high post-spike
reset potential (close to threshold), (2) a non-linear relationship
between synaptic efficacy and pre-synaptic firing rate via a short-
term depression (STD) mechanism.
We show that when the reset potential is close enough to the
threshold, the CV-I curve has a maximum above 1 for a sub-
threshold mean current. The range of the mean synaptic input
values for which the CV is greater than 1 is always in the sub-
threshold regime in which firing is dominated by fluctuations of
the mean synaptic input. With short-term depression, synaptic
efficacies saturate at a certain limiting value of the presynaptic
frequency; this in turn provokes a saturation of the mean
synaptic current to a neuron at the same limiting presynaptic
frequency. This allows the persistent state solution to reach
the region of the f-I curve which corresponds to high values of
the CV.
We tested this idea both with numerical simulations and
analytical techniques. For the analytical studies we used mean-
field techniques, recently extended in presence of STD [4], that
involves the use of the distribution of the interspikes intervals of
an integrate-and-fire neuron receiving a Gaussian current in
input; this permits to obtain an accurate estimate of the statistic
of the postsynaptic current in presence of STD and hence to find
the stationary states in a self-consistent way. We also simulated
both a fully connected excitatory network of leaky integrate-
and-fire neurons endowed with STD, and a cortical network
model composed of an inhibitory population and several
stimulus selective excitatory populations.
In both cases we find a large range of values of the synaptic
efficacies for which the persistent activity is irregular,
with values of the CV in agreement with the physiological
findings.

References
1. Compte A, Constantinidis JT, Raghavachari S, Chafee MV,

Goldman-Rakic PS and Wang XJ: Temporally irregular
mnemonic persistent activity in prefrontal neurons
of monkeys during a delayed response task.
J Neurophysiol 2003, 90:3441–3454.

2. Amit DJ and Brunel N: Model of global spontaneous
activity and local structured activity during delay
periods in the cerebral cortex. Cerebral Cortex 1997,
7:237–252.

3. Brunel N: Persistent activity and the single-cell
frequency-current curve in a cortical network
model. Comput Neural Syst 2000, 11:1–20.

4. Romani S, Amit DJ and Mongillo G: Mean-field analysis of
selective persistent activity in presence of short-
term synaptic depression. J Comput Neurosci
20:201–217.

P168
Emergent functional neural networks organized
by spike timing dependent synaptic plasticity
Chang-Woo Shin and Seunghwan Kim
Asia Pacific Center for Theoretical Physics, National Core
Research Center for System Biodynamics, and Nonlinear and
Complex Systems Laboratory, Department of Physics, Pohang
University of Science and Technology, San 31, Hyoja-dong,
Nam-gu, Pohang, Gyungbuk, Korea, 790-784
E-mail: shine@postech.ac.kr

BMC Neuroscience 2007, 8(Suppl 2):P168

The synchronization of neural activities plays very important
roles in the information processing in the brain. Recent studies
on complex systems have shown that the synchronization of
oscillators, including neuronal ones, is faster, stronger, and more
efficient in small-world networks than in regular or random
networks, and many studies are based on the assumption that
the brain may utilize the small-world and scale-free network
structure. The collective dynamical response and the functional
neural network structure depend on each other due to synaptic
plasticities, and this feedback process is believed to be closely
linked to the mechanisms for learning and memory in the brain.
Recent experimental studies have shown that in various brain
regions, such as the hippocampus and the neocortex, both the
sign and the magnitude of synaptic modification depend on the
precise temporal relation of spike timing of two neurons, which
is called the spike timing dependent synaptic plasticity (STDP).
Here, we study the emergent functional neural networks
organized by STDP. We show that STDP can lead a neural
oscillator network into a functional structure which has both the
small-world behaviors and the scale-free properties with
hierarchical modularity. The STDP network has small average
shortest path length between the neurons and high clustering
coefficient. The degree distributions and the clustering coeffi-
cient depending on the degree follow power-low decays. We
also show that the balance between the maximal excitatory and
the inhibitory synaptic inputs is critical in the formation of the
nontrivial functional structure, which is found to lie in a self-
organized critical state.
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Normal aging in humans and nonhuman primates is associated
with cognitive decline, particularly in tasks involving working
memory function that relies on the prefrontal cortex [1].
Because normal aging is not correlated with widespread neuron
death or gross morphological degeneration, the biological
substrate of these deficits remains unclear [2]. We have
constructed a simulated network of model neurons with
sufficient detail to model age-related perturbations to morphol-
ogy and network connectivity, in order to investigate the extent
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to which these morphological changes in single neurons could
explain the functional degradation.
Spatial working memory can be modeled with a "bump"-style
network of recurrently connected model neurons, characterized
by a continuum of dynamical attractor states that provide an
analogue of working memory of spatial orientation [3]. A bump-
attractor network (Figure 1) was constructed using branching
compartmental models of layer 2/3 neocortical pyramidal
neurons [4]. Spine number and density are reduced with age in
this neuron type [5], a morphological perturbation that was
modeled as a reduction in both recurrent network connectivity
and equivalent dendritic surface area. Network function was
quantified in terms of the dynamical stability of network attractor
states during the delay period of a simulated memory task, as well
as the robustness of task performance against perturbation of
network parameters. Stability and robustness were compared
between "young" and "aged" model neuron populations with the
multi-dimensional stability manifold method, which has been used
in a previous study to examine the dependence of network
simulations on modeling methodology [6].
By defining a stability manifold, we demonstrate how stability
and robustness can be quantified as a function of biologically
relevant perturbations to single cell morphology and network
parameters. This provides a novel technique for evaluating the
functional significance of local morphological changes, caused by
age, disease or injury, upon cognition at the organism scale.
Acknowledgements
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In neural integrator networks, transient inputs are accumulated
into sustained output signals that reflect the mathematical
integral, over time, of their inputs. This computation has been
identified as an important component of a wide variety of brain
functions ranging from accumulation of sensory evidence for
decision making to the motor control of eye movements. All
current network models of neural integration assume that the
conversion of transient inputs to sustained responses is
accomplished by feedback among recurrently connected neu-
ronal elements. Here we show that neural integration can occur
even in feedforward networks and describe the properties of
this novel class of integrators.
We consider a feedforward network consisting of multiple stages
that each have a time constant � with which they linearly filter
their inputs. We show that the effective dynamics of this network
can be reduced to that of a simple network consisting of a linear
chain of neurons with input entering one end and getting
successively filtered by each successive stage of the network. As a
result of this filtering, later stages of the network have prolonged
responses that peak at successively later times. Thus, the
network effectively forms a delay-line set of basis functions that
are localized in time and that can be flexibly summed to generate a
variety of temporal responses. We show analytically that with
appropriate choices of synaptic weights, the network can
perform a nearly perfect integral of its inputs over a duration of
time of order N� , where N is the number of stages in the
network. We further show that although the performance of the
network is best understood in terms of basis functions
corresponding to a delay-line, the responses of the actual
neurons in the network will generally be linear combinations of
these basis functions that may not be easily recognized as
originating from dynamics governed by a delay line.

Figure 1 (abstract P169)

"Bump" attractor network model receiving input encoding the
direction ’315˚’ (green neuron), with fully interconnected
populations of layer 2/3 pyramidal neurons and GABAergic
interneurons. Neurons are arranged in direction-selective columns.
Directionally-tuned input arrives along afferent collaterals (black
arrows). Excitatory connections project preferentially to cells in
similarly tuned columns (weighting in inset, upper right).
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The robustness of the network to uniform changes in all
synaptic weights can be shown analytically to be similar to that
of linear recurrent networks, exhibiting exponential decay of the
integrated activity if the weights are too small and exponential
growth until signals begin to exit the network if the weights are
too large. We show that proper tuning of the weights can be
accomplished by a homeostatic learning rule in which neurons
scale their intrinsic gain and/or synaptic weights until their
activity reaches an average target level over time.
In conclusion, this work suggests a novel mechanism for neural
integration. Although we focus on its role as an integrator, the
network bears strong similarities to previous networks
proposed for temporal sequence recognition and production.
This suggests that common underlying principles may be
relevant to a host of temporal processing computations.
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Hippocampal CA1 pyramidal cells in both rodents and humans
fire in a spatially selective manner, and are called place cells.
These place cells also display a prominent temporal code known
as phase precession. As a rat enters the place field of a cell, the
cell fires its first spike very late in the first theta cycle, but the
phase of the spikes with respect to theta steadily precesses to
lower values, all the way to 0 degrees as the rat reaches the end
of the place field. CA1 is not alone in showing such phase
precession: cells in CA3 and the dentate gyrus have long been
known to show phase precession. CA3 cells are the main source
of input to CA1. More recently, cells in layer II of the entorhinal
cortex (grid cells) have also been shown to phase precess as a
rat runs across a single grid field. These cells provide input to
both the CA3 and dentate gyrus. However, cells in layer III of
the entorhinal cortex do not show phase precession. These
layer III cells provide direct input to CA1. Here, we use
integrate and fire as well as Hodgkin-Huxley style conductance
models to explore the conditions necessary for a CA1 place cell
to ‘inherit’ phase precession from its inputs. We show how CA1
phase precession depends on the standard deviation of the
phase of its excitatory inputs, as well as on the precise timing
and strength of theta-modulated inhibitory inputs.
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The basal ganglia (BG) have been implicated in the learning of
a sequence of action selections through trial-and-error.

