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ABSTRACT While both dopamine (DA) fluctuations and spike-timing-dependent
plasticity (STDP) are known to influence long-term corticostriatal plasticity, little atten-
tion has been devoted to the interaction between these two fundamental mechanisms.
Here, a theoretical framework is proposed to account for experimental results specifying
the role of presynaptic activation, postsynaptic activation, and concentrations of extracel-
lular DA in synaptic plasticity. Our starting point was an explicitly-implemented multipli-
cative rule linking STDP to Michaelis-Menton equations that models the dynamics of
extracellular DA fluctuations. This rule captures a wide range of results on conditions
leading to long-term potentiation and depression in simulations that manipulate the fre-
quency of induced corticostriatal stimulation and DA release. A well-documented biphasic
function relating DA concentrations to synaptic plasticity emerges naturally from simula-
tions involving a multiplicative rule linking DA and neural activity. This biphasic func-
tion is found consistently across different neural coding schemes employed (voltage-based
vs. spike-based models). By comparison, an additive rule fails to capture these results. The
proposed framework is the first to generate testable predictions on the dual influence of DA
concentrations and STDP on long-term plasticity, suggesting a way in which the biphasic
influence of DA concentrations can modulate the direction andmagnitude of change induced
by STDP, and raising the possibility that DA concentrations may inverse the LTP/LTD com-
ponents of the STDP rule. Synapse 61:375–390, 2007. VVC 2007Wiley-Liss, Inc.

INTRODUCTION

Over the past decade, significant advances have been
made in understanding the mechanisms underlying
long-term potentiation (LTP) and depression (LTD) in
corticostriatal synapses (Gurney et al., 2004; Mahon
et al., 2004). Recent evidence suggests that the specific
spike timing of corticostriatal activation can influence
both the magnitude and direction of change in synaptic
efficacy (Fino et al., 2005). In addition, long-term plas-
ticity in corticostriatal synapses is also mediated by
interactions with nigrostriatal cells, in particular
through the levels of extracellular dopamine (DA) re-
leased around the precise time of corticostriatal activa-
tion (Reynolds and Wickens, 2002). However, at the
current time, both empirical and theoretical investiga-
tions into the possible interactions of spike-based and
neurotransmitter-based mechanisms are scarce.

In order to address this issue, the current paper
presents a theoretical framework that captures synap-
tic plasticity in corticostriatal synapses. This frame-

work includes two separate models. First, a model of
spike-timing-dependent plasticity (STDP; Abbott and
Nelson, 2000; Gerstner and Kistler, 2002; Legenstein
et al., 2005; for a review see Dan and Poo, 2004) cap-
tures the influence of precise spike timing on synaptic
plasticity. Second, a model of the temporal dynamics of
DA release is implemented through Michaelis-Menton
equations (MM; Montague et al., 2004a; Nicholson,
1995, 2001; Schonfub, 2001; Venton et al., 2003).

To capture the complex synaptic interactions be-
tween STDP and the dynamics of extrasynaptic DA,
we take as starting point an explicitly-implemented
multiplicative rule, such as that employed in temporal-
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difference learning (TD, Sutton and Barto, 1998; Mon-
tague et al., 2004b). While it remains an open question
whether such a rule will ultimately explain all aspects
of corticostriatal plasticity, it is consistent with a large
body of experimental work demonstrating that presyn-
aptic activity, postsynaptic activity, and DA concentra-
tions are all required to induce changes in synaptic effi-
cacy (Reynolds and Wickens, 2002). Given the range of
experimental evidence that can be captured with a
multiplicative rule, our goal is to establish the compu-
tational consequences of implementing such a rule in a
temporally precise model of corticostriatal plasticity,
one that includes both STDP and DA fluctuations.

