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Grid Cells and Theta as Oscillatory Interference:
Theory and Predictions

Neil Burgess®

ABSTRACT:  The oscillatory interference model [Burgess et al. (2007)
Hippocampus 17:801-802] of grid cell firing is reviewed as an algorith-
mic level description of path integration and as an implementation level
description of grid cells and their inputs. New analyses concern the rela-
tionships between the variables in the model and the theta rhythm, run-
ning speed, and the intrinsic firing frequencies of grid cells. New simula-
tions concern the implementation of velocity-controlled oscillators
(VCOs) with different preferred directions in different neurons. To sum-
marize the model, the distance traveled along a specific direction is
encoded by the phase of a VCO relative to a baseline frequency. Each
VCO is an intrinsic membrane potential oscillation whose frequency
increases from baseline as a result of depolarization by synaptic input
from speed modulated head-direction cells. Grid cell firing is driven by
the VCOs whose preferred directions match the current direction of
motion. VCOs are phase-reset by location-specific input from place cells
to prevent accumulation of error. The baseline frequency is identified
with the local average of VCO frequencies, while EEG theta frequency is
identified with the global average VCO frequency and comprises two
components: the frequency at zero speed and a linear response to run-
ning speed. Quantitative predictions are given for the inter-relationships
between a grid cell’s intrinsic firing frequency and grid scale, the two
components of theta frequency, and the running speed of the animal.
Qualitative predictions are given for the properties of the VCOs, and the
relationship between environmental novelty, the two components of
theta, grid scale and place cell remapping. o 2008 Wiley-Liss, Inc.

KEY WORDS: path integration; spatial navigation; entorhinal cortex,
hippocampus; computational model

INTRODUCTION

The discovery of grid cells in layer II of the medial entorhinal cortex
(mEC) of freely moving rats (Hafting et al., 2005) has sparked enor-
mous theoretical interest. In brief, these cells fire in an array of locations
describing the vertices of a regular triangular array across the environ-
ment. Neighboring grid cells describe identical but spatially offset arrays.
As the recording location moves down the dorso-ventral axis of the
medial EC the spatial scale of the grids increases (Hafting et al., 2005),
and appears to do so in quantized steps, while the orientation of the
grids remains the same (Barry et al., 2007). The resulting attempts to
understand the function supported by the grid cells, and the mecha-
nisms underlying their striking spatial firing patterns can be thought of
in terms of Marr’s three levels of analysis (Marr, 1975; Marr and Poggio,
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1977): “computational”—the problem to be solved;
“algorithmic”—the algorithm by which it is solved;
“implementational’—how the algorithm is imple-
mented in the brain.

There has been a surprisingly rapid and general
agreement that the computational problem to which
grid cells provide a solution is “path integration”
within an allocentric reference frame (Hafting et al.,
2005; Fuhs and Touretzky, 2006; McNaughton et al.,
2006). More specifically, the entorhinal grid cells and
hippocampal place cells (O’Keefe and Dostrovsky,
1971) may together provide an internal representation
of the animal’s location within its environment, with
the grid cells enabling self-motion information to
cause an appropriate translation of the represented
location while place cells enable the association of the
representation to sensory input specific to particular
locations and environments (O’Keefe and Burgess,
2005). This would be consistent with previous sugges-
tions regarding the relationship between these two
regions (Redish and Touretzky, 1998).

Two basic solutions have been proposed at the algo-
rithmic level. First, grid cell firing, and its updating
by self-motion, may result from “continuous attrac-
tor” dynamics imposed on neuronal activation by
the recurrent connections between grid cells (Fuhs
and Touretzky, 2006; McNaughton et al., 2006).
These models have two critical features. Finely
which

ensure that the ensemble of connected grid cells

tuned symmetrical recurrent connections
maintain grid-like patterns of firing. In addition, an
asymmetrical interaction between grid cells causes
their pattern of activity to move so as to track the
of the This model
extends previous models of place cell firing
(McNaughton et al., 1996; Zhang, 1996; Samsono-
vich and McNaughton, 1997).

The second algorithmic level solution is that grid

actual movements animal.

cell firing, and its updating by self-motion, may result
from the interference between two or more oscillations
whose frequencies differ according to the velocity of
the animal (Burgess et al., 2007). The key insight is
that the phase difference between two oscillations,
which determines the amplitude or “envelope” of the
interference pattern they generate, is the time integral
of their frequency difference. This allows the amplitude
of neuronal activity to be modulated by the displace-
ment of the animal, since displacement is the time inte-
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gral of velocity. If different pairs of oscillators are sensitive to the
components of velocity in specific directions, grid-like firing pat-
terns can be the net result, see below. This model extends a
model of the temporal characteristics of hippocampal place cell
firing (O’Keefe and Recce, 1993; Lengyel et al., 2003). Both
oscillations are assumed to be in the theta band (7-11 Hz in
adult freely-moving rats), and the difference between them is
assumed to be due to a change in frequency of one of the oscilla-
tors caused by depolarization by a velocity-dependent synaptic
input i.e., it operates as a velocity-controlled oscillator.

Evidence for the implementation of the continuous attractor
solution in mEC comes from the finding of grid cells in the
deeper layers (III and V) whose firing rate is modulated by the
direction and speed of running. These cells might mediate the
required asymmetrical interaction between the grid cells in layer
IT (Sargolini et al., 2006b) which must effectively connect grid
cells whose grids are spatially offset in the direction of motion
with connections whose strength reflects the animal’s speed of
running in that direction.

Here I review the operation of the oscillatory interference
model at the algorithmic and implementational levels. I focus
on how it might be implemented by the neurons in mEC, and
on the testable predictions it generates, extending previous dis-
cussion of this (Burgess et al., 2007). Jeewajee et al., (2008) con-
sider the extracellular evidence for implementation of the model
in mEC, while (Giocomo et al., 2007; Giocomo and Hasselmo,
2008) consider intracellular evidence in slices. I briefly consider
the relationship between the oscillatory interference and contin-
uous attractor models in the discussion.

Although accounts of grid cell firing naturally focus on mEC,
since the over-whelming majority of data comes from this
region, I note that grid cell firing may actually be generated in
areas projecting into mEC, such as the presubiculum (Sargolini
et al., 2006a). For this reason, and for reasons of clarity, I
attempt to identify the testable predictions of the model at a
level of abstraction suitable for application beyond mEC.

THE ALGORITHM FOR PATH INTEGRATION BY

VELOCITY-CONTROLLED OSCILLATORS

Linear Path Integration by a
Velocity-Controlled Oscillator

The phase of an oscillation is the time integral of its fre-
quency, i.e., given an initial phase @(0), an oscillation with
time varying frequency f(t) will have phase at time r given by:

t

0() = 0(0) + [ 2nf(2)dx

0

(1)

Similarly, the phase difference between two oscillations is the time
integral of their difference in frequency. This provides a useful
mechanism for temporal integration (see also, Huhn et al., 2005).

Hippocampus

In the context of considering the relative phases of the two
oscillations it is convenient to think of one of them as provid-
ing a “baseline” frequency f;(#), and the other as providing an
“active” frequency f(z) which can vary relative to the baseline
frequency. The relationship of the baseline frequency to the
EEG theta rhythm is considered in detail in a following sec-
tion. The frequency of the active oscillation (or oscillations, see
below) is assumed to be generated by an intrinsic membrane
potential oscillation (MPO) whose frequency f;(#) varies relative
to the baseline frequency fi(#) according to the depolarization
of the membrane.

More generally, both oscillations could be “active” and the
difference between their frequencies is what matters. The fol-
lowing sections consider the implementation of the model in
more detail, including how it relates to MPOs, neural firing
and the theta rhythm. See Table 1 for a glossary of symbols
and acronyms used.

The main assumption of the model is that the frequency of
the MPO £,(?) is controlled by synaptic input from a cell or
cells whose net firing rate (and thus depolarizing effect) reflects
running speed in a “preferred” direction

fil#) = () + Bu(e) 4 (2)
where v is velocity, 4 is a unit vector indicating the preferred
direction,  is a positive constant and “.” indicates the vector
dot product. An alternative formulation of the same equation

would be

fu(2) = fo(2) + Bs(z) cos(d(2) — da) (3)
where 5(2) is running speed, ¢(?) is running direction and ¢y is
the preferred direction. Examples of cells whose firing rate
reflects running speed in a particular direction (speed-modu-
lated head-direction cells) can be found in the presubiculum
(Jeewajee, 2008) and mEC (Sargolini et al., 2006b).

Now, since the frequency difference between the two oscilla-
tions is proportional to speed of running in a particular direc-
tion, their difference in phase at a given time 7, referred to as
Q8 = @) — op(®), will reflect the rat’s displacement in
the preferred direction:

12

0 (0) — 9u(0) = / 2lfi(1) — fo(0)ldt = / 2(Bu(c) d]d

= 2nBx(¢) — x(0)].4

(4)
where x(#) is the location of the animal at time # Thus the fir-
ing rate code for direction and speed of running of head direc-
tion cells is transformed into a phase code in which displace-
ment in the preferred direction is represented by the phase of
the active oscillation relative to the baseline oscillation. I refer
to the above mechanism for performing this transformation as
a velocity-controlled oscillator.