A reinforcement learning-based approach has proposed that
the cortico-BG circuit is involved in three basic stages of
learning: evaluation of actions, probabilistic selection of an
action, and learning from experience. The striatum and mid-
brain dopaminergic neurons have been suggested as neural
substrates for the first and third stages. Theoretical studies
have pointed out the importance of a probabilistic action
selection mechanism for learning and on-line adaptation of the
behavior. However, the neural substrate of the action selection
is still an open question. Our hypothesis for the issue is that the
indirect pathway of the BG selects an action to be executed
and the direct pathway determines the timing of its execution.
Using a conductance-based network model of spiking neurons,
we show that the dynamics in the network of the globus
pallidus external and the subthalamic nucleus in the indirect
pathway provides binary modulation on the substantia nigra par
reticulata, that signals a selected action. Furthermore, binary
modulation occurs stochastically, and the selection probability
is sensitive to inhibitory input on the globus pallidus. These
results suggests that the subthalamopallidal network is capable
of probabilistic action selection and the selection probability
can be biased by the activities of the striatopallidal projection
neurons in the indirect pathway, hence can be optimally tuned
by the strength of the cortico-striatal synapses through
dopamine-dependent plasticity. We conclude that the indirect
pathway of the BG is a neural substrate of the probabilistic
action selection.
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It has been speculated that the olfactory bulb encodes
information in the form of stimulus specific activity patterns.
One of the key features of this population activity is the
emergence of odor-specific spatial patterns of mitral cell spiking
over a time course of 200–800 ms following stimulus (-odor)
onset. We are interested in understanding the mechanisms
involved in establishing and maintaining these spatial patterns.
Here, we investigated the temporal response characteristics of
granule cell activity by imaging activity in populations of olfactory
bulb cells following bulk loading of calcium dye in olfactory bulb
slices. We found that granule cells show varied (ranging from
0–900 ms) but reliable activation latencies (std. dev. = 50 ms).
Moreover, we found that these activity patterns played a
significant role in the generation and the maintenance of reliable
spike patterns in mitral cells. Experiments in which multiple
glomeruli were stimulated showed that the latency of granule
cell activity is input specific and that individual granule cells
respond most reliably to specific temporal patterns of stimula-
tion. These data suggest that glomerular (~stimulus) identity is
encoded in the form of latencies of granule cells activity, which
in turn results in distinct stimulus specific changes in the pattern
of mitral cell activity.
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A recurrent idea in the study of complex systems is that optimal
information processing is to be found near phase transitions [1,
2, 3]. However, this heuristic hypothesis has few (if any)
concrete realizations where a standard and biologically relevant
quantity is optimized at criticality. Here we give a clear example
of such phenomenon: a network of excitable elements has its
sensitivity and dynamic range maximized at the critical point of a
nonequilibrium phase transition. Our results are compatible
with the essential role of gap junctions in olfactory glomeruli and
retinal ganglion cell output. Synchronization and global oscilla-
tions also emerge from the network dynamics. We propose that
the main functional role of electrical coupling is to provide an
enhancement of dynamic range, therefore allowing the coding of
information spanning several orders of magnitude. The mechan-
ism provides a microscopic neural basis for psychophysical laws.
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In many neural circuits, precise patterns of spike timing contain
information beyond that contained in mean firing rates. Here we
illustrate a simple mechanism by which an ensemble of leaky-
integrate-and-fire (LIF) neurons can represent continuously-varying
input signals in a timing code. Neurons that are post-synaptic to this
ensemble can reliably extract these signals (or functions thereof) in
the absence of both spike time coincidence and firing rate variations.
Irregular firing is oftenmodelled phenomenologically, for example as
a Poisson process with a rate that depends on synaptic input. In
contrast, the irregular firing of our LIF neurons is a deterministic
consequence of wide variations in applied current over the space of
inputs (e.g. Figure 1A). Applied current functions of this kind can
arise from weighted output from a previous layer, and we discuss
their establishment via Hebbian plasticity. By inclining these
functions along a preferred direction, and scaling the peaks, we
obtain a continuum between timing and rate codes.
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Trial-to-trial variability in neuronal systems can arise from the
timing of stochastically induced, rapid changes between discrete,
metastable network states. Such transitions between states
produce correlated, rapid changes in firing rates of the neurons.
The sharp changes occur at a discrete but unpredictable time in
an individual trial, but can be rendered into slow variations of
activity when standard trial-averaging is used. Hidden Markov
modeling has been used to verify such discontinuous network
activity during taste processing in gustatory cortex [1].
Here we model a network of discrete attractor states, where
taste-specific inputs bias the stochastic transitions between states
to produce a sequence that is taste-specific, as seen in the
experimental data. As in the experimental data, hidden Markov

Figure 1 (abstract P175)

Temporal coding and decoding with LIF neurons. A, Net synaptic
current (arbitrary units) experienced by an example LIF neuron, as a
function of two inputs (X and Y). B, Irregular firing in 50 different
neurons (each with different current functions) as inputs X and Y vary at
low frequency. C, Estimate of X decoded from activity of an ensemble of
1000 LIF neurons firing as in B. Black line indicates ideal decoding (post-
synaptic current dynamics applied to input X). Gray line indicates the
estimate of X by a neuron post-synaptic to the ensemble. This estimate
is a weighted sum of post-synaptic currents generated by the firing of the
ensemble. D, Firing rate histogram showing a lack of mean firing rate
dependence of an example neuron on input X, over 30 trials. In each trial
the input X is identical, but Y varies randomly.
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analysis reveals the discrete transitions between attractor states
that are obscured by trial averaging. Furthermore, we find for a
given noise level, that when external inputs provide a bias to one
attractor state rather than another, that bias more strongly
influences the trajectory of the system if the initial state remains
stable, so that the noise itself produces the transition (see Figure
1). We consider the decision-making aspect of taste processing,
"to swallow" or "to expel", as corresponding to a transition to
one of two final attractor states. We suggest that a noise-induced
transition to one of these decisive states leads to fewer mistakes
and matches the activity of recorded neurons better than the
alternative of a slowly ramping accumulation of evidence.
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33077 Bordeaux, France
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The use of multi-electrode arrays (MEA) technology
is developing in neuroscience fields like neuro-pharmacology
[1, 2], network plasticity investigation [3, 4, 5] or neurological
diseases [6] and disorders [7]. Dissociated cultures or slices are
now often employed on 60–100 multi-site arrays. Recently,
matrixes of several thousands of microelectrodes have been

developed in order to gain higher spatial resolution from the cell
scale up to large network scale. With the framework of a
European Consortium (IDEA Project) we developed a 4096
electrode MEA using the Active Pixel Sensor APS technology as
well as a computer model of cortical dissociated cultures grown
on this device including the neuron-to-electrode interface. Our
goal is to better understand the network mechanisms respon-
sible for recorded activity, and to provide integrated software
for Computer Aided Design (CAD) of neural engineering
devices. Since it was computationally too heavy to work with
thousands of interconnected Hodgkin-Huxley cell models, we
chose to implement the Izhikevich model which is known as a
good compromise between realistic cellular properties and
computation time [8]. Indeed, the classical standard leaky
integrate-and-fire cellular model can hardly mimic the rich
repertoire of intrinsic cellular properties that can be found in
biological substrates. We present here the first recordings of
high-density MEAs together with dedicated software which can
simulate the complete system composed of the electrode matrix
and the biological network grown on top. The first results of
these large-scale interconnected networks simulations (size and
number of cells similar to those recorded in vitro) are consistent
with the first recorded data using our prototype of high-density
MEAs: (i) the bursts initiation location varies randomly from one
place to another, (ii) their propagation varies with the
connectivity and the level of presynaptic firing, (iii) the average
bursting frequency with no inhibitory connections is close to
1 Hz and similar activity is obtained with bicucculin treated
dissociated culture activity. Finally, (iv) the model burst
propagation speed is about 100 mm/s and this value has also
been computed on real cultures in our lab. This tool is currently
used to optimize the design and to investigate the properties of
large-scale MEA devices under development and constitutes an
innovative neuro-engineering CAD environment.
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Figure 1 (abstract P176)