The main goal of the simulations proposed here is to
capture the body of experimental evidence on condi-
tions leading to LTP and LTD, as well as to provide a
quantitative fit to the STDP data provided by Fino
et al. (2005). In an effort to uncover the general princi-
ples behind corticostriatal plasticity, we report on the
successes and failures of different variants of simula-
tions, including different neural coding schemes (spike-
based vs. voltage-based) and learning rules for combin-
ing neural activity and DA (multiplicative vs. additive
rules). A more specific aim of the current work is to
evaluate these different variants with respect to their
ability to capture the well-documented relationship
between DA concentrations and synaptic plasticity
(Reynolds and Wickens, 2002).

Through simulations of induced activity, several
novel predictions can be derived from this conjecture.
In particular, the influence of DA fluctuations on plas-
ticity may interact with STDP manipulations such that
DA concentrations may influence the magnitude of
change in synaptic efficacy induced by STDP. Further-
more, different DA concentrations may inverse the typ-

ical STDP rule, inducing LTP in conditions that nor-
mally elicit LTD, and vice versa, as hinted at by recent
experimental work (Fino et al., 2005).

In the following sections, we first review some of the
main empirical findings where neural activity and neu-
rotransmission are combined. We then describe a model-
ing framework that proposes to capture these findings.
Third, we employ a voltage-based version of the frame-
work to model the effects of DA concentrations on synap-
tic efficacy, comparing results between a multiplicative
and an additive version of the framework. Fourth, a
spike-based version of the model is used to simulate plas-
ticity under various frequencies of stimulation. Finally,
we provide a quantitative fit to the STDP data of Fino
et al. (2005), and describe novel predictions relative to
the effect of DA concentrations on STDP.

A three-way synaptic rule

At the presynaptic level, striatal cells receive activa-
tion from the cortex, through corticostriatal pathways
(Fig. 1A). At the postsynaptic level, the striatum acti-
vates medium spiny neurons that constitute its pri-
mary output. Striatal neurons also receive input from
the dopaminergic neurons of the substantia nigra pars
compacta (SNc) and adjoining midbrain areas (Bjor-
klund and Lindvall, 1986; West et al., 2003). Several
experiments, both in vivo and in vitro, agree that a
three-way interaction involving presynaptic depolari-
zation, postsynaptic depolarization, and certain levels
of DA concentration are required to induce plasticity in
corticostriatal circuits (Reynolds and Wickens, 2002).
First, in the absence of any evoked activity, no plastic-
ity is induced, and corticostriatal responses remain sta-
ble over time (Walsch, 1993). Second, neither presynap-
tic activity alone (Choi and Lovinger, 1997; Calabresi

Fig. 1. A schematized corticostriatal syn-
apse depicting the influence of DA on plastic-
ity. In A, a cortical cell terminal releases glu-
tamate (Glu) onto the dendritic spine of a me-
dium spiny neuron of the striatum. DA cells
of the SNc also project onto medium spiny
cells, and, upon stimulation, release vesicular
DA into the same synapse. In B, DA concen-
trations relate to change in corticostriatal syn-
aptic efficacy in a biphasic fashion according
to different experimental manipulations sum-
marized on the figure. The x-axis represents
DA concentrations present at the time of corti-
costriatal activation (adapted from Reynolds
and Wickens, 2002).
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et al., 1992) nor postsynaptic activity alone (Calabresi
et al., 1999) can induce plasticity. Rather, a combina-
tion of both is required. Third, depleting DA prevents
both LTP and LTD forms of plasticity (Calabresi et al.,
1992; Centonze et al., 1999; Tang et al., 2001). Taken
together, these results suggest a three-way rule for syn-
aptic plasticity, one that includes presynaptic activity,
postsynaptic activity, and certain levels of DA concen-
tration (Miller et al., 1981; Schultz, 1998). It is likely
that both D1 and D2 receptors play a role in such rule
(Reynolds and Wickens, 2002). For instance, stimula-
tion of D1 both enhances L-type high-voltage-activated
Ca2þ spikes through PKA-dependent pathways but
reduces them through PKC-dependent signaling path-
ways (Young and Yang, 2004). Thus, through the same
receptor subtype, DA can differentially affect the very
same postsynaptic ion channel.