Note that the representation of displacement is cyclical, as
expected from a phase code. However, different grid cells with
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Glossary of Symbols and Acronyms

Symbol Meaning

Notes

Measurable extra-cellular quantities

o(f) Running direction

s(t) Running speed

o(t) Running velocity

G Spatial scale of the grid
fi(t) Intrinsic firing frequency
fo(t) Theta frequency

fo Theta frequency extrapolated to
zero running speed
Symbols and acronyms describing the model

Distance between adjacent firing fields

Estimated from spike-train autocorrelogram. Assumed to reflect neuron’s MPO frequency
Measured from the extra-cellular EEG. Assumed to vary with running speed

Intercept of the plot of theta freq. fo(t) (or intrinsic freq. fi(f)) versus running speed s(f)

MPO whose frequency (f,) increases with depolarization by a velocity-dependent synaptic

Running direction producing the VCO’s maximum frequency. Shown as a unit vector d or

The gain of the VCO response to depolarization. Spatial scale G=2/,/3f
T and F set so that roughly coincident inputs from >2 VCOs are required for the grid cell to

MPO Membrane potential oscillation
vCoO Velocity-controlled oscillator
input
d, dg ‘Preferred’ direction
angle ¢4 as convenient
fo(t) ‘Baseline’ frequency
fa(t) "Active’ frequency Frequency of VCO: fy(t) = fu(t)+Bu(t).d
B Free parameter
T Time constant for leaky
integration of grid cell inputs fire
F Firing threshold on grid
cell MPO

different values of B represent space at different scales, so that
actual location can be unambiguously decoded, see (O’Keefe
and Burgess, 2005; Fiete et al., 2008).

2D Path Integration by Multiple
Velocity-Controlled Oscillators

Path integration can be thought of as estimating the net dis-
placement x(#) — x(0) in the period [0,7 on the basis of a ve-
locity signal over this period {¢(1), for T = 0 to #. To do this
in two dimensions requires integrating displacement along
more than one preferred direction. The traditional solution is
to integrate displacement along two orthogonal directions by
separately integrating the sine and cosine components of the
velocity signal (Gallistel, 1990; Mittelstaedt, 2000). In general,
integration along any two nonparallel directions would suffice.

However, given the rapid accumulation of error in the noisy
integration of a noisy velocity signal, there is a distinct advant-
age to tracking displacement along three rather than two direc-
tions. With integration along two orthogonal directions, accu-
mulation of error occurs independently in each process, result-
ing in drift of the estimate of net displacement which cannot
be detected within the path integration system. When integra-
tion occurs (redundantly) along more than two directions, in-
dependent accumulation of error in each process leads to a lack
of consistency in the resulting estimates which could then be
detected within the path integration system.

All path integration systems need to be reset with reference
to the external sensory world, if possible, to avoid the accumu-

lation of error, e.g., (Etenne et al., 1998; Cheung et al,
2007). In addition, with a redundant system of integration
along more than two directions it is also necessary to align the
initial states of the integrators to be consistent with each other.
Within an oscillatory interference model, these problems are
solved by resetting all active oscillations to be in phase with
each other and to any common baseline oscillation at appropri-
ate locations. See (Burgess et al., 2007) and discussion below in
the context of a specific implementation.

There are many ways in which the algorithmic description
of multiple velocity-controlled oscillators (VCOs) whose phases
represent  displacement along different directions could be
implemented in the brain to support 2D path integration. The
next section describes potential implementations consistent
with the idea that grid cell firing corresponds to phase integra-
tion of displacement along three directions differing by multi-
ples of 60°.

THE IMPLEMENTATION OF PATH INTEGRATION

BY VCOs

How could the multiple VCOs described above actually be
implemented in the brain so that they interact to signal net dis-
placement in two dimensions? For simplicity I first consider
the 1-dimensional problem of signaling displacement along a
specific ‘preferred’ direction, for which a single velocity-con-

trolled oscillator should be sufficient. This should be a useful

Hippocampus
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FIGURE 1. Oscillatory interference patterns. Effect of addition = diamonds) for the two the types of active oscillation (a,c vs. b,d).

(a,b) and multiplication (c,d) of a sinusoidal (a,c) or punctate (b,d)
“active” 9 Hz oscillation (frequency f, = 9 Hz) with a sinusoidal
“baseline” 8 Hz oscillation (frequency f; = 8 Hz). Note that all of
the combined oscillations (black) have raised areas of similar
extents, although the peaks of the combined oscillation occur over
different ranges of phase relative to the baseline oscillation (black

step towards understanding the implementation of a 2D path
integration system, which is considered in the following
section.

An implicit assumption in the following sections is that the
end result of the interaction of VCOs with each other, and
with the baseline oscillation, is the firing of a grid cell. Thus,
the top-down implementation of an algorithm for path integra-
tion should match with our bottom-up knowledge of the firing
of grid cells. In a final section I describe the experimentally
testable predictions resulting from these constraints.

Linear Path Integration by a Velocity-Controlled
Oscillator

For a velocity-controlled oscillator to signal displacement
along its preferred direction, its phase relative to the baseline
oscillation needs to be signaled by neural firing. The simplest
model assumes that the baseline oscillation has a sinusoidal
shape, and that both oscillations combine to influence the
membrane potential at the soma, with spikes being generated
at the peaks of the resulting somatic MPO. Even within this
simplest model, there are multiple potential implementations
corresponding to how the oscillations combine and to the
shape of the active oscillation.

The extreme cases for these implementation choices are illus-
trated in Figure 1. The choices for combining the oscillations

Hippocampus

Both interfering oscillations have range [0, 1] before being com-
bined. Sinusoidal oscillations are: V() = (1+cos{2nf#})/2, with f=
8 or 9. Punctate oscillations are: V(2)>°. Figure 1a is adapted from
Burgess N, Barry C, O’Keefe ]J. Hippocampus 2007, 17, 801-812 ©
Wiley, reproduced with permission. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

range from addition—corresponding to the additive effect of two
sources of current on the membrane potential, to multiplica-
tion—corresponding to modulation of a more distal velocity-
controlled input by baseline-frequency variation of proximal ion
channel conductances. The choices for the shape of the active os-
cillation vary from sinusoidal—corresponding to an intrinsic
MPO in the dendrites (see Kamondi et al., 1998) or synaptic
input from a neuron or population of neurons with temporally
modulated firing in the theta band, to punctuate—corresponding
to synaptic input from a neuron or population of neurons firing
with highly concentrated phase relative to the baseline frequency.
In all cases, the resultant oscillation has an amplitude which
varies according to the phase difference of the two oscillations:
waxing and waning as they go in and out of phase (producing
constructive and destructive interference respectively). The dis-
tance L moved by the rat between maxima in the interference
pattern when running in a constant direction ¢ is given by:

L(b = by) = s(2)/|fi(2) = ()| = 1/B[cos(d = dg)l,  (5)

using Eq. (3). Note that the spacing of the maxima is inde-
pendent of running speed s and depends only on running
direction B producing parallel stripes of maximum amplitude
with fixed spacing across the environment (see Fig. 2).



Irrespective of the method of combining the oscillations,
when the active oscillation has a sinusoidal shape, the frequency
of the highest peaks in the resultant oscillation is the mean of
the two constituent frequencies, i.e., [f2(2) + /5(£)]/2. When the
active oscillation has a punctate shape, the frequency of the
highest peak in the resultant oscillation per cycle of the baseline
oscillation equals the frequency of the active oscillation, f;(2).
Thus, a sinusoidal active oscillation implies a range of firing
phases relative to the baseline oscillation of at most 180°, while
a more punctate shape allows a range of firing phases of up to
360° (see Fig. 1). A more complete model would include an
explicit firing threshold, which would further restrict the range
of firing phases.

Relation to theta-phase precession of
place cell firing

Place cells recorded in the hippocampus of freely moving
rats fire whenever the animal enters a specific area of the envi-
ronment (the ‘place field,” O’Keefe, 1976)). Unlike grid cells,
firing is usually restricted to a single field or a small number of
fields, determined to a large degree by the sensory environment
(O’Keefe and Burgess, 1996; Hartley et al., 2000). Whenever
the rat is engaged in translational motion, the EEG power
spectrum is dominated by a 7-11 Hz oscillation of the local
field potential—the movement-related “theta” rhythm, see
(O’Keefe, 2006) for a review. As the rat runs through a place
field the corresponding place cell fires spikes at systematically
earlier and earlier phases of the ongoing theta rhythm. This
phenomenon is known as theta phase precession and is seen
during running on linear tracks (O’Keefe and Recce, 1993)
and in open fields, in which phase precession from late to early
phases occurs irrespective of running direction (Burgess et al.,
1994; Skaggs et al., 1996; Huxter et al., 2008).

The oscillatory interference model was initially proposed to
explain theta-phase precession in place cell firing (O’Keefe and
Recce, 1993). The baseline frequency was identified with the
frequency of the theta rhythm, and the place cell MPO was
proposed to increase above this frequency by an amount pro-
portional to running speed. Thus the amplitude of the interfer-
ence pattern generated by the two frequencies will vary with
distance traveled through the firing field (Lengyel et al., 2003),
see Figure la. I note that the relationship between theta fre-
quency and the baseline frequency is probably more compli-
cated than assumed by this model, as discussed in the section
on theta below.