Stochastic hopping between metastable states improves
accuracy of choice. (A) Results of 100 simulations with two mutually
inhibiting populations, each of 100 neurons and fixed noise. Current is
applied to each group, with a bias to favor one outcome. With low
applied current, both populations would remain inactive (undecided
state) in the absence of noise, so a change in state corresponds to
stochastic hopping (B). With greater applied current the inactive
(undecided) state is unstable so a deterministic drive (C) causes one
population to become active.
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Background: Neural field models of firing rate activity have
played a major role in developing an understanding of the dynamics
of neural tissues [1]. In this paper we study the possibility of
synchronizing a two-dimensional neural field of excitatory and
inhibitory layers of neural masses. This is the first step toward an
investigation of the properties of visual areas in man and monkey.
Each population is described by its post-synaptic potential (PSP),
hence the state space is a two-dimensional function defined on the
2D continuum. The field is modeled by an integro-differential
equation. At a given point in the continuum this equation models the
synaptic integration of the neural mass through a linear term and the
contributions of its neighbors to the variation of its PSP through a
spatial integration of their firing rates weighted by a connectivity
function. The firing rates are classically related to the PSPs through
sigmoidal functions.
Methods: Weuse techniques from functional analysis to establish
a sufficient condition for the neural masses in the continuum to
globally synchronize. The Frechet derivative of the right-hand side of
the integro-differential equation is shown to define a compact
operator on the set of square integrable functions. The sufficient
condition described below is obtained by imposing that the
spectrum of the symmetric part of this operator be negative.
Results: We provide sufficient conditions on the connectivity
matrix of the neural field for the existence of an homogeneous
solution. We perform a classical linear stability analysis of this
solution in this multidimensional framework [2]. We then use an
extension of the contraction analysis for nonlinear systems [3]
and of the analysis of concurrent synchronization in dynamic
system networks [4] to obtain sufficient conditions for the
neural masses in the continuum to globally synchronize when
they receive the same input. In the case where the connectivity
matrix of the network is translation invariant the condition can
be elegantly expressed in terms of its Fourier transform. We
also show that this condition implies the linear stability of the
homogeneous solution.
Conclusion: The sufficient condition described above raises
interesting biological questions that may be partially answered
through such measurement techniques as Optical Imaging (OI).
Conversely, OI measurements can provide clues for the spatial
shape of the connectivity matrix. Finally these results open the
door to a principled investigation of the properties of the visual
areas in man and monkey where spatial synchronization would

be the support of spatial similarity in terms of such visual
features as color, texture, edges, optical flow.
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Variational formulation to spiking neural networks:
A top-down approach: We bring new insights to better
understand the link between spiking neural networks and
variational approaches. To do so, we consider two simple visual
tasks formulated as variational approaches, related to linear/
non-linear filtering [1] and input selection: Image denoising via
edge-preserving smoothing, and focus of attention via a winner-
take-all mechanism. Variational approaches, which refer to an
energy minimization formulation, are defined in a continuous
setting. Our goal is to show how spiking neural networks can be
used to minimize those energies. Based on some recent
advances [2, 3], including spiking neurons [4], the key point is
to understand the relation between smoothness constraints and
cortical activity diffusion (as observed with extrinsic optical
imaging). In particular, we will focus on the two following issues:
Diffusion: Depending on the task, and given the underlying
neural circuitry and computational power, how far, and how fast
should local information be transmitted (e.g., intensity, local
gradient, local movement)?
Feedback: How can different information pathways, asso-
ciated with different processing tasks, interact?
Results and discussion: Input images, encoded by means of a
simple latency code, are processed by a network of spiking neurons
generated from the variational description of the task. A simple
temporal coding scheme is used in this initial study, the underlying

Figure 1 (abstract P179)

Image denoising by a spiking neural network with local interactions
(nearest neighbors).
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idea being to analyze the possible role of synchrony as a support for
diffusing information [5]. A step further, this relates to more general
forms of computation in the brain, in terms of propagation of
information, neural coding. It has also being linked [3] to modulation
of a feed-forward processing track by various feedback mechanisms.
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Sensory input enters the cortex via the thalamocortical (TC)
projection, where it elicits large postsynaptic potentials in layer
4 neurons [1]. Interestingly, the TC connections account for
only ~15% of synapses onto these neurons. It has been
therefore controversially discussed how thalamic input can
drive the cortex. Strong TC synapses have been one suggestion
to ensure the strength of the TC projection ("strong-synapse
model"). Another possibility is that the excitation from single
thalamic fibers are weak but get amplified by recurrent
excitatory feedback in layer 4 ("amplifier model"). Bruno and
Sakmann [2] recently provided new evidence that individual TC
synapses in vivo are weak and only produce small excitatory
postsynaptic potentials. However, they suggested that thalamic
input can activate the cortex due to the synchronous firing and
that cortical amplification is not required. This would support
the "synchrony model" proposed by correlation analysis [3].
Here, we studied the effect of correlation in the TC input, with
weak synapses, to the responses of a layered cortical network
model. The connectivity of the layered network was taken from
Binzegger et al. 2004 [4]. The network was simulated using
NEST [5] with the Python interface PyNN [6] to enable
interoperability with different simulators. The sensory input to

layer 4 was modelled by a simple retino-geniculate model of the
transformation of light into spike trains [7], which was
implemented by leaky integrate-and-fire model neurons.
We found that introducing correlation into TC inputs enhanced
the likelihood to produce responses in layer 4 and improved the
activity propagation across layers. In addition, we compared the
response of the cortical network to different noise conditions
and obtained contrast response functions which were in
accordance with neurophysiological observations.
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Recent studies suggest the existence of electrical synapses (gap
junctions) in the vertebrate retina, which would be present in at
least three different circuits responsible for transmission of rod
signals to ganglion cells. In this work we present a computer
model of the receptor layer made of 900 biologically realistic
rods coupled by gap junctions. The rod model has six types of
ionic currents and the connectivity patterns within the receptor
layer are based on experimental data available from the
literature. We study the role of the gap junction coupling on
the enhancement of the dynamic range of the photoreceptor
layer beyond the dynamic range of a layer made of uncoupled
rods. Simulation results show that the presence of gap junctions
in early stages of signal processing could increase the dynamic
range of the photoreceptor layer by preventing early saturation.
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Experimental evidence demonstrates that the ongoing sponta-
neous activity in the visual cortex in the absence of visual
stimulation can exhibit complex spatiotemporal patterns.
Voltage-sensitive dye imaging studies reveal that activity patterns
similar to orientation maps can emerge and dynamically switch in
V1 of anesthetized cats [1]. It has been shown that these patterns
can be generated by an intracortical network which has intrinsic
preferred states correlated with functional maps [2]. The
suggested connectivity in such a network depends on the
preferred orientation and on the degree of orientation selectivity
of the interconnected neurons. In this network, single condition
orientation maps are steady states of the neural dynamics and
form a ring attractor. To account for dynamical switching
between these intrinsic states, we introduced short-term
depression into the synaptic connections in the network. We
study the effects of synaptic dynamics on the stability of attractor
states. We found that synaptic depression, first, stabilizes the
overall network activity excluding the possibility of amplitude
instability. On the other hand, synaptic depression provides a
mechanism of smooth transition between states corresponding
to neighboring orientations, observed experimentally. Together
with a fluctuating afferent input synaptic dynamics induce dynamic
switches between the ring attractor and linear phases. As a result,
a complex behaviour emerges with statistical properties similar
to the experimentally observed phenomena.
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Adaptation is a biologically ubiquitous process whereby features of
the system’s responsiveness change as a result of persistent input.
Most often, the kinetics of the change are monotonic and depend