Manipulations involving individual factors in this
three-way rule have shed some light on their influence
with respect to synaptic plasticity. However, the result-
ing nonlinear interactions can be challenging to inte-
grate in a coherent account. For instance, while there
are some reports that a combination of pre- and postsy-
naptic activity enables LTD (Calabresi et al., 1992;
Lovinger et al., 1993; Walsh, 1993; Wickens et al.,
1996), there are also reports that it can enable LTP
(Charpier and Deniau, 1997; Reynolds and Wickens,
2000), or produce no change (Akopian et al., 2000; Par-
tridge et al., 2000; Spencer and Murphy, 2000). Might
these seemingly contradictory results actually reflect
important principles of plasticity? Assuming that this
is indeed the case, can these principles then be cap-
tured through a theoretical model?

Synaptic activity and spike-timing-dependent
plasticity

A likely possibility is that the above results can be
explained by taking into account the precise timing of
pre- and postsynaptic spiking potentials, through
STDP. On the basis of this idea, synaptic efficacy can be
affected in different ways according to whether a pre-
synaptic spike closely precedes or follows an excitatory
postsynaptic potential (EPSP). Synaptic rules founded
on the principle of spike timing have been found in
numerous neural circuits, including retinotectal con-
nections (Zhang et al., 1998), neocortex (Markram
et al., 1997), cerebellum (Bell et al., 1997), cochlear nu-
cleus (Tzounopoulos et al., 2004), visual cortex
(Froemke and Dan, 2002; Froemke et al., 2005; Sjos-
trom et al., 2001), barrel cortex (Egger et al., 1999;
Feldman, 2000), and cultured hippocampal neurons (Bi
and Poo, 1998; Debanne et al., 1994; Debanne et al.,
1998; Magee and Johnston, 1997). In a majority of
these systems (see the discussion section for other
cases), LTP is produced if the presynaptic signal pre-
cedes postsynaptic response, and LTD is produced in

the inverse scenario where the presynaptic signal fol-
lows the postsynaptic response. If the signals occur
more than a few milliseconds apart, no change in syn-
aptic efficacy occurs.

In corticostriatal synapses, the idea that the precise
timing of spiking activity may have something to do with
different effects of plasticity had been proposed some
years ago, albeit with no precise mechanism specified
(Calabresi et al., 1999; Calabresi et al., 1992; Choi and
Lovinger, 1997). More recent work, however, has pro-
vided evidence of an STDP rule in corticostriatal synap-
ses (Fino et al., 2005). In this study, STDP was obtained
by inducing a low frequency stimulation, consisting of
600 stimuli at 1 Hz, separated by a one second interval.
The resulting time window for plasticity was on the
order of roughly 40 ms. That is, plasticity could be
induced if the pre- and postsynaptic signals occurred
within 40 ms of one another. One difference between the
STDP found in corticostriatal synapses and that found in
other systems is that an inversed rule was found: LTD
was induced if a presynaptic potential followed the post-
synaptic potential, and LTP was induced in the opposite
case. Unfortunately, this study did not investigate the
influence of high frequency stimulation (HFS) on plastic-
ity; as will be explored, interesting predictions for this
condition can be derived from the modeling framework
proposed here.

Effects of dopaminergic concentrations
on plasticity

Despite the potential of STDP to explain findings rel-
ative to plasticity in corticostriatal projections, it can-
not, in its basic form, account for the effect of DA con-
centrations on synaptic plasticity. As shown experi-
mentally, electrode stimulations of SNc cells can alter
DA concentrations at the corticostriatal synaptic junc-
tion (for a review, see Reynolds and Wickens, 2002). In
turn, the resulting extracellular DA can enable both
LTD and LTP, depending on its concentration (Cala-
bresi et al., 1992; for a review, see Reynolds and Wick-
ens, 2002). Low levels of DA during corticostriatal acti-
vation induce depression (Kerr and Wickens, 2001),
whereas higher doses induce potentiation (Wickens
et al., 1996; Reynolds et al., 2001). Thus, the level of
DA released around the time of corticostriatal activa-
tion is a critical determinant of the direction of synaptic
modification. This phenomenon can be summarized
through a nonlinear biphasic function that relates DA
concentrations to plasticity (Fig. 1B); how this function
can emerge from a computational account is the central
theme of the current paper.