One disadvantage of the application of oscillatory interfer-
ence to place cell firing is that it predicts multiple repeating fir-
ing fields—making it a more appropriate model for grid cell
firing (O’Keefe and Burgess, 2005). Nonetheless, substantial
evidence suggests that oscillatory interference does contributes
to place cell firing, although whether this reflects mechanisms
intrinsic to the place cells, or input from grid cells is not yet
known. Several predictions of the oscillatory interference model
of place cell firing have been verified, as summarized below, see
(O’Keefe and Burgess, 2005) for further discussion.
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FIGURE 2. Linear interference patterns in 2D. (a) Interference
between a velocity-controlled oscillator (VCO) and a baseline oscil-
lation during constant velocity runs from the origin (bottom left).
Expanded view (b—d) shows the baseline oscillation (c) and the
VCO (d, gray arrow shows preferred direction). Both component
oscillations are sinusoidal and the combined oscillation is the
thresholded sum (a,b). See Details below and Burgess et al.
(2007). (e) The firing of a neuronal VCO as the rat follows a 10
min foraging path (black line) in a square box. The VCO fires
spikes at the peaks of its membrane potential oscillation (MPO).
The locations of spike firing are show colored by the phase of fir-
ing relative to the baseline oscillation. See Details below. (f) The
firing of the neuronal VCO in (e) when its MPO is modulated by
the baseline oscillation and a firing threshold of 0.5 is applied.
Details: The baseline oscillation is V;,() = (1+cos{2nf;#})/2, the
VCO is: V() = (1+cos{2nf,5})/2, where f, = 8, f, = f, + Pv(2).4,
B = 0.05, and d is a unit vector in the preferred direction (right-
wards). In (a—d) »(?) is a constant 30 cm/s to the location of each
pixel from the origin (bottom left). The thresholded sum:
[V.®+ Vi (2) — Fl4 is shown in (a), with threshold F = 1. In (e,f)
2(2) is the velocity of the rat, spikes are fired at the peaks of V,(2)
in (e) and colored to show phase of firing relative to V4, (2). In (f)
spikes are fired as in (e), but only if V,(2) X V,(2) exceeds a firing
threshold F = 0.5. Color bar (top right) shows amplitude (0-1)
and phase. Figure 2a is adapted from Burgess N, Barry C, O’Keefe
J. Hippocampus 2007, 17, 801-812 © Wiley, reproduced eith per-
mission. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Hippocampus
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FIGURE 3. Velocity-controlled oscillators (VCOs) could be
implemented in dendrites (a, dark red rectangles) or neurons (b,
dark red circles). In both cases the VCOs are driven by a speed
modulated head-direction cell or population of cells (firing rates
rapci = v.d;, where v is the rat’s current velocity and 4 is the pre-
ferred direction for the 7ith VCO). (a) An implementation in which
dendritic VCOs (sinusoidal dendritic MPOs with frequency f;;)
sum with the baseline input (frequency f;, blue line) and the inter-
ference patterns from different VCOs are multiplied at the grid
cell soma (pale blue circle), see Eq. (6) and Figure 4. (b) An exam-
ple in which neuronal VCOs (having sinusoidal MPOs with fre-
quency f;) fire spikes with frequency f;. These spikes affect the
membrane potential of the grid cell (modeled as a leaky-integrate
and fire neuron, pale blue circle) whose membrane potential is
also modulated by the baseline input (frequency f;,, blue line). Fig-
ure 3a is adapted from Burgess N, Barry C, O’Keefe J. Hippocam-
pus 2007, 17, 801-812 © Wiley, reproduced eith permission.
[Color figure can be viewed in the online issue, which is available
at www. interscience.wiley.com.]

fb ————

The place cell firing is frequency modulated in the theta
band, i.e., the spike train autocorrelogram shows regularly
spaced peaks reflecting a regular modulation or ‘intrinsic firing
frequency.” This frequency is identified with the MPO fre-
quency and is slightly higher than the concurrent theta fre-
quency, as predicted by the model (O’Keefe and Recce, 1993).
In addition, as shown in Eq. (5), the spatial scale of the firing
pattern should be inversely proportional to the difference
between the intrinsic firing frequency and the theta frequency,
so that place cells with larger firing fields should have lower
intrinsic firing frequencies (i.e., closer to theta frequency). This
prediction was verified by Maurer et al. (2005); recording place
cells at different levels of the hippocampus (place fields being
smaller in the dorsal hippocampus than more ventrally). It was
also indirectly verified by the observation that the rate of phase
precession with distance varies with field size so that each field
comprises a maximum of 360° of phase shift (Huxter et al.,
2003; Kjelstrup et al., 2008). Another prediction is that the
intrinsic firing frequency of place cells should increase with

Hippocampus

running speed. This was verified by (Geisler et al., 2007) who
thus refer to place cells as ‘speed-controlled oscillators,” see also
(Maurer et al., 2005). I extend this nomenclature to “VCOs’ in
the context of grid cells. Finally, phase precession in place cells
is unaffected by an NMDA receptor blockade which abolishes
any experience-dependent asymmetry in place cell firing
(Ekstrom et al., 2001), ruling out the simplest model by which
phase precession and asymmetric firing reflect a common
mechanism (Mehta et al., 2002).

2D Path Integration by Multiple VCOs

How should the different VCOs be implemented? In our
previous paper Burgess et al. (2007) noted that they might be
implemented by MPOs either in separate neurons or in sepa-
rate dendrites. The main difference between these implementa-
tions is that a dendritic MPO interacts with other oscillations
as a sinusoidal oscillation, while a neuronal MPO only interacts
with other oscillations via the firing of spikes, see Figure 3. In
practical terms this takes us between the two regimes illustrated
in the left and right panels of Figure 1.

FIGURE 4.

Two linear interference patterns with preferred
directions differing by 60° (gray arrows, left and right, above) com-
bine to produce a triangular grid (below grid scale = G). The linear
interference patterns are the thresholded sum of a velocity-con-
trolled oscillator (VCO) and a baseline oscillation during constant
velocity runs from the origin (bottom left), see Figure 2 for details.
These patterns are multiplied to produce the grid pattern (below).
The colorbar shows amplitude. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]



Interference between dendritic VCOs

Burgess et al. (2007) focused on the dendritic implementa-
tion for the detailed simulations presented. This implementa-
tion corresponds to the addition of each sinusoidal active oscil-
lation (interpreted as a dendritic MPO) with a baseline oscilla-
tion (related to the theta rhythm), as shown in Figures 1a, 2a,
and 3a. The resulting 7 linear interference patterns with differ-
ent preferred directions were combined multiplicatively to give
a single value interpreted as the grid cell’s firing rate (2), i.e.,
with the above notation, and making explicit the integration of
frequency to give phase:

(e) = T2, [eos{ (1)} + cos{ @y (8)}],
0:() = 9,(0) + / 20 (1) + Bulv).d;)dx:

0
t

oy (1) = / 2y (0)dr,

0

(6)

where [x]+ = x if x > 0; [x]; = 0 otherwise, v(#) is running
velocity, 4; indicates the preferred direction of the ith VCO
and @,(0) is its initial phase (see Phase re-setting below). See
Figure 4, and Burgess et al. (2007) for details (The correspond-
ing equation in Burgess et al. (2007) incorrectly shows
[m(cos..)] + rather than m[cos..].), and (Hasselmo et al., 2007)
for further simulations.

Interference between neuronal VCOs

The principal advantage of the dendritic implementation,
above, is the simplicity of Eq. (6) and the simplicity of the
mechanism for phase-resetting (see below). However, it may
not be feasible for multiple independent MPOs to exist within
a single grid cell, as discussed by Hasselmo (2008). Accord-
ingly, implementations in which separate neurons act as VCOs,
rather than separate dendritic subunits, are explored next.

The outputs of neuronal VCOs are spikes. For simplicity, 1
assume that each VCO fires one spike at the peaks of its MPO.
These spikes must interact at the grid cell with each other, and
also with any baseline frequency input, via excitatory postsynap-
tic potentials (EPSPs). Two sinusoidal MPOs naturally combine
(via addition or multiplication) to produce an interference pat-
tern, and the same is true for the combination of the more punc-
tate EPSPs and sinusoidal MPOs, with some differences, as illus-
trated in Figure 1. In this Figure, and Egs. (7) and (11) below,
punctate EPSPs are simply modeled as sinusoids normalized to
range [0, 1] and raised to the power fifty.

One possibility is that each VCO interacts with the baseline
oscillation before spikes are generated and combined with the
spikes of other VCOs at the grid cell. This implementation is
effectively identical to the dendritic implementation, above, with
the exception that the stripy linear interference patterns formed
by individual dendritic membrane potentials (see Fig. 4) are rep-
resented by the firing rates of the neuronal VCOs. This imple-
mentation thus predicts neurons showing linear bands of firing
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across the environment. Here I focus on an alternative neuronal
implementation, in which neuronal VCOs output spikes which
interact with the spikes from other VCOs at the grid cell, before
any interaction with the baseline oscillation. This implementa-
tion is similar to that proposed by Hasselmo (2008).