upon the input frequency. Adaptation in neural systems is inherently
selective to the input characteristics; not only between sensory
modalities, but even within a given modality, the system is capable of
reducing its sensitivity to frequent input while preserving (or even
enhancing) its sensitivity to the rare (e.g. [1, 2, 3, 4]). In-vivo analyses
suggest that a within-modality selective adaptation does not require
concrete, precise point-to-point wiring (which would be a trivial yet
non-physiological realization) [5]. Indeed, theoretical considerations
indicate that, for the case of a single neuron, selective adaptation can
be explained in terms of synaptic population dynamics (e.g. [6]).
In-vitro analyses in networks of cortical neurons show that, beyond
temporal dynamics, differences between topologies of excitatory
and inhibitory sub-networks account for the full range of selective
adaptation phenomena, including increased sensitivity to the rare
[7]. Formal descriptions of selective adaptation are hindered by the
problem of representing these different topologies in an analytically
useful manner. In this study we offer a formalism that expresses
topologies of connectivity in terms of temporal input gain
modulation. Using this technique, we are able to formulate a
generic analytic model for selective adaptation, which reconstructs
all the major experimentally observed phenomena, offers predic-
tions for further experimental analyses, and caters for a rigorous
characterization of adaptation in general, and selective adaptation in
particular.
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Experiments suggest that the generation of robust, synchronized
bursting within the pre-Bötzinger complex (pre-BötC) of the
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mammalian brainstem may be critical for respiration, particularly in
low oxygen states. The intrinsic dynamics of individual respiratory
cells within the pre-BötC, in the absence of coupling, varies widely,
with some cells exhibiting tonic spiking, others generating rhythmic
bursting, and still others remaining predominantly quiescent. How
such a heterogeneous population can produce highly adaptable
synchronized bursting remains an open question.
We explored how the distribution of cell types, together with
the details of the coupling architecture, shape dynamics in a
model pre-BötC network. Dynamics of individual cells were
represented using a model developed previously, based on
experimental data from pre-BötC recordings [1]. Heterogeity
was introduced by selecting parameter values from distribu-
tions; however, we controlled the proportions of each cell type
present in each simulation. We focused on three different
coupling architectures, namely nearest-neighbor, random, and
small-world, representing extremes of order and disorder as
well as a neuronally relevant intermediate case. In small-world
simulations, we manipulated the intrinsic dynamics of the cells at
nodes involved in long-range interactions. To detect bursting in
these networks, given the complicated time course of the
overall synaptic input to each cell, we developed a novel
algorithm based on our knowledge of the dynamical mechanisms
underlying the bursting behavior in the pre-BötC model [2].
Our algorithm was able to distinguish between epochs of
bursting driven by inactivation of inward currents and epochs
of tonic spiking that were abruptly interrupted by withdrawal of
inputs. Although networks consisting solely of intrinsic bursters
can generate synchronized bursting, the presence of intrinsically
quiescent and intrinsically tonic cells was found to enhance the
coherence of bursting across the network and the adaptability of
bursting. Under appropriate conditions, tonic cells can promote
network activity, which can be sculpted into bursting through
the dynamics of other cells in the network. Quiescent cells can
lead the termination of activity, ensuring that pauses occur
between bursts (see also [3]), and can relatively cleanly transmit
activity produced by other cells, promoting synchronization.
Intriguingly, the most effective burst generation within small-
world networks occurred in those with a mixture of quiescent
and tonic cells, rather than bursters, at the long-range nodes.
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Tayfun Gürel1,2, Ulrich Egert1,3, Steffen Kandler1,3,
Luc De Raedt1,5 and Stefan Rotter1,4
1Bernstein Center for Computational Neuroscience (BCCN),
Albert-Ludwigs-University Freiburg, Germany
2Machine Learning Lab, Institute for Computer Science, Albert-
Ludwigs-University Freiburg, Germany

3Institute for Biology 3, Albert-Ludwigs-University Freiburg,
Germany
4Institute for Frontier Areas of Psychology and Mental Health,
Freiburg, Germany
5Department of Computer Science, Katholieke Universiteit
Leuven, Belgium
E-mail: guerel@informatik.uni-freiburg.de

BMC Neuroscience 2007, 8(Suppl 2):P185

Discovering the functional connectivity and modeling the
dynamics of neuronal networks is essential to understand neural
information processing. Here we focus on neuronal cultures of
neocortical tissue, which are closed system in vitro neural
networks. Recordings of spontaneous activity from neuronal
cultures using multi-electrode array (MEA) technology have
revealed that the activity is composed of irregular network-wide
bursts of spikes, even in the absence of any external stimulation
[1]. Although it is reasonable to think of ’spontaneous’
fluctuations which start a burst in these cultures, the spatio-
temporal spread of activity is nevertheless generated and shaped
by the underlying network. It is then an interesting problem to
characterize the underlying synaptic connectivity based on
activity measurements. This knowledge will help us under-
standing how a given anatomical structure generates different
activity patterns, and hence would be a significant step towards
understanding structure-function relations in the neural net-
works of the brain.
Activity dynamics in neuronal cultures display both non-linear
and non-stationary characteristics. Noise is another innate
property of those networks causing high variability of the
activity. The combination of these properties suggests the use of
automated adaptive methods, (i.e. machine learning algorithms)
to infer appropriate models of the activity dynamics. Specifically,
we propose an algorithm to learn a predictive computational
model of spontaneous activity in neuronal cultures. The learned
model may also be regarded as an abstraction of the underlying
effective network connectivity, i.e. its functional connectivity.
Although similar functional connectivity models have been
described previously [2, 3], we take a steepest descent approach
to learn functional connectivity, which naturally allows for online
learning and, hence, is able to capture network plasticity, i.e.
changes in the structure. We use the log-likelihood of point
processes as a criterion for optimization. This approach has
previously been suggested to analyse neural receptive field
plasticity [4]. Here we apply it to multi-channel recordings from
neuronal cultures, and demonstrate its use for learning
functional connectivity and predicting upcoming spike activity.
A ROC curve analysis of our experiments shows that this online
approach predicts upcoming spike activity very well.
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The mammalian medial temporal lobe is capable of generating
synchronous rhythmic activities in isolation. For example, brain
slices prepared from patients with temporal lobe epilepsy, as
well as slices prepared from normal monkey hippocampus,
exhibit spontaneous, IPSP-based rhythmic field potentials that
have frequencies of between 0.5–3 Hz. These inhibitory
rhythmic activities are mediated by GABA-A receptors, and
culminate from the network activity of local GABAergic
inhibitory interneurons. Analogous spontaneous population
rhythmic activities of 0.5–4 Hz are also evident in the isolated
rodent hippocampus. These IPSP-based population activities are
referred to as spontaneous rhythmic field potentials (SRFPs), as
they are readily detected with conventional extracellular
recordings. Several lines of evidence suggest that the SRFPs
are of physiological significance. The SRFPs spread from the
hippocampus to subicular and entorhinal cortical areas, and
their frequencies and regional spread are similar to hippocampal
electroencephalographic irregular activities that occur in
behaving animals during slow wave sleep and wake immobility.
In addition, the SRFPs appear during the 2nd postnatal week and
then persist in adulthood. Such development profile is in keeping
with activity-dependent modifications of hippocampal networks.
Moreover, field rhythms similar to SRFPs have been shown to
regulate memory-related synaptic plasticity such as long-term
potentiation. It remains to be explored whether SRFPs can be
used as a neurophysiological marker for detecting disease-
related alterations in hippocampal networks.
Rett syndrome is a neurodevelopmental condition caused by
loss of function mutations within the gene encoding methyl-
CpG-binding protein 2 (MeCP2). While a subtle decrease in
synaptic activity has been found in Mecp2-deficient mouse
cortical and hippocampal neurons, it remains to be determined
whether or how these changes affect the network activity of the
Mecp2-deficient brain. To address this issue, we examined the
SRFPs in conventional hippocampal slices via extracellular and
whole-cell patch recordings. We found that although SRFPs
were present in Mecp2-deficient slices, their frequency was
significantly reduced. This reduction was not associated with
significant alterations in the intracellular correlates of SRFPs, but
was associated with diminished glutamate receptor-mediated