Modeling the interaction between activity
and DA concentrations

Crucial to understanding plasticity in corticostriatal
circuits is a means of capturing the interplay between
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synaptic activity and the levels of DA present around
the time of this activity. Widely-used theoretical models
such as TD learning (Sutton and Barto, 1998) suggest
that a multiplicative interaction captures a large num-
ber of findings in DA-dependent learning. However, it
remains a matter of debate whether such multiplica-
tive account is indeed plausible. A large part of this
debate can be attributed to methodological issues. Mul-
tiplicative interactions seem to be contradicted by
experiments where the combined action of pre- and
postsynaptic cells was able to induce plasticity, seem-
ingly without the influence of DA (Akopian et al., 2000;
Charpier and Deniau, 1997; Partridge et al., 2000;
Spencer and Murphy, 2000). However, it is likely that
small concentrations of DA were present in these
experiments; indeed, traces of DA can be detected in
vitro by high-pressure liquid chromatography following
HFS of the corticostriatal pathway (Calabresi et al.,
1995). Together with evidence that near-total DA pre-
vents the induction of either LTD (Calabresi et al.,
1992) or LTP (Centonze et al., 1999), such evidence
seems to vindicate the three-way multiplicative rule
(Wörgötter and Porr, 2005). While the validity of a mul-
tiplicative rule is still debated in experimental work, it
is also the focus of much theoretical investigation. At
the current time, it remains unclear whether a model
based on a multiplicative three-way interaction can
account for experimental evidence where precise tem-
poral aspects of synaptic activity and DA neurotrans-
mission are manipulated. Here, we address this issue
in a framework that multiplicatively combines the
coactivation of corticostriatal cells with MM equations
of dopaminergic fluctuations.

METHODS

To capture the synaptic activity of neurons, the pro-
posed model employs leaky integrate-and-fire (LIF)
equations (Gütig and Sompolinsky, 2006; Vogels and
Abbott, 2005; for applications of LIF neurons to models
of the basal ganglia, see Ashby et al., 2005; Brown et al.,
1999), combined with a Hebbian-based rule for plasticity,
and an extension of MM equations that has been suc-
cessful in capturing amperometric DA data (Venton
et al., 2003). While the proposed equations are phenome-
nological, and do not represent details of ionic exchanges
across the cellular membrane, they nonetheless repre-
sent some of the essential characteristics of neuronal
communication. Two versions of the LIF equations are
possible, namely a voltage-based and a spike-based
model, which we now describe in turn; a description of
the different ways in which these equations were
employed in simulations may be found in Appendix A.

Voltage-based membrane potentials

In the voltage-based version of LIF neurons, the fir-
ing rate of a presynaptic cortical neuron is obtained as

follows:

ApreðtÞ ¼ 1

1þ exp �bVpreðtÞ
� �þ 0:5; ð1Þ

where t is a time-step, b is a parameter, and Vpre(t) rep-
resents the presynaptic membrane potential of a corti-
cal neuron. This potential is obtained in a different way
for cortical input cells on the one hand:

VpreðtÞ ¼ Vrest þ IpreðtÞ þ lpre; ð2Þ

and striatal output cells on the other hand:

VpostðtÞ ¼ wðtÞApreðtÞ þ Vrest þ IpostðtÞ þ lpost: ð3Þ

The membrane potential fluctuates according to the
incoming activation Apre(t) from cortical neuron,
weighted by the efficacy of the connections w(t)
between the cortical and striatal neurons. In addition,
membrane potentials can be modulated by external
currents Ipre(t) and Ipost(t), as well as normalized sto-
chastic noise kpre and kpost in the range [0,1] (the
model makes no distinction between intrinsic and ex-
trinsic noise). Finally, Vrest corresponds to the mem-
brane resting potential.