When the spikes from two different VCOs arrive at the grid
cell, the EPSPs generated by the two spike trains will also pro-
duce an interference pattern in the grid cell’s somatic mem-
brane potental. I assume that the grid cell’s somatic membrane
potential performs leaky temporal integration of the EPSPs
arriving from its dendrites, with a time-constant less than one
oscillatory period (i.e., less than 100 ms). Then EPSPs arriving
at similar phases will summate, while those arriving at different
phases will not, i.e., showing constructive interference for small
phase differences, or ‘coincidence detection.” See Figure 5, and
e.g., Hopfield and Brody (2001) for related discussion. The
effect of each train of EPSPs on the grid cell membrane poten-
tial is modeled as the convolution of the punctate oscillation in
Figure 1 with an exponentially decaying kernel, i.e., the effect

of the train of EPSPs from the /th VCO is

t

E()=C / (1 + cos{s(r — 1) /2 exp(—/T)dr, (7)

0

where the phase of the ith VCO [@,(#); as in Egs. (1), (4) and
(6)] is given by
0:) = 0,0 + [ 2840 + Bu(e) ).

0

(8)

T is the time constant (see Fig. 8 for simulations with 7" = 6—
25 ms) and C normalizes the EPSPs to resemble delta func-
tions, ie, C=1/[" [(1+ cos 9)/2]°de. Note that Leaky
temporal integration over these timescales seems like a reasona-
ble assumption for entorhinal neurons, with the possible excep-
tion of the “persistent firing” neurons found in deep layers of
entorhinal cortex which appear to integrate over much longer
durations (Egorov et al., 2002).

The natural result of this type of interference or coincidence-
detection at the grid cell, is for the grid cell’s firing to be con-
centrated at locations where the inputs from different VCOs
have similar phases. I assume that the grid cell’s firing threshold
is set so that coincident inputs from more than one cell are
required to make it fire, otherwise spatial bands of firing would
be seen. I also assume that the preferred directions of the
VCO:s differ by multiples of 60° (see below for discussion of
this assumption). In this case, the locations of coincident firing
from two VCOs, occurring within a particular range of phases,
will describe a triangular array across the environment. The
locations of coincident firing occurring within different phase
ranges describe different grids of identical orientation and spac-
ing (these grids are spatially offset along the mean direction of
the two VCOs, preferred directions). See Figure 6.

For the case of two VCO inputs, a modulatory baseline-fre-
quency input to the cell body (as in Fig. 3b) effectively selects
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FIGURE 5. Illustration of interference between trains of excita-
tory postsynaptic potentials (EPSPs) during leaky temporal integra-
tion within a cell. The effect of individual trains of EPSPs at 9 Hz
(fb) and 10 Hz (fz) on the somatic membrane potential, modeled as
a leaky integrator with exponential decay [see Egs. (7) and (8), T =
20 ms]. The upper plots (black) shows the effect of both trains com-
bined by addition or multiplication. In both cases the higher peaks
in the combined oscillation occur at the time of the later of the two
contributing peaks, i.e., at the higher frequency prior to the center of
the region of constructive interference and at the lower frequency fol-
lowing it. [Color figure can be viewed in the online issue, which is
available at www.interscience. wiley.com.]

the range of phases relative to baseline during which the grid
cell will fire, so long as coincident inputs are received. The
published data imply a common range of firing phases for layer
IT grid cells, indicating a common modulatory baseline oscilla-
tion (Hafting et al., 2008).

If there are three VCO inputs to the grid cell, there is no
guarantee that the spikes from all three inputs will arrive coinci-
dently at any phase or location. The need to align the phases of
the VCOs whenever there are more than two of them is solved
by phase-resetting of all of the oscillators to be in phase at a sin-
gle location. This reset location will then be the center of one of
the grid nodes, with other nodes in the grid occurring with the
same range of phases (Burgess et al., 2007). However, for three
VCOs with evenly spaced preferred directions, coincident firing
will also occur at phases ranges shifted by =120° at the nodes of
two other spatially offset grids (if one VCO increases phase by
240° in its preferred direction, the other two VCOs will decrease
phase by 120° in their preferred directions, resulting in coinci-
dence). See Figure 7a. Thus a modulatory baseline frequency
input is still required to enforce a single range of firing phases,
and the reset-signal should occur at the peak of this oscillation
so that the VCO inputs are also in phase with it (see Burgess
et al., 2007, and Hasselmo et al., 2007, for further discussion).

Although less simple than Eq. (6), the grid cell’s membrane
potential M(z) under the neuronal implementation with »
VCO inputs and baseline-frequency modulation can be written
in closed form:

MO =30 +es{o@D Y ED, )

where Ej(#) is the effect on the grid cell membrane potential of
the spike train from the 7th VCO, given by Egs. (7) and (8),
and the phase of the baseline frequency, @y,(#), is given by
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t

0u(6) = [ 2nf(c)d.

0

(10)

In the simulations shown, I simply assume that a single spike is
fired at the time of the peak of M(#) within each cycle of the base-
line frequency so long as the peak value exceeds a firing threshold
F Thus, the intrinsic firing frequency will be the same as the fre-
quency of the underlying MPO.

The final implementational issue I address is the directional
tuning of the firing rate of the VCOs. The frequency of VCOs
varies around the baseline frequency according to running
direction: and their intrinsic firing frequency will too. But this
causes a relatively slight modulation of firing rate by direction.
Should the firing rate of a neuronal VCO be more stongly
modulated by running direction? In the extreme case running

—p-—
i

E
&

-
&
-

180°
1 &)

off / 4
-180°
FIGURE 6. Illustration of two neural velocity-controlled oscil-

lators (VCOs, dark red circles) providing input to a grid cell (pale
blue circle): the configuration shown in Figure 3b. The grid cell’s
membrane potential performs leaky temporal integration of the
EPSPs from these inputs (time constant 7' = 25 ms), and is modu-
lated by a baseline-frequency input (8 Hz, blue arrow; sinusoid
colored by phase). The grid cell fires spikes at peaks of its MPO
which exceed a firing threshold F = 1.5. The above plots show the
locations at which the two VCOs with different preferred direc-
tions (gray arrows) fired spikes on the path of a rat foraging for
10 min in a cylinder (black line). Spike locations are colored
according to their phase of firing relative to the baseline oscillation
(see Fig. 2e for details). The grid cell operates as a coincidence de-
tector: firing whenever inputs arrive from both VCOs at the same
phase (i.e., locations with spikes in the same color in the two plots
above). Such locations fall at the vertices of a triangular grid, with
different firing phases corresponding to grids with different spatial
offsets. Modulated by the baseline oscillation selects a specific
range of phases for firing and a thus a specific triangular grid
(gray circles). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]



FIGURE 7.
velocity-controlled oscillator (VCO) inputs, without baseline fre-
quency modulation (left), and with baseline frequency modulation
(right). (a) Three VCO inputs with preferred directions (gray arrows)
evenly spaced around 360°. (b) Three VCO inputs with grouped pre-
ferred directions. (c) Six VCO inputs with evenly spaced preferred
directions. Notice the three interleaved grids with firing phases dif-
fering by =120° in the simulation without baseline frequency modu-
lation and with three evenly spaced preferred directions (a, left); The
location-dependence of firing phase in the case of grouped preferred
directions (b); The removal of out-of-field spikes by the baseline fre-
quency modulation (c). Spike locations are shown on the path of a
rat foraging for 10 min in a cylinder colored by their phase of firing
relative to the baseline oscillation. Baseline frequency f;, = 8 Hz;
time constant 7' = 25 ms; firing threshold F = 2 for three inputs
(a,b) and F = 3 for six inputs (c). See main text Eq. (9) and Figure 6
for details. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

directions which depolarize the VCO and lead to above-base-
line oscillation frequency might also cause spiking activity,
while the opposite running directions, which lead to a relative
depolarization and below-baseline oscillation frequencies, might
not result in spiking activity. In this case, Eq. (7) becomes:

t

E(t) = CH(v.d) / [(1 + cos{o,(r — 1)})/2]" exp(—1/ T)d,

(11)
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where H(x) is the Heaviside function (H(x) = 0 if x < 0; 1 if
x > 0), see Eq. (6) for definitions of » and 4, and Eq. (7) for

definition of C.

FIGURE 8. Grid cell firing with directional velocity-controlled
oscillator (VCO) inputs and baseline frequency modulation. Each
directional VCO fires only when the current running direction
matches its preferred direction (within 90°), thus only VCOs firing
at above baseline frequency provide the active input f; to the grid
cell. (a) Three clustered directional VCO inputs produces direction-
ally modulated firing (see polar plot). The simulation is as Figure
7b right, but with directional VCOs and a lower firing threshold F
= 1.3. (b—d) Six directional VCO inputs produces omnidirectional
firing, showing the effect of varying the time constant 7 and firing
threshold E Time constant T = 25 ms and firing threshold F = 1.5
in (b); 7= 125 ms, F= 1.1 1in (c) and 7 = 6.25 ms, F = 1.1 in
(d). The size of firing fields decreases with decreasing 7"and increas-
ing E To produce grid-like firing patterns the model simply requires
the combination of T'and F to be such that grid cell firing requires
input from VCOs with more than one preferred direction. F must
be lower for directional VCOs than nondirectional VCOs (Fig. 7)
since half of them will not be firing spikes at any moment. Baseline
frequency f;, = 8 Hz. Spike locations are shown on the path of a rat
foraging for 10 min in a cylinder, colored by their phase of firing
relative to the baseline oscillation. See main text Eq. (11) and Figure
6 for details. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]
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Three directional VCO inputs with grouped preferred direc-
tions will produce directionally modulated grid cell firing, see Fig-
ure 8a. Three or six directional VCO inputs with preferred direc-
tions evenly spread around 360° results in omnidirectional firing,
see Figure 8b. Note that the MPO of directional VCOs main-
tains phase as the integral of velocity in the preferred direction
whether or not the VCO fires a spike see Engel, Schimansky-
Geier, Herz, Schreiber, Erchova (2008) and Hasselmo (2008) for
discussion of the relationship between spiking and MPOs.