excitatory activities in individual hippocampal CA3 neurons. The
diminished excitatory drive appears to contribute to the slow
SRFPs in the Mecp2-deficient hippocampus, as pharmacological
attenuation of glutamate receptor activity was sufficient to
induce similar slow SRFP activity in wild type slices. However,
high frequency electrical stimulation of CA3 circuit in Mecp2-
deficient slices did not reverse the slow SRFP phenotype, but
rather induced excitatory, sharp wave like population events
that were not observed in wild type slices. Taken together, our
data indicate that the Mecp2-deficient hippocampus displays a
reduction in basal glutamatergic activity in the CA3 recurrent
network, that this reduced activity provides insufficient drive to
the GABAergic inhibitory interneuronal network that estab-
lishes the normal SRFP frequency, but that there is a narrow
window of tolerance for the Mecp2-deficient hippocampal
network to excitatory stimulation.
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Together, the two hemispheres of the mouse cortex contain,
16 � 106 neurons and 8,000 synapses per neuron. We have
recently developed a massively parallel cortical simulator [1]
that incorporates relatively simpler single compartment spiking
neurons [2], spike-timing dependent plasticity (STDP) [3], and
axonal delays.
We created a mouse-scale network by using 32,768 "groups"
(80% excitatory) each with 500 neurons such that each group
connects to 100 randomly selected groups and each neuron
from the projecting group makes a total of c = 80 synapses with
the neurons of the receptive group. Excitatory groups had
axonal delays uniformly ranging from 1–20 ms, and inhibitory
groups had a fixed delay of 1 ms. All simulations used a 1 ms
time step. Using a BlueGene/L with 8,192 processors, with 4 TB
of memory, using a super-threshold stimulus delivered to every
neuron at 4 Hz, we were able to simulate 5 s of model time in
168 s of real-time at a mean firing rate of 4.95 Hz (in stable
mode). To further push the boundaries of scaling, by using c =
160 above, we created a network with 16,384,000 neurons and
16,000 synapses per neuron. Using 16,384 processors and 8 TB
of memory, using a 5 Hz stimulation, we were able to achieve 5 s
of model time in 265 s of real-time at a mean firing rate of 5 Hz
(in stable mode).
While it is very easy to drive a network into a damped state or
into an avalanche mode, stabilizing cortical simulations is
enormously difficult (p. 167, [4]), [5]. We found that the
allowed maximum synaptic efficacy (which upper bounds
the growth of excitatory synaptic efficacies under STDP) and
the probability of the super-threshold stimulus together greatly
affected the behavior of networks. We explored several models
with varying numbers of synapses from 1 to 16,000 synapses per
neuron. We observed that finding a range of maximum synaptic
efficacies corresponding to stable models is harder to achieve
for higher number of synapses per neuron if the stimulus
probability is kept low. Further, there appears to be a threshold
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stimulus probability below which – when maximum synaptic
efficacy is varied – models make a sharp transition from damped
to avalanche mode. For both the networks with 16,000 and
8,000 synapses per neuron, we observed three distinct modes,
namely, damped, stable, and avalanche (shown in figure 1 for the
larger network).
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Visual experience has a profound effect on cortical development
and function. Monocular deprivation early in life leads to
anatomical and physiological changes in visual cortex that result
in poor visual acuity in the deprived eye. Multiple mechanisms
mediate this synaptic plasticity in developing visual cortex,
including excitatory (NMDA, AMPA) and inhibitory (GABAA)
receptors and their subunit composition. However, as the
number of mechanisms under consideration increases beyond 2
or 3, it becomes difficult to understand the multidimensional
nature of the data and to identify the significant combinations
and interactions. We overcame this complexity by applying
Principal Components Analysis.
We conducted a comprehensive study of changes in excitatory
and inhibitory receptors in visual cortex of cats reared with
either normal vision, monocular deprivation, or monocular
deprivation followed by a short period of binocular vision. Using
Western blot analysis of samples from different regions of visual
cortex, we examined changes in excitatory (NR1, NR2A, NR2B,
GluR2) and inhibitory (GABAAa1, GABAAa3) receptor subunit

expression. Monocular deprivation promoted a complex pattern
of changes that were most severe in regions of visual cortex
where the central visual field is represented.
To understand the complex nature of these changes, we applied
a neuroinformatics approach using Principal Component
Analysis (PCA) to address the global pattern of change in these
plasticity mechanisms. The biological significance of the principal
components was determined by correlating them with the ratios
of various synaptic proteins. Principal components reflected the
overall receptor expression, the balance between excitation and
inhibition, and the maturational shift in receptor subunit
composition. PCA showed that monocular deprivation causes a
significant shift of the developmental trajectory, bypassing a large
proportion of the normal developmental path, and accelerating
maturation of the receptor subunit expression. This analysis
suggests that monocularly deprived animals have less develop-
mental plasticity and lack the molecular machinery needed for
functional maturation of cortical circuits. A brief 4 day period of
binocular vision was sufficient to restore these important
plasticity mechanisms towards that of normal animals.
The application of Principal Components Analysis allows us to
understand the overall changes in this multidimensional data and
the correlation analysis enables us to understand their biological
significance. These results provide insights into molecular
mechanisms underlying amblyopia, why binocular vision is
crucial for optimal recovery, and why recovery of vision is so
poor when deprivation extends beyond 6 weeks of age.
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Self-organizing maps provide a useful framework for exploring
the mechanisms of experience-dependent changes in auditory
representations, including those induced by learning. Such
models do a good job of explaining many of the changes in
tonotopic structure and neural sensitivities produced by
classical and operant conditioning involving pure tones [1], but
are not able to account for several effects seen after cortical
microstimulation, or after basal forebrain stimulation is
repeatedly paired with presentations of sounds containing
multiple frequencies. In particular, electrical stimulation of rat
auditory cortex produces more changes in the responses
properties of adjacent sites than they do at the site of
stimulation [2], and these receptive field changes are not
consistent with a process that makes the neighboring neurons
more similar to the most strongly activated neurons. We
developed a simple mapping network with a "center-surround"
neighborhood function, and a cumulating training function, to
assess whether such non-Hebbian learning could account for the
kinds changes in cortical response properties seen after
neurostimulation. The model exhibits many of the properties
of self-organizing maps, but with more dynamic interactions
between adjacent nodes that may better account for the
variability in auditory cortical plasticity observed experimentally.
Ongoing simulations with this model are providing new insights

Figure 1 (abstract P187)

Damped, stable and avalanche modes in network simulations.
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into how complex perceptual experiences restructure existing
cortical representations.
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Background: Functional organization in neural networks is
believed to arise from synaptic plasticity. Spike-Timing-Depen-
dent Plasticity (STDP) is a candidate for such plasticity which has
received considerable experimental support and been the
subject of considerable theoretical investigation. Our work
extends the framework developed in [1] for analyzing the
learning dynamics of STDP in feed-forward network architec-
ture to the case of recurrently connected networks.
Methods: We investigate the dynamics of a network consist-
ing of Poisson neurons recurrently connected with alpha-
synapses, where the synaptic weights are modified by a version
of STDP incorporating both rate-based and pairwise-correla-
tion-based changes [1]. The network activity is evaluated in
terms of the steady-state fixed points of its dynamic variables
(firing rates, correlations and weights, all averaged over time).
The framework has general applicability and can be applied to
any network architecture. The focus of this paper is on a fully
connected network with no external synaptic input, in which the
neurons are driven only by their spontaneous spiking-rates. This
case is not only the most accessible, but it also illustrates the
impact of recurrent connectivity upon the learning dynamics.
Results: A dynamical system involving the neuronal variables is
derived to describe the network spiking dynamics, which
involves only fairly general and well-founded assumptions on
the parameter values. For a fully recurrently connected network
with no external input, the conditions for the existence of a
stable homeostatic equilibrium of the weight dynamics are
found. The respective fixed points for both the firing rates and
the correlations are uniquely determined. A continuous
manifold of fixed points for the weights exists. Numerical
simulations confirm the stability of the predicted homeostatic
equilibrium and the equilibrium values of the spiking-rates and

the average weight. While individual spiking-rates and correla-
tions remain stable (i.e., the time evolution of their variance is
stable and relatively small), individual weights diverge on the
manifold of the fixed points due to stochastic noise in the
network. The evolution of the variance is approximately linear
for identical initial weights at the homogeneous fixed point,
similar to the case with feed-forward network structure [1].
Conclusion: The results obtained here for a recurrently
connected network with no external input are qualitatively
similar to the results obtained for feed-forward networks with
correlated inputs [1], although in the case investigated here the
correlations are intrinsic to the recurrent network. The
equilibrium values of the parameters are obtained and, although
the mechanisms are similar to the feed-forward case [1], the
quantitative values differ. The analysis of the stability of the
whole manifold of fixed points (using matrix notation) is
currently in progress. Future work involves the cases of fully
connected networks with (i) uncorrelated and (ii) correlated
external synaptic inputs, which are more relevant from a
biological point of view.
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Hebbian learning has been implicated as a possible mechanism in
a wide range of learning and memory functions in the brain.
A large body of theoretical studies and simulations has
investigated its implications in the dynamics of single neuron
as well as network models. For example, neural network models
have been found to produce meaningful internal states when
driven by structured external stimulation. These studies,
however, typically lack a notion of a "desired output" in the
form of a well specified pattern of network activity, correspond-
ing to a relevant functional output. To impose a desired input-
output relation, various forms of supervised learning (or at least
reinforcement in the form of an external cue) are often invoked.
Recently there has been increasing interest in computational
models that involve a separation of time scales between
relatively fast plasticity rules and considerably slower reinforce-
ment mechanisms. A large majority of these studies focuses on
the role of neuromodulators, such as dopamine. Here, we study
a training protocol within such a closed loop setup, with the
separation of time scales appearing between a fast learning rule
and slower synaptic fatigue.
Our model is motivated in part by a series of experiments on
ex-vivo cultures of neuronal networks [1, 2]. Such self-assembled
networks are perhaps closest in their topology to the random,
recurrent networks underlying typical neural network simula-
tion models and lack the complexity of a whole brain, or even a
slice. It is an open question whether ex-vivo cultures of neurons
and glia can support learning, and if so, what is their capacity and
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what mechanisms underlie such phenomena [2]. Here, we study
a recurrent network of integrate-and-fire neurons with
competitive Hebbian learning (STDP), subject to a learning
protocol, in which stimulation is suppressed in response to the
onset of a desired output. A local activity-dependent second
messenger is used to modulate the level of plasticity. The activity
of the network (mediated by external stimulation and reinforce-
ment) directly regulates the second messenger, thus effectively
closing the loop. We show how successful learning in these
networks depends on the interplay between the network’s
ability, first, to explore its space of configurations to obtain a
desired output, and second, to converge reliably to that
configuration in response to the external cues. These results
extend the traditional competitive view of Hebbian learning by
refining the dependency of the rule to slow (or long-term) input
patterns. By explicitly subjecting the network to (i) competitive
learning, (ii) explicit reinforcement and (iii) activity-dependent
plasticity modulation, meaningful patterns of input-output
relations can be learned by the network.
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Understanding the mechanisms of correlation detection
between pre- and postsynaptic activity at a synapse is crucial
for the theory of Hebbian learning and development [1, 2] of
cortical networks. The calcium concentration in spines was
experimentally shown to be a correlation sensitive signal
confined to the spine: A supralinear influx of calcium into spines
occurs when presynaptic stimulation precedes a backpropagat-
ing action potential within a short time window. The magnitude
of the influx depends on the relative timing tpost-tpre [3]. There is
strong evidence that NMDA (N-methyl d-aspartate) receptors
are responsible for the supralinear effect [3]. Previous simula-
tion studies relate the occurrence of spike time dependent
plasticity to this calcium signal [4, 5]. However, these
simulations mainly focus on pairs and triplets of pre- and
postsynaptic spikes, rather than on irregular activity. Here, we
investigate the properties of a biologically motivated model for

correlation detection based on the calcium influx through
NMDA receptors under realistic conditions of irregular pre- and
postsynaptic spike trains with weak correlation. We demon-
strate that a simple thresholding mechanism acts as a sensitive
correlation detector robustly operating at physiological firing
rates. We identify the regime (rate, correlation coefficient,
detection time) in which this mechanism can assess the
correlation between pre- and postsynaptic activity. Further-
more, we show that correlation controlled synaptic pruning acts
as a mechanism of homeostasis, and that cooperation between
synapses leads to a connectivity structure reflecting the spatial
correlations in the input. The detector model allows for a
computationally effective implementation usable in large-scale
network simulations. On the single synapse level most of the
results are confirmed by an analytical model.
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Identifying plasticity in cortical neural ensembles is important in
studying systems neuroscience to permit tracking the dynamics
of biological cortical networks during learning and behavior.
Recently, we proposed an algorithm to identify clusters of
neurons that exhibit functional interdependency in local and
global contexts across multiple time scales. In this paper, we
examine the applicability of the algorithm to identify and track
functional plasticity in a probabilistic point process model of
integrate and fire neural network with time varying synaptic
coupling. Three types of coupling between the neurons are
considered: auto-inhibition, cross-inhibition, and excitation.
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A stimulus-dependent synaptic plasticity is induced randomly to
mimic artificial sensory inputs. The results demonstrate that
when the stimulus input duration increases such that new
synaptic coupling occurs between otherwise uncoupled neu-
rons, the algorithm correctly identifies the change in the circuit
topology indicated by the number of clusters of functionally
interdependent neurons and their labels. We report the
clustering performance of the approach applied to simulated
data with spontaneous activity as well as a stimulus driven
activity across multiple trials.
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Introduction: Structural changes in neuronal networks occur
not only during development but also in adulthood. Modern
imaging techniques have shown pronounced structural plasticity
in the living animal, e.g., spontaneous spine dynamics and axonal
turnover. Furthermore, network rewiring is a precondition for
integrating new neurons into mature neural networks, as occurs
in the hippocampal dentate gyrus. In contrast to the importance
of structural plasticity in biological neural networks, most
models of neural networks only include synaptic plasticity. To
our knowledge, only two models exist that study structural
neural network formation [1, 2]. However, these models lack a
precise representation of individual synapses and do not allow
for the modelling of neurogenesis. Here, we present a new
model for activity-dependent structural plasticity that imple-
ments separate axonal and dendritic elements in order to model
synaptic turnover and neurogenesis. We have applied the model
to two situations. First, we used the model to explain the
different response with respect to prefronto-cortical connec-
tivity to enriched and impoverished rearing in an animal (gerbil)
model of psychosis [3]. In this animal model, the PFC is
disinhibited by applying methamphetamine (MA). Second, we
used the model to account for the observed inverse relation
between cell proliferation and synaptogenesis in the hippocam-
pal dentate gyrus.
The model: The model consists of simple integrate-and-fire
neurons, which can be either excitatory or inhibitory. When the
activity of a neuron deviates from a desired value, structural
changes in connectivity occur to restore the desired level
(homeostatic plasticity). The activity-dependent homeostatic
outgrowth rules in Van Ooyen et al. [2] were transferred to
discrete excitatory and inhibitory axonal (Ai) and dendritic
elements (Bi):

�Ai :¼ v � �Si � Ai; �Bexc
i :¼ �v � �Si � Bexc

i ;

and �Binh
i :¼ v � �Si � Binh

i

where v gives the velocity of synaptic changes and �si is the
deviation of the neuronal average activity from a desired mean
value. In addition, new cells can be added, which then integrate
into the network following the above rules. Cells are deleted

(apoptosis) if their average activity is very much higher or lower
than the desired value [4].
Results: Prefronto-cortical connectivity: The simulation
revealed that the course of structural reorganisation shaping
excitatory and inhibitory connections depend on the previous
network connectivity. Under enriched-rearing, early well-
matured prefronto-cortical networks compensate a MA induced
disinhibition by reducing excitatory contacts. Under impover-
ished rearing, in contrast, weakly connected networks profit
from the activation (caused by disinhibition) and increase
connectivity and rather compensate the disinhibition by
increasing GABA inhibition. Cell proliferation versus synaptogenesis
in the hippocampus. The inverse relation between cell prolifera-
tion (CP) and synaptogenesis occurs because high CP rates
rapidly exhaust available synaptic elements, whereas moderate
CP rates leave enough synaptic elements for subsequent
synaptogenesis. In general, the model suggests that activity-
dependent homeostatic plasticity underlies structural changes
observed in adult cortical and hippocampal networks.
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Previous experimental results and simulation studies show that
similar spontaneous electrical activity can arise from different
cellular and synaptic properties, both at the level of single
neurons and at the level of neuronal circuits [1, 2]. Neuronal
circuits thus appear to have large "solution spaces" at their
disposal, rather than having to fine-tune their cellular and
synaptic parameters to specific values in order to function
properly. On the other hand, neuromodulators often have
reliable and reproducible effects on the same circuit in different
animals [3]. If different animals generate the same circuit output
on the basis of different circuit properties, how can they react in
the same way to application of a neuromodulator?
To address this question we separately simulated the cellular
and synaptic effects of the IA channel blocker 4-aminopyridine
(4-AP) and of dopamine in 452,516 models of the pyloric
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pattern-generating network of crustaceans. These three-cell
circuit models differed substantially in their cellular membrane
conductance composition and in the strengths of the seven
synapses in the circuit, but all 452,516 circuit models had
previously been shown to generate spontaneous network
activity that closely mimics the biologically observed pyloric
rhythm [2]. We then identified those pyloric network models
among the 452,516 original models that responded to applica-
tion of 4-AP or dopamine in the same way that the biological
circuit responds [3, 4] with respect to rhythm criteria such as
period, burst frequencies, and duty cycles.
For both 4-AP application and dopamine application, we found
that only a subset of the original 452,516 network models showed
a response similar to that of the biological circuit. This implies
that although similar spontaneous circuit activity can arise from
different circuit properties, the requirement that a circuit
respond correctly to neuromodulation can impose additional
constraints on circuit parameters and thus decrease the size of
the solution space available to a neuronal circuit. However, the
subset of network models that performed correctly during
simulated application of 4-AP or dopamine contained models that
differed widely in some of their cellular and synaptic parameters.
This suggests that even neuronal networks that need to be able to
generate a variety of biologically functional behaviors in the
presence of different neuromodulators can do so without having
to narrowly tune their circuit parameters.
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As suggested by recent experimental evidence, a spontaneously
active neural system that is capable of continual learning should