The main consequence of directional VCO firing is that the
VCOs contributing to grid cell firing are always oscillating faster
than the baseline frequency, and so the grid cell always shows
late-to-early phase precession relative to the baseline frequency.
For example, a grid cell with three grouped nondirectional VCO
inputs (with preferred directions 0%, 60°, 120°) will show a late-
to-early change in firing phase when the rat runs in the mean
preferred direction (60°) within each firing field, but also early-
to-late phase precession when it runs in the opposite (240°)
direction, see Figure 7b. With three grouped directional VCO
inputs, the grid cell will only fire when the animal is moving in
the mean preferred direction (Fig. 8a), thus showing only late-
to-early phase precession. For grid cells with six nondirectional
VCO inputs, there will be no clear net phase precession in grid
cell firing, as late-to-carly and early-to-late precession will occur
simultaneously on runs through the firing fields. By contrast,
with six directional VCO inputs, grid cell firing will always be
driven by those with above-baseline frequency, and so will show
late-to-early phase precession in all directions (see Fig. 9).

Given the consistent late-to-early phase precession and non-
directional firing seen in layer II grid cells, the implementation
with six directional VCOs seems the most appropriate. To con-
clude this section I consider the parameters of this model. The
six preferred directions (d;, for i = 1-6) are assumed to be
evenly spaced around 360° and to result from a large-scale
developmental process of selection of connections from speed-
dependent head-direction cells, given the similar orientation of
all grid cells within a hemisphere (Barry et al., 2007). If the
preferred directions are chosen randomly, rather than differing
by multiples of 60°, irregular grid-like firing patterns result (see
Burgess et al., 2007). The initial phases of the VCOs (¢,(0),
for 7 = 1-6) have to be set appropriately to produce a grid,
with different values producing grids with different spatial off-
sets. Forcing all VCOs to be in phase at a given location
ensures a grid with a firing field at that location. This is taken
care of by a phase (re)setting mechanism which is also required
to correct the accumulation of error (Burgess et al., 2007), see
below and Hasselmo et al., 2007 for further discussion.

There are three remaining parameters: 8, the frequency-volt-
age gain or spatial scale parameter; 7, the leaky integration
time constant; £ the firing threshold. How sensitive is the
model to the choices of these parameters? To produce grid-like
firing patterns the model requires a combination of time con-
stant 7 and firing threshold F such that input from VCOs with
more than one preferred direction is needed for the grid cell to
fire. If Fis too low or 7 too long, then spatial bands of firing
start to appear, joining together the firing at the grid nodes. As
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FIGURE 9. Phase of firing on runs in opposing directions

(black arrows) through a grid firing field. (a) Grid cell with six
directional velocity-controlled oscillator (VCO) inputs and baseline
frequency modulation (as Fig. 8b). Note the late to early phase
precession relative to baseline for runs in both directions. (b) Grid
cell with six nondirectionally modulated VCO inputs (as Fig. 7¢;
with F = 2 to match the extent of firing in a). Note that no over-
all phase precession is observed.

F increases or T becomes shorter, the firing fields shrink (see
Figs. 8b—d). I assume that the firing threshold, and thus overall
firing rate, is actually controlled by feed-back inhibition (not
simulated here). This leave one free parameter: 3.

PHASE RE-SETTING AND GRID CELL—PLACE

CELL INTERACTIONS

All path integration mechanisms require re-setting with
respect to the sensory environment to prevent the accumulation
of error, and this is also true for a model of path integration
by grid cells. O’Keefe and Burgess (2005) suggested that the
simplest way for grid cells to become associated to environmen-
tal stimuli within a familiar environment was via the formation
of synaptic connections to grid cells from those place cells
whose place field coincided with one of the grid cells firing
fields. The firing of place cells, driven by sensory stimuli, can
then ensure that the connected grid cells maintain their grid
fields in the appropriate environmental locations. They argued
that place cells can more easily be driven by sensory input than
grid cells, since distinct conjunctions of environmental informa-
tion correspond to different place fields. There is indeed evi-
dence that place cell firing is driven by the conjunctions of dis-
tances to environmental boundaries along different allocentric
directions (O’Keefe and Burgess, 1996; Hartley et al., 2000;
Lever et al., 2002a; Barry et al., 2006). The idea that the asso-
ciation of grid cells to environmental stimuli is learned is con-
sistent with the data of Barry et al. (2007). They showed that
manipulation of the shape and size of the boundary of a famil-



iar environment had a similar effect on the spatial firing pattern
of grid cells as it has on place cells. However, grid cell firing
was unaffected by the shape and size of a new environment.

In the oscillatory interference model the VCO phases will
accumulate error as a result of imperfect input from speed-
modulated head-direction cells. The effect of noisy VCO phases
will be spatially disorganized grid cell firing. In addition, when
three or more VCOs input to a grid cell, a reduction in peak fir-
ing rates will also occur, as multiple VCOs with arbitrary initial
phase offsets will generally fail to coincide precisely at any loca-
tion. In the model the spatial resetting of grid cells by place cells
corresponds to phase resetting of the VCOs driving the firing of
a grid cell by input from the place cells whose firing fields coin-
cide with a grid field. This input occurs at the peak firing phase
of theta (when the place cells will be most active) and resets the
VCO inputs to be in phase with each other and with theta, see
(Burgess et al., 2007). An advantage of the dendritic implemen-
tation is that resetting the inputs to a grid cell simply involves
resetting all of its dendritic MPOs. In the neuronal implementa-
tion each VCO might have its own reset location determined by
its own place cell inputs. Some local circuitry or plasticity would
be required to ensure that the VCOs projecting to a given grid
cell have similar reset locations.

The model predicts phase precession limited to 180°, see
Figure 9. Interestingly, layer II grid cells also appear to show
consistent phase precession over the first 180° (‘late’ to ‘me-
dium’ phases), with a much greater variance in the ‘early’ firing
phases that occur as the rat exits the firing field (Hafting et al,,
2008). It is possible that the phase-reset signal from place cells
arrives at the early phase, disrupting the smooth procession of
phase, but ensuring that the VCOs are phase-aligned before
entry into the next firing field.

Although the place cells may serve to reset grid cells in a fa-
miliar environment, the grid cells in turn may provide the path
integration input to place cells. The subset of grid cells with fir-
ing fields coinciding with a place field could form synaptic con-
nections to the corresponding place cell and thus maintain its
location-specific firing based on speed and direction information
during temporary absences of sensory information. Thus, the
combined system supports the interaction between sensory
inputs and path integration—with the firing of place cells and
grid cells representing a compromise as to the animal’s current
location on the basis of both types of information. This corre-
sponds more closely to a mental representation of the environ-
ment which includes the animal’s current location (i.e., a cogni-
tive map, O’Keefe and Nadel, 1978) than to a basic path inte-
gration system which simply allows return to the start of a
trajectory, and which can probably be supported by other brain
systems (Alyan and McNaughton, 1999). Note that the associa-
tion of grid cell firing to environmental sensory input via phase
reset may cause deformation of the grids from the spatial pattern
predicted by oscillatory interference/path integration alone
(Barry et al., 2007). Equally, changes to the spatial scale of grid
cell firing may cause remapping of place cell firing.

There are undoubtedly other phase re-setting mechanisms at
work, beyond the proposed connections from place cells
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learned within a familiar environment. First, the most impor-
tant effect of errors during path integration concerns orienta-
tion: orientation is lost rapidly, and once lost renders transla-
tional information useless (Cheung et al., 2007). The grid cell
path integration system outlined here relies on the head-direc-
tion cells for orientational information (strictly speaking these
should signal movement direction rather than head direction,
although these two signals are at least highly correlated). The
head-direction system uses both the integration of internal sig-
nals encoding angular velocity, and external sensory informa-
tion for resetting, see e.g., (Taube, 1998). The independent
sensory resetting of the direction signal ensures that the grid
cell system will be relatively robust, while still requiring its own
sensory resetting to correct translational errors. Second, alterna-
tive mechanisms for resetting grid cells must exist to correct
translational errors in a new environment. As discussed by Bur-
gess et al. (2007), the phase of theta can be reset by sensory
stimuli or actions (Buzsaki et al., 1979; Williams and Givens,
2003). Thus the repeating pattern of firing seen in rats running
in a maze of hairpin turns (Derdikman et al., 2006) suggests
that making a body turn between straight trajectories might
provide a reset signal (Burgess et al., 2007). The different firing
patterns for running in different directions, both in the hairpin
maze and on linear tracks (Hafting et al., 2005), indicate that
the phase reset is affected by the allocentric direction of the
turn. Thus, it is possible that the ‘boundary vector cells’ pro-
posed to drive place cell firing (O’Keefe and Burgess, 1996;
Burgess et al., 2000; Hartley et al., 2000; Barry et al., 2006)
may relate to directional phase resetting within mEC, see
(Burgess et al., 2007; Hasselmo, in press; Savelli et al., 2008)
for further discussion.

RELATING THE MODEL TO EXPERIMENTALLY

MEASURABLE QUANTITIES (PREDICTIONS)

In this section I attempt to relate the variables describing the
oscillatory interference model to experimentally measurable
quantities, with the hope of producing clear experimentally testa-
ble predictions. One prediction follows directly from the preced-
ing discussion of phase resetting. That is, removal of the place
cell input to grid cells will allow the accumulation of translational
error, at least within an open-field environment without local sen-
sory or body-turn cues for phase resetting, while correction of
directional errors will continue within the head direction system.
In this situation, grid cell firing will lose its spatial stability with-
out changing its intrinsic firing frequency. Other predictions
require further work to identify the link between the variables in
the model and measurable quantities such as the intrinsic firing
frequency of the grid cell, grid scale and theta frequency.

Relationship to the Theta Rhythm and Place
Cell Remapping
It is important to understand the context in which reliable

and accurate phase representations are proposed. This context
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is set by extra-cellular recording of EEG in freely-moving rats,
which is dominated by a high amplitude and narrowly tuned
movement-related theta rhythm, with mean frequency around
8-9 Hz in adult rats. Note that this contrasts with the situation
in most in vitro slice preparations in which oscillations tend to
show a much broader range of frequencies, but see (Manseau
et al., 2008). Thus we cannot necessarily use standard in vitro
data to infer how noisy MPO frequencies will be in vivo (cf.
Giocomo and Hasselmo, 2008).

The theta rhythm results from a complex interaction
between multiple regions, with generators in both entorhinal
cortex and the hippocampus proper, and with a critical contri-
bution from the medial septum, see (Blair et al., 2008) for a
model. Two components of theta have been identified; one of
them is cholinergically mediated (atropine sensitive) and relates
to arousal, the other is the movement-related (atropine resist-
ant) component referred to above. The arousal-related compo-
nent typically has a lower frequency when measured in the ab-
sence of the movement-related component (around 6-7 Hz in
adult rats), but its contribution during motion is not clear. For
example, there is no 6-7 Hz subpeak to the movement-related
8-9 Hz peak in the EEG power spectrum (see e.g., Jeewajee
et al., 2008). Significantly, the movement related component is
abolished by lesions of the entorhinal cortex, while both com-
ponents are abolished by lesions of the medial septum. See
O’Keefe (2006) and Buzsaki (2002) for recent reviews. I specu-
late below, that the mechanisms contributing to these two types
of theta may be separately responsible for the intercept and the
slope of the relationship between theta frequency and running
speed.

The recorded movement-related theta rhythm undoubtedly
reflects locally aligned oscillatory current flows, while the influ-
ence of larger-scale coupling can also be seen in the constant
frequency found throughout the hippocampal formation and
medial septum (Bullock et al., 1990; Maurer et al., 2005), gen-
erated in part by the EC, see above. Thus, we cannot simply
assume that theta provides the ‘baseline’ frequency (f), or that
it is independent of the active frequencies of the VCOs (f,).
The implication of an active (VCO) frequency f; and inde-
pendent baseline frequency £, in Eq. (3) also has the following
problem: the synaptic input to a VCO from a speed modulated
head-direction cell (or cells) must vary from excitatory (when
running in the preferred direction) to inhibitory (when running
in the opposite direction) so that its frequency varies above and
below the baseline frequency. This appears to violate Dale’s law
that a single type of neuron cannot release both excitatory and
inhibitory neurotransmitters.

A potential solution is provided by the following two
assumptions: (a) The synaptic input to each VCO is solely pos-
itive (i.e., depolarizing); (b) The baseline frequency £, is the av-
erage of the frequencies of the local VCOs (which have pre-
ferred directions evenly spread around 360°). Thus, all VCOs
increase in frequency with running speed, but those whose pre-
ferred directions match the current running direction (and thus
drive grid cell firing, in the directional VCO implementation)
increase most rapidly. Assumption (a) implies
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LVQE) =h+BV(9), (12)

where

V(2) = s(£)(1 + cos{d(2) — ba})- (13)

W(2) is the VCO’s depolarization due to velocity-dependent syn-
aptic input, and f is the VCO’s MPO frequency at zero speed,
ie, fa(V(5) = 0). Note that the effect of synaptic input is
always positive. The full description of £ is then

J(s(2), &(2), B, da) = fo + Bs(£) (1 + cos{d(z) — dg}), (14)

Now assumption (b), averaging over all preferred directions
94, implies

f(s(2),B) = (A(s(2), 9(2), B, Da))g, =fo +Bs(e)  (15)

This solves the problem of Dale’s law, without affecting how
the model generates spatial patterns, since the difference fi(z) —
fo(®), and thus Eq. (3), does not change: we have effectively just
added Bs(z) to both frequencies f;(z) and f;(2). See (Burgess et al.,
2007) for an alternative solution in which linear interference pat-
terns are produced by pairs of VCOs with opposing preferred
directions and synaptic input equal to [s(f)cos{a(d) — o4})]+. In
this ‘rectified’ model the phase difference between each pair of
VCOs produces a linear interference pattern (Fig. 2a), with the
grid pattern resulting from the combination of multple linear in-
terference patterns in the usual way (see Fig. 4). Unlike the other
implementations, the phases of the VCOs in this ‘rectified’ ver-
sion do not maintain any fixed relationship to the theta rhythm.

How does the (local) baseline frequency f, for a given grid
cell relate to the (global) theta frequency f3? Since theta fre-
quency is constant throughout the system, it must reflect a
global property of all of the VCOs in mEC. The simplest
assumption is that it reflects the mean frequency of all VCOs,
averaging over preferred directions and the spatial scale factor
B (which varies dorso-ventrally), i.e.:

Jo(s(2)) = (is(2), B))g = (fa(s(£), &(2), B, b)) e

=/fo + (B)s(r) (16)
where (B) is the mean B found throughout the dorso-ventral
extent of the mEC.

A model in which theta frequency is the mean frequency of
neuronal MPOs or intrinsic firing frequencies is stll consistent
with the phase precession of the individual neurons relative to this
‘theta thythm’ (as shown for simulations of place cell phase preces-
sion, Burgess et al., 1993). Nonetheless, questions remain regard-
ing the effect of differences between the (local) baseline frequency
/o and the (global) theta frequency fy. Thus, phase resetting of
VCOs by theta-modulated input (e.g., from place cells) will allow



grid cell firing to show phase precession within a fixed range of
phases of theta, as occurs in layer II, or to fire within a fixed
range of phases with or without precession as occurs in some layer
IIT cells (Hafting et al., 2008). However, the relationship to theta
described above implies that, between phase resets, the baseline
frequency will be higher than theta for cells with small grids
(showing accelerated phase precession), equal to theta for cells
with median size grids (i.e., with B = (B), see Egs. (16) and
(19), these will show linear 180° phase precession) and actually
slower than theta for cells with very large grids (i.e., with B > 2
(B), so these could show late-to-early phase precession).

Next I consider the effect of manipulations which change
the observed theta frequency. Since theta frequency is not an
independent variable, but reflects the mean VCO frequency, a
change in the observed theta frequency implies a concomitant
change in the frequencies of all VCOs. There are two parame-
ters governing theta frequency: f5 and (B). If the observed
change in theta frequency reflects a change in (B), then
we assume a simple scaling of all local values of B. In this
case, if f(s(£)) = vf(s(2)), f(s(£), B) = vfo(s(#),B), and
L0, 0(2), B, bg) = 1E((2)), (e), B, by). Since, grid scale
G is inversely proportional to the difference £, — £, Eq. (5),
grid scale will change according to

G=—.
Y

(17)
Conversely, if the observed change in theta frequency reflects a
change in f;, there will be no change in grid scale. Thus, when
theta frequency changes due to changes in arousal, environmen-
tal novelty, pharmacology, behavior, age etc, it will be impor-
tant to measure both fj and (B) from a plot of theta frequency
versus running speed to predict the effect on grid size. These
two parameters may correspond to the two types of theta, i.e.,
the value of fj may be atropine-sensitive and related to arousal,
while the increase with running speed may be atropine-resistant
and, obviously, related to movement. Both components will
depend on the medial septum, the movement-related compo-
nent also depends on mEC.