also be capable of homeostasis of both activity and connectivity.
The connectivity appears to be maintained at a level that is
optimal for information transmission and storage. We present a
simple stochastic computational Hebbian learning model that
incorporates homeostasis of both activity and connectivity, and
we explore its stability and connectivity properties. We find that
homeostasis of activity and connectivity imposes structural and
dynamic constraints on the behavior of the system. For instance,
the connectivity pattern is sparse and activation patterns are
scale-free. Additionally, homeostasis of connectivity must occur
on a timescale faster than homeostasis of activity. We
demonstrate the clinical relevance of these constraints by
simulating a prolonged seizure and acute deafferentation. Based
on our simulations, we predict that in both the post-seizure and
post-deafferentation states, the system is over-connected and,
hence, epileptogenic. We further predict that interventions that
boost spontaneous activity should be protective against
epileptogenesis, while interventions that boost stimulated or
connectivity-related activity are pro-epileptogenic.
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Learning agents, whether natural or artificial, must update their
internal parameters in order to improve their behavior over
time. In reinforcement learning, this plasticity is influenced by an
environmental signal, termed a reward, which directs the
changes in appropriate directions. We model a network of
spiking neurons as a Partially Observed Markov Decision
Process (POMDP) and apply a recently introduced policy
learning algorithm from Machine Learning to the network [1].
Based on computing a stochastic gradient approximation of the
average reward, we derive a plasticity rule falling in the class of
Spike Time Dependent Plasticity (STDP) rules, which ensures
convergence to a local maximum of the average reward. The
approach is applicable to a broad class of neuronal models,
including the Hodgkin-Huxley model. The obtained update rule
is based on the correlation between the reward signal and local
data available at the synaptic site. This data depends on local
activity (e.g., pre and post synaptic spikes) and requires
mechanisms that are available at the cellular level. Simulations
on several toy problems demonstrate the utility of the approach.
Like most stochastic gradient based methods, the convergence
rate is slow, even though the percentage of convergence to
global maxima is high. Additionally, through statistical analysis
we show that the synaptic plasticity rule established is closely
related to the widely used BCM rule [2], for which good
biological evidence exists. The relation to the BCM rule
captures the nature of the relation between pre and post
synaptic spiking rates, and in particular the self-regularizing
nature of the BCM rule. Compared to previous work in this
field, our model is more realistic than the one used in [3], and
the derivation of the update rule applies to a broad class of
voltage based neuronal models, eliminating some of the
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additional statistical assumptions required in [4]. Finally, the
connection between Reinforcement Learning and the BCM rule
is, to the best of our knowledge, new.
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Spatially-modulated firing of hippocampal ’place cells’ is thought
to subserve spatial learning in the rat. Ensemble recordings have
shown that these cells re-express behavioral firing sequences
during sleep. Recently, replay of the reverse of behavioral
sequences has been reported in the awake rat at reward sites.
These phenomena are hypothesized to play a role in memory
formation and consolidation.
Here we report findings from simultaneous recordings of
ensembles of place cells in area CA1 of the hippocampus during
exploration of a 10 m linear track. In contrast to existing replay
detection methods which look for patterns in the spiking
records of cells, we employ a Bayesian algorithm to reconstruct
the position stimulus, and detect replay as trajectories in the
stimulus space. Notably, due to the directionality of the
recorded place cells, we can reconstruct both the animal’s
position and direction of movement, which allows us to
differentiate between forward and reverse replay.
We apply our method to periods of immobility, and find that both
forward and reverse replay are prevalent. Either the start or end
point of the replayed trajectories are often anchored to the rat’s
current location. We detect significant replay events several
times per minute. Replay episodes have a mean duration of
~300 ms (max. 700 ms); replayed trajectories span on average ~3 m
of the track (max. 8 m) with a corresponding ’virtual’ velocity of
8 m/s (0.3 m/s s.e.m.). Replay is correlated with increased power in
the ripple-band (150–250 Hz) in the local field potential.

These findings show that place cells in the hippocampus of
the behaving rat can express patterns of activity corresponding
to traversal of remote locations. The observed ’virtual’
trajectories proceed in both the forward and reverse order
and extend across a longer timescale than has previously been
appreciated.
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We argue that kernel-based learning algorithms and, more
generally, linear-in-the-parameters learning are more biologi-
cally plausible than has been supposed, and that they can be
combined with neural-network ideas to gain advantages of both
approaches. 1. While linear-in-the-parameters learning is fast, it
seems to waste neurons because it does not permit as high a
ratio of adjustable synapses to cells as does nonlinear learning.
But we show that the ratios become comparable as the number
of output variables increases – i.e. linear learning becomes
plausible when one considers that a brain has to learn many
different, high-dimensional tasks. 2. Fast linear algorithms like
RLS involve computations with large matrices, but we show that
the matrices needn’t be represented in transmissible form, in
cell firing, but can be stored in synapses, which are much more
plentiful than cells in the brain – i.e. there is, plausibly, enough
storage space for these matrices. 3. Linear algorithms train just
one layer of synapses, but with appropriate internal models we
show how the process can be repeated at different stations in
series, to get supervised learning at many different layers. 4. We
show that it is possible to back-propagate through kernels,
without needing the weight transport that is the implausible
aspect of backprop, and so get more-effective feature-shaping
than is normally possible with kernel methods. 5. We show that
linear learning does not imply that most, or even necessarily any,
neurons stay inside their linear ranges. 6. More speculatively, we
point out that aspects of kernel-network learning agree with
certain of our intuitions about learning and memory, e.g. that at
least some kinds of memory consist largely of specific
experiences, not blends, and that when an experience is
repeated over and over, we remember later instances less well.
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Dendrites are not static structures, new synaptic connections
are established and old ones disappear. Moreover, it is now
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known that plasticity can vary with distance from the soma [1].
Consequently it is of great interest to combine learning
algorithms with spatially extended neuron models. In particular
this may shed further light on the computational advantages of
plastic dendrites, say for direction selectivity or coincidence
detection. Direction selective neurons fire for one spatio-
temporal input sequence on their dendritic tree but stay silent if
the temporal order is reversed [2], whilst "coincidence-
detectors" such as those in the auditory brainstem are known
to make use of dendrites to detect temporal differences in
sound arrival times between ears to an astounding accuracy [3].
Here we develop one such combination of learning and dendritic
dynamics by extending the "Spike-Diffuse-Spike" [4] framework
of an active dendritic tree to incorporate both artificial
(tempotron style [5]) and biological learning rules (STDP
style [2]).
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In control theory, variables called sensitivity derivatives
quantify how a system’s performance depends on the
commands from its controller. Knowledge of these derivatives
is a prerequisite for adaptive control, including sensorimotor
learning in the brain, but no one has explained how the
derivatives themselves could be learned by real neural
networks, and some say they aren’t learned at all but are
known innately. Here we show that this knowledge can’t be