I assume that place cells receive two types of information
(O’Keefe and Burgess, 2005), one conveying sensory informa-
tion via ‘boundary vector cells (O’Keefe and Burgess, 1996;
Hartley et al., 2000; Barry et al., 2006), the other path integra-
tive information via grid cells, and that these inputs must coin-
cide at the place field. A consequence of this is that a global
change to the spatial scale of grids, reflecting a change in (B) (as
observed in a plot of theta frequency vs. speed), will disrupt
place cell firing. Thus, the initial rapid and coherent remapping
of place cell firing reflecting extreme environmental novelty
(Wills et al., 2005) may be caused by a global increase in grid
scale and concomitant drop in theta frequency (Jeewajee et al.,
2008). Conversely, the slower independent (cell-by-cell) remap-
ping of place cell firing (Lever et al., 2002b) likely reflects an
on-going process of re-aligning place fields with the firing fields
of grid cells as they return to their familiar scale as the effects of
the environmental manipulation wear off (Barry et al., 2007).
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Different Implementations may Correspond to
Different Types of Grid Cell

The firing of neuronal VCOs can be successfully combined
as inputs to a grid cell so as to produce grid cell firing in sev-
eral different ways. In the experimental data, the firing rate of
layer 1I grid cells is not modulated by running direction, but
does show theta modulation and phase precession, with only
late-to-early phase precession observed on the linear track. In
addition, these cells appear to have a fixed range of initial firing
phases when the rat enters one of the firing fields of the grid
(Hafting et al., 2008). These grid cells would correspond to six
directional VCO inputs and theta modulation in the neuronal
implementation (see Figs. 8b—d, 9a). The variable extent of
phase precession observed in layer II (from 180 to 360 degrees,
Hafting et al., 2008) might reflect variation in the phase con-
centration of each cell’s synaptic input (see Figure 1).

By contrast, most layer III grid cells tend to have direction-
ally modulated firing (‘conjunctive’ cells, Sargolini et al., 2000),
around 50% do not have theta-modulated firing; 25% fire
within a fixed range of phases of theta without showing a rela-
tionship between phase and location within the firing field; and
25% show phase precession (Hafting et al., 2008). The layer
I theta-modulated grid cells which do show phase precession
would correspond to three directional VCO inputs with
grouped preferred directions, in which case they should also
show directional modulation of firing along the direction of
phase precession, and spatially constant phases of firing (see
Fig. 8a). The theta-modulated grid cells which do not show
phase precession might correspond to three or six nondirec-
tional VCO inputs with evenly spaced preferred directions (see
Figs. 7a,c, and 9b), although these would not have directionally
modulated firing in the model. The nontheta-modulated grid
cells would not be generated by the oscillatory interference
mechanism, under which cells fire rhythmically, even if not
with fixed phase relative to baseline in the ‘rectified’ version of
the model (see above, and Burgess et al., 2007).

Testing these predictions of the origin of the different types
of grid cell observed in mEC will depend on identifying the
VCOs themselves, which is addressed below.

Velocity-Controlled Oscillators

The fundamental property of a VCO is that it has a MPO
obeying Eqs. (2) and (3). Intracellular recording of MPOs in
freely moving animals remains a technical challenge, but see
(Giocomo et al., 2007; Giocomo and Hasselmo, 2008) for an
in vitro approach. Nonetheless, the neuronal implementation
described above predicts that the intrinsic firing frequency of
neuronal VCOs relative to theta should be modulated by run-
ning velocity according to Egs. (2) and (3). In addition, in
implementations other than the ‘rectified’ model (see above), the
neuronal VCOs should show spatially constant parallel bands of
firing phases, as in Figure 6. See also (Hasselmo, 2008).

Outside of analyses of firing phase or intrinsic firing fre-
quency and running velocity, neuronal VCOs would resemble

hippocampal ‘theta cells’ (Ranck, 1973): showing theta modu-
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lated firing with no obvious spatial modulation. In the case of
the directional VCO implementation [Eq. (11)], their firing
rate. would be modulated by running direction, resembling
theta-modulated head-direction cells. Thus VCOs might be
present among the cell types other than grid cells in medial
EC, see e.g., Sargolini et al. (2006). With respect to directional
VCOs, it may be worth noting that, although neurons with
directionally modulated firing are found at all stages along the
head direction circuit (Taube, 1998), the earliest stages in
which firing modulated by both theta and head direction has
been reported are retrosplenial cortex (Cho and Sharp, 2001)
and presubiculum (Cacucci et al., 2004). In addition, record-
ings in the medial septum reveal cells with theta-modulated fir-
ing which is phase-locked to hippocampal theta and increases
in frequency with running speed (King et al., 1998). The
rthythmicity of firing of a small proportion of these cells
depended on the direction of running. See (Blair et al., 2008)
for further discussion, and a related model.

Two other possibilities are worth considering. First, if neuro-
nal VCOs interact with theta prior to combining with other
VCO inputs at the grid cell then, as noted above, a linear in-
terference pattern would be visible as linear bands of firing
across the environment. Second, it is possible that there is no
distinction between neuronal VCOs and grid cells, rather that
grid firing patterns arise from the interconnection of multiple
neuronal VCOs. In this case, grid cells would revert to neuro-
nal VCOs if their interconnections were disabled. In terms of
the contributions of different layers to the network provision of
grid cell firing, the layer II stellate cells or layer V pyramidal
cells, in which intrinsic oscillations have been identified, might
provide the VCOs, while the layer III pyramidal cells, which
do not show intrinsic oscillations, might provide the coinci-
dence detection function. See (Alonso and Llinas, 1989; Klink
and Alonso, 1993; Dickson et al., 1997; Hamam et al., 2000;
Erchova et al., 2004; Giocomo et al., 2007; Yoshida and
Alonso, 2007) for the intrinsic oscillatory properties of entorhi-
nal neurons, and Hasselmo (2008) for a specific implementa-
tion of VCOs as ‘persistent firing’ cells found in layer V of
mEC in vitro (Egorov et al., 2002).

Relationship Between Intrinsic Frequency, Theta
Frequency, Grid Size, and Running Speed

The grid peaks fall along a lines at 30°
directions of the VCOs, see Figure 4, see also (Burgess et al.,
2007; Giocomo et al., 2007). So, following Eq. (5), the dis-
tance between peaks, or grid spacing, G is given by

to the preferred

= L(n/6) = (18)

fB

Equation (16) tells us how theta frequency fy depends on
running speed s(#), the average value of  throughout mEC,
and the VCO’s MPO frequency at zero speed f. Reported grid
cells vary in spatial scale from 30 cm dorsally (Hafting et al.,
2005) to at least 400 cm ventrally (Brun et al., 2008). So
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Eq. (18) indicates a range of B between 0.039 dorsally and
0.003 ventrally, with a dorsal weighting due to the wider extent
of mEC at dorsal than ventral locations, and indications that
grid scale increases more rapidly in the ventral mEC (Brun
et al., 2008). The mean value of B depends on the density of
representation of different grid scales, p(G), i.e.:

400
2p(G)dG

R

(19)

30

if p(G) is uniform, i.e., p(G) = 1/370, then (B) = 0.008. How-
ever, a uniform density of representation across scales seems
unlikely in terms of efficiency. A density inversely proportional
to grid scale, i.e., p(G) = 1/(log(400/30)G), so that the number
of cells with grids below a maximum scale is logarithmic in the
maximum scale, predicts (B) ~ 0.014. The observation that
grid scales increase in jumps of a fixed factor of around 1.7
(Barry et al., 2007) implies that p(G) might decrease exponen-
tially with grid scale, i.e., p(G) proportional to exp(— G/7y). This
gives the uniform density result for very large vy, and larger val-
ues of (B) for smaller values of v, e.g., (B) ~ 0.001 for y =
400 cm; (B) ~ 0.023 for y = 30 cm.

In terms of intracellular recording, Egs. (12) and (18) indi-
cate that

L) =f+ V() (20)

\/—G

where V(#) is the VCO’s depolarization level and f5 can be
found as the intercept of a plot of theta frequency vs. running
speed, see Eq. (16) and the discussion of f; and B following it.

In terms of extra-cellular recording, as well as theta fre-
quency, we can measure the intrinsic firing frequency fi(#)
resulting from a grid cell's VCO and baseline inputs by exam-
ining the autocorrelogram of the grid cell’s firing. Replacing £,
and f; in Eq. (3) can then produce a relationship between
intrinsic firing frequency, aspects of theta frequency, grid scale
and running speed, as follows. In the model of layer II grid
cells [Eqs. 7-11], peaks occur in the grid cell membrane poten-
tial as a result of the muldple directional VCO inputs to it
and I assume that the intrinsic firing frequency equals the fre-
quency of these peaks. The VCOs contribute inputs oscillating
at above baseline frequency when the rat is running in the
VCOs preferred direction (i.e., 8, —90° < o() < oq +90°)
and do not contribute when it runs in the opposite direction.
The mean frequency of the contributing VCOs is found by
averaging Eq. (3) over all running directions o(2):

n/2

ey =50+ B [ costordo = fio)+

—-n/2

2[3;( )

(21)

The VCO frequencies also interact with the baseline frequency,
bringing the frequency of the combined MPO closer to the



baseline frequency according to the shape of the combined
MPO (resulting in little change if it is sufficiently punctate, or
resulting in the mean of the two frequencies if it is sinusoidal,
see Fig. 1). Assuming a sinusoidal oscillation results from mul-
tiple VCO inputs (the effect of multiple EPSPs from multiple
VCOs in the neuronal implementation; or the smooth MPOs
in the dendritic implementation), implies that the grid cell’s
combined MPO frequency will be the mean of the contribut-
ing VCO inputs [Eq. (21)] and the baseline frequency, giving

FO iy =t + 2. @)
Substituting for f, using Eq. (15) gives
Do =+ (1L )Bs(o), (23)

and substituting for B using Eq. (18) gives

2(m+1)

(i) o) = 1o +Wf

(#) (24)

Note that all of the variables in Eqgs. (16) and (24) can be
measured by recording grid cell firing and EEG in freely mov-
ing animals: speed, s(2); grid scale, G; average intrinsic firing
frequency, (f{(#)); theta frequency, f3(#); theta frequency extrapo-
lated to zero speed, fo; see Table 1. These predictions are exam-
ined by Jeewajee et al. (2008).