solely innate, given the adaptive flexibility of neural systems.
And we show how it could be learned using forms of
information transport available in the brain. The mechanism,
which we call implicit supervision, explains how sensorimotor
systems cope with high-dimensional workspaces, tools, and
other task complexities. It accelerates learning and explains a
wide range of findings on the limits of adaptability, which are
inexplicable by any theory that relies solely on innate
knowledge of the sensitivity derivatives.
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A motor system must be able to adapt to perturbations in a fast
and robust way. Additionally, in the long run learning leads to
motor skills which, for example, allow humans to move the
forearm with varying speeds. A generally excepted view on
motor learning includes forward models that are generated on
top of an existing control loop provided by reflexes. Through
closed-loop feedback control a much improved motion
sequence "without thinking" can be executed and later be
adapted to changes in the environment. In this study we show
that it is possible to combine temporal sequence learning with
compliant joints and antagonistic muscle control to learn a
forward model of a reflex.
We also show that the model is executed with the required
strength, which depends on self-induced perturbations or
external forces. Here self-induced perturbation means, for
example, the change of torque by accelerating the forearm. For
this purpose we apply a learning rule paired with recruitment
which we have recently introduced. The rule correlates the
mono-synaptic reflex loop provided by each muscle with an
anticipative control signal which is used to move the upper arm
segment of a two-joint arm. Without learning the deviation is
compensated after some delay. After learning the antagonistic
muscle pair stiffens and immediately reacts to the self-induced
disturbance with the required muscle force. With this simple
recruitment mechanism it is also possible to compensate
different forces, caused by varying upper arm accelerations,
without delay and re-learning. This kind of learning creates a
forward model of the already existing mono-synaptic feedback
loop and we are able to show that applying learning with
recruitment to a compliant motor control structure quickly
compensates self-induced disturbance.
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As a motor skill is learned, behavior progresses from execution
of movements that appear to be separately generated to
recruitment of a single entity. Movements come to be executed
more quickly, require less attention, and behavior loses
flexibility. Neural activity also changes. Task-related neuron
activity during a movement executed as part of a motor skill
differs from that during the same movement executed alone.
Also, cortical planning areas (e.g., frontal and prefrontal
cortices) dominate control early in learning, while less cognitive
areas (e.g., striatum) dominate later. The change in behavior and
neural activity suggests that different control strategies and
systems are employed as the motor skill develops.
We propose that the behavioral and neural progression is due
to a transfer of control to different types of controllers: explicit
planner, which selects movements by considering the goal; value-
based, which selects movements based on estimated values of
each choice; and static-policy, in which a sensory cue directly
elicits a movement – no decision is made. Explicit planners
require much computation (and thus time and attention) and
pre-existing knowledge, but are able to make reasonable
decisions with little experience and are flexible to changes in
task and environment. Static-policy controllers require little
computation and knowledge, but must be trained with
experience and are inflexible. Value-based controllers have
intermediate characteristics. Neural systems can implement
these mechanisms: frontal cortices conduct planning, striatum
and prefrontal cortex estimate values, and the static policy
controller can be implemented by a direct mapping, such as
thalamus (sensory) to striatum (motor). The progression of
the behavior and neural systems associated with the progression
of the controllers is similar to that seen in motor skill
development.
We test the validity of this scheme with computational models –
based on biologically plausible mechanisms and architecture – in
which an agent must execute a series of actions (analogous to
movements), elicited by the controllers, to solve tasks. As the
succeeding controller is trained, it selects a movement faster
than the preceding controller, which relinquishes control. By
comparing model behavior to human and animal behavior in
analogous tasks, we show that it exhibits qualities indicative of
motor skill acquisition. We also investigate how task specifica-
tion and environmental conditions affect motor skill develop-
ment and strategy, how the presence of existing motor skills
affect the agent’s strategy in solving other tasks, and the parallels
between resulting model behavior and human and animal
behavior.
Previous models have investigated how different controllers
participate in biological decision making [1] and motor control
[2, 3, 4]. While each model has unique properties, they all show
that the availability of different controllers improves learning
and behavior.
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Background: Most research in vision systems has been
focused on the fully developed visual system of adult humans.
During early developmental stages, there are communication
pathways between the visual and other sensory areas of the
cortex, showing how the biological network is self-organizing.
Within a few months of birth, the brain can differentiate faces
from other faces or objects from other objects.
Proposal: In this research, we investigate the learning
process of face and object recognition of the infant’s brain.
The biological hypotheses of this model are based on the role
of responses to low frequencies in early stages [1], and some
conjectures concerning to how an infant detects subtle
features (stimulating points) in a face or object [2]. We
simulate the infant’s brain using the dynamic associative model
(DAM) deeply described in [3]. This model changes their
synapse connection strengths according to an input stimulus
based on the Hebbian learning rule. The model for infant vision
consists of a DAM used to recognize different images of faces
and objects. As the infant vision responds to low frequencies
of the signal, a low-filter is first used to remove high frequency
components from the image. Then we detect subtle features in
the image by means of a random selection of stimulating
points. At last, the DAM is fed with this information for
training and recognition (Fig. 1).
Results: To test the accuracy of the model, we performed two
experiments. In experiment 1, we used a benchmark of faces of
15 different people (Fig. 2). In experiment 2, we use a
benchmark of 5 objects (Fig. 3). During the training process in
both experiments, the DAM performed with 100% accuracy
using only one image of each person and object. During testing,
the DAM performed in average with 99% accuracy for the
remaining 285 images of faces (experiment 1) and 99% accuracy
for the remaining 90 images of objects (experiment 2) by using
different sized-filter and stimulating points.
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Conclusion: The model learned to distinguish faces and
objects accurately in a similar manner that an infant’s brain
builds the neural connections after birth. Preprocessing images
used to remove high frequencies and random selection of
stimulating points contribute to eliminating unnecessary infor-
mation and help the DAM to learn efficiently the faces and the
objects. Successful results suggest the proposal could serve as a
biological model to explain the learning process in infant’s brain
for face and object recognition.
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Children learn to name the objects they see by forming general
associations between the words they hear and the images

Figure 1 (abstract P204)

Schematic representation of the model.

Figure 2 (abstract P204)

Some of the 20 images of each person with different gesticulations used in experiment 1.

Figure 3 (abstract P204)

Some of the 20 images of each object at different orientations (from 0 to 95 degrees) used in experiment 2.
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arriving at their retina. Discriminative neural network models
can also be taught to classify objects, but to do so they require
more information about how images pair with words (i.e.
supervised data) than the brain seems to receive. We propose
that the brain exploits unsupervised learning on raw sensory
input to compensate for the scarcity of supervised data in its
environment. Here we show that artificial neural networks
which first develop a statistical model of the world in an
unsupervised fashion are capable of learning good image-word
pairings using dramatically less supervised data. This idea may
help to explain how the brain learns sensorimotor problems for
which there is little feedback available about the success of
selected actions.
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We describe the theoretical formulation of a learning algorithm
in a model of the primary visual cortex (V1) and present results
of the efficiency of this algorithm by comparing it to the
SparseNet algorithm [1]. As the SparseNet algorithm, it is based
on a model of signal synthesis as a Linear Generative Model but
differs in the efficiency criteria for the representation. This
learning algorithm is in fact based on an efficiency criteria based
on the Occam razor: for a similar quality, the shortest
representation should be privileged. This inverse problem is
NP-complete and we propose here a greedy solution which is
based on the architecture and nature of neural computations
[2]). It proposes that the supra-threshold neural activity
progressively removes redundancies in the representation
based on a correlation-based inhibition and provides a
dynamical implementation close to the concept of neural
assemblies from Hebb [3]). We present here results of
simulation of this network with small natural images (available at
http://incm.cnrs-mrs.fr/LaurentPerrinet/SparseHebbianLearning)
and compare it to the Sparsenet solution. Extending it to realistic
images and to the NEST simulator http://www.nest-initiative.org/,
we show that this learning algorithm based on the properties of
neural computations produces adaptive and efficient representa-
tions in V1.
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We propose a model of basic motion perception consisting of a
hierarchical non-linear state space model (NSSM) developed
within a variational Bayesian (VB) framework. Each level of the
hierarchy is a ‘cause’ that generates a prior distribution on the
level below via a generative function.
The temporal dynamics and generative functions between layers
of the hierarchy are implemented as neural networks with non-
linear activation functions. Optimization of model parameters
and causes proceed concurrently as a combination of fixed-point
rules and gradient decent schemes. To make the optimization
problem tractable, the standard mean-field and Laplace approx-
imations are employed. The precise factoring used in the mean-
field approximation is designed to meet a balance between
tractability, neurological plausibility and modeling power. In this
approach inference and learning proceed concurrently, in an
online and unsupervised fashion.
Other work has produced similar implementations of NSSMs
that have been successful in predicting low-dimensional
temporal signals, but with highly restrictive assumptions on
the form of the posterior distributions and with learning done in
batches instead of online [1].
Competing work has relaxed many of these implementation
assumptions and achieved prediction of high dimensional input
but at the cost of discarding VB techniques in favor of inefficient
discrete state-space methods [2]. Moreover, such techniques
have been demonstrated only with pre-learned weights and
simplistic statistical models.
Our model is primarily tested on realistic high-dimensional input
generated by randomly moving dots over a detection grid. The
results from a spiking neuron implementation of the model
based on the Neural Engineering Framework (NEF) are
compared directly to single cell recordings in random dot
motion perception and decision-making tasks.
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