DISCUSSION

Evidence for the oscillatory interference model comes from
in vitro intracellular recordings in slices taken from medial EC.
The membrane potential of layer II stellate cells is known to
naturally oscillate at a frequency close to the EEG theta fre-
quency, see (Alonso and Llinas, 1989; Alonso and Klink, 1993;
Erchova et al., 2004). Significantly, this MPO frequency
increases with increasing depolarization (Giocomo et al., 2007;
Giocomo and Hasselmo, 2008), consistent with Eq. (20). In
addition, Eq. (20) predicts that the slope of the frequency vs.
depolarization curve should be inversely proportional to grid
scale G. Giocomo and Hasselmo (2008) showed that this is the
case, by measuring f; as a function of the dorso-ventral location
of the slice, and using the known dependence of grid scale on
dorso-ventral location to infer the grid scale.

In terms of recording in freely moving animals, evidence so
far is indirect. The original suggestion (O’Keefe and Burgess,
2005) that layer II grid cells would show theta phase precession
has recently been verified (Hafting et al., 2008). In addition,
Burgess et al. (2007) noted reports that grid cell firing shows a
slight increase in spatial scale when the rat is put into a novel
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environment (Fyhn et al., 2007 supplementary online material).
We therefore predicted that environmental novelty would pro-
duce a global change in grid scale, reflected in a concomitant
change in theta frequency [Eq. (17)]. Subsequent work demon-
strated that environmental novelty does indeed result in a
reduction in theta frequency (Jeewajee et al., 2008).

The model makes specific prediction relating changes in the
response of theta frequency to running speed to changes in
grid scale [Eqgs. (16) and (17)] in response to environmental or
pharmacological manipulations. Related predictions concerning
place cell remapping can be made, given the disruption to
place cell inputs caused by changes in grid scale. These predic-
tions remain the subject of current investigation. In addition,
the characteristics of the proposed VCOs have been well
described. Locating these neuronal or dendritic processes con-
stitute another set of predictions, see also (Blair et al., 2008;
Hasselmo, 2008).

Jeewajee et al. (2008) explore the quantitative predictions of
Egs. (16) and (24) by investigating the intrinsic firing fre-
quency f{z), theta frequency f3(2), grid scale G and running
speed s(#) in extra-cellular recordings of grid cells in freely mov-
ing rats. Their findings provide the first direct extra-cellular evi-
dence for the model: confirming the increase of theta frequency
(see also Rivas, Gaztelu, Garcia-Austt, 1996; Slawinska, Kasicki,
1998) and grid cell’s intrinsic firing frequency with running
speed and the decrease in intrinsic firing frequency with grid
scale, consistent with Eqs. (16) and (24).

Relationship to Recurrent Connectivity
and “Attractor’ Models

The oscillatory interference model provides a mechanism to
explain the firing pattern of individual grid cells. As such it
does not address the likely interactions between different grid
cells, but nor does it deny them. Given the anatomy of mEC
(see e.g.,Witter and Moser, 2006) it is likely that there are
functionally relevant recurrent connections between grid cells
which affect their firing. And the major alternative model for
grid cell firing (the continuous attractor model) posits that the
grid patterns result directly from this recurrent connectivity
(Fuhs and Touretzky, 2006; McNaughton et al., 2000).

To consider how recurrent connectivity and the oscillatory
interference model would interact, it is worth distinguishing
two types of interaction between neurons: symmetrical, i.e.,
having an equal effect on the neurons at either end of a func-
tional connection; and asymmetrical. The continuous attractor
model, as originally proposed for head-direction cells and place
cells, assumes that each member of a population of neurons
have similar desired spatial patterns of firing with different off-
sets, as is the case with head-direction, place or grid cells
(Zhang, 1996; McNaughton et al., 1996; Samsonovich and
McNaughton, 1997) see also (Droulez and Berthoz, 1991;
Ben-Yishai and Sompolinsky, 1995). This model proposes dis-
tinct roles for symmetric and asymmetric interactions between
neurons, as follows.
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The strengths of (symmetric) connections between pairs of
neurons are arranged to precisely reflect the spatial proximity of
their firing patterns. These connections ensure that the firing
of individual neurons follows the desired spatial firing pattern
and that the pattern of activity across the population is coherent
(i.e., the relative firing rates of neighboring neurons are consist-
ent with each other, and with a single location or direction for
the animal). Thus, for grid cells, firing patterns with a poor grid
structure will be “cleaned up” to follow the desired grid pattern,
and the firing rates of different neurons will correspond to the
desired spatial offset between their grids. See (Fuhs and Tour-
etzky, 2006; McNaughton et al., 20006) for details.

By contrast, asymmetric connections between neurons allow
the pattern of activity across the population of neurons to move
smoothly so as to track the actual movement of the animal. The
rate of movement of the location represented by the population
activity is proportional to the strength of the asymmetric interac-
tion compared to the symmetric interaction (Zhang, 1996). For
this to accurately track actual movement requires precise tuning.
First, the symmetric connection strengths between neurons must
be perfectly balanced, to prevent drift unrelated to actual move-
ment. Second, asymmetric connections are required between
each neuron and the other neurons with firing patterns offset in
all directions around it, and the strengths of these connections
must precisely reflect the animals actual motion (they are
assumed to be mediated by neurons whose firing rates reflect
movement velocity). The presence of such asymmetric connec-
tions has also been argued to provide an explanation for the
phase precession effect (Tsodyks et al., 1996).

There is good evidence for symmetrical recurrent connec-
tions between grid cells. Thus the grid cells in one hemisphere
all appear to have similarly oriented grids. In addition, while
the grid scales increase with the dorso-ventral location of the
grid cell in mEC, the scale appears to increases in quantized
jumps. See Barry et al. (2007). Both of these findings indicate
that populations of grid cells form a coherent representation of
the type supported by symmetrical recurrent connectivity.

The oscillatory interference model is not necessarily incom-
patible with the continuous attractor model. The addition of
symmetrical recurrent connectivity between cells individually
following the oscillatory interference model would likely
improve the stability and coherence of all of the cells in the
population. In addition, the constraint that VCOs have pre-
ferred directions differing by multiples of 60° indicates the
presence of developmental plasticity following an unsupervised
learning rule (Burgess et al., 2007; see also Rolls et al., 2006).
The presence of recurrent connectivity could ensure that a
coherent set of preferred directions was present in the whole
population. In return, the oscillatory interference model could
provide the firing patterns required to develop the appropriate
symmetrical connection strengths in the first place.

The oscillatory interference model does provide a clearly differ-
ent mechanism to that proposed for the asymmetric connections
under the continuous attractor model, i.e., the use of oscillatory
phase to perform the temporal integration of a (rate coded) veloc-
ity signal to give displacement. Even so it is still possible that, as
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with symmetrical connections, asymmetric connections between
neurons could act in parallel to the proposed oscillatory interfer-
ence mechanism in driving the firing of individual neurons.
Rather than attempting to have a ‘beauty contest’ between the
rival models, I hope that these two distinct models instigate a
more mature era of computational modeling in which the focus is
on making testable predictions which drive forward the theory-
experiment cycle by which science progresses.

CONCLUSION

I have reviewed the oscillatory interference model (Burgess
et al., 2007) from the perspective of providing an algorithm for
path integration and of being implemented by grid cells. I have
focused on a specific implementation corresponding to grid
cells in layer II of mEC. Briefly, proposed “VCOs’ have a MPO
which increases with depolarisation and receive synaptic input
from speed-modulated head-direction cells. The phase of each
VCO relative to a baseline oscillation will then correspond to
distance traveled along the preferred direction of it head-direc-
tion cell input. Several VCOs with preferred directions differ-
ing by multiples of 60° combine to produce grid cell firing.
The VCOs whose preferred directions are with 90° of the cur-
rent direction of motion drive the firing of the grid cell, while
the modulatory baseline oscillation corresponds to the average
frequency of the local VCOs (i.e., with all preferred directions).
The grid scale is inversely proportional to the gain of the
VCO’s frequency response to depolarization, 3. The global av-
erage frequency of all VCOs in mEC is identified with theta,
and comprises two components: the frequency extrapolated to
zero speed (fo) and an increase in frequency with running speed
(with the mean gain of all mEC VCOs: (B)). Cumulative error
in path integration is corrected by phase reset, which is driven
by input from place cells in a familiar environment.

I derived quantitative predictions relating theta frequency,
grid cell intrinsic firing frequency, grid scale and running speed
(Eq. 24). I also derived predictions relating changes in the
response of theta frequency to running speed to changes in
grid scale [Eqgs. (16) and (17)] in response to environmental or
pharmacological manipulations. These predictions can be
extended to place cell remapping, given the disruption to place
cell inputs caused by changes in grid scale. In addition, I have
spelled out the characteristics of the proposed VCOs, which
might be instantiated in individual neurons, or in dendritic
subcompartments. Although the specific implementations
described here will undoubtedly be wrong in detail, the
strength of the oscillatory interference model lies in the experi-
mentally testable predictions that it has made, and continues to
make, which I have outlined here.
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