Spike-based membrane potentials

In a different version of the model, LIF neurons can
represent the postsynaptic activity of a cell through a
spike-based signal. Adapting Eq. 3 to this signal, and
assuming instantaneous action potentials, the spike-
based membrane potentials of striatal cells become

VpostðtÞ ¼ wðtÞ
X
tpre

K t� tpre
� �þ Vrest þ lpost; ð4Þ

where tpre denotes the spike times of the cortical
afferent and K(t – tpre) is the normalized potential
contributed by each incoming spike (Gütig and Som-
polinsky, 2006):

K t� tpre
� � ¼ V0 expð�ðt� tpreÞ=tÞ � exp �ðt� tpreÞ=tS

� �� �
:

ð5Þ

A neuron fires whenever the membrane potential
(Vpre(t) or Vpost(t)) reaches the threshold (Ypre or
Ypost) from below, for instance:

VpostðtÞ ¼ ypost and
d

dt
VpostðtÞ > 0 ) t ¼ tpost: ð6Þ

Here, tpost represents the firing times of a postsynap-
tic striatal neuron. If a pulse is triggered, the mem-
brane potential is reset to its resting state Vrest, and
held there for a time length of Trefract corresponding
to the absolute refractory period. A similar rule as
Eq. 6 applies to Vpre.
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Spike-timing-dependent plasticity

In the spike-based model described above, the precise
temporal order of pre- and postsynaptic spike arrivals
plays a central role in determining whether LTP or
LTD is induced, leading to an STDP learning rule. This
rule for updating synaptic connections can be
expressed through the following model:

Fð�tÞ ¼ Wþ expð��t=tþÞ if �t > cLTP

�W� expð�t=t�Þ if �t � cLTD

�
ð7Þ

where Dt ¼ tpost – tpre reflects the difference between
the last spike arrival times of presynaptic (tpre) and
postsynaptic (tpost) cells. The parameters wLTP and
wLTD (controlling the beginning in time of the LTP
and LTD components) are set to zero for the prelimi-
nary simulations presented in this section (but see
Fig. 6 for other results). The parameters Wþ and W�
(controlling the magnitude of change in synaptic effi-
cacy) are provided in Appendix A. Finally, the param-
eters sþ and s� (controlling the time-course of plastic-
ity) are defined in simulations (see Results section).
These values do not reflect precise neurophysiological
properties of the synapse; rather, they are meant to
capture some general characteristics of plasticity.
More detailed biophysical models of STDP are pro-
posed elsewhere (e.g., Pfister et al., 2006), and are
beyond the scope of the current paper.

Michaelis-Menton equations

In addition to accounting for STDP, our proposed
framework incorporates equations for the effect of DA
concentrations on synaptic plasticity. These equations
are based on MM kinetics for the diffusion and reup-
take of neurotransmitter in the extracellular environ-
ment. Such MM kinetics have been applied to modeling
both tonic and phasic DA (Venton et al., 2003; Nichol-
son, 1995; Nicholson, 2001; Montague et al., 2004a).
For instance, Montague et al. (2004a) proposes a \kick
and relax" model based on MM kinetics. This model
was successful at capturing all the dynamics of extrac-
ellular DA for repetitive stimuli, and is based upon
some of the same basic MM equations as the model
developed here. However, the kick and relax model
does not capture long-term plasticity, which is the main
goal of the current paper.

According to our proposed framework, this effect can
be captured through a summation of the diffusion and
reuptake of extracellular DA. Diffusion of DA in the
extracellular space can be obtained using the following
equation:

� DnðtÞ½ �diffusion ¼
Dn�1ðtÞ½ �

2
þ Dnþ1ðtÞ½ �

2
� DnðtÞ½ �; ð8Þ

where n [ N indexes discrete bins in the extracellular
microenvironment (the square brackets \[ ]" indicate

a concentration of neurotransmitter). These bins divide
the extracellular space around the cell into compart-
ments of even size. A correspondence between ampero-
metric data and a diffusion model similar to that of Eq.
8 has been established using extracellular bins of rela-
tively small size (0.5 lm; Venton et al., 2003; see also
Schmitz et al., 2001). The number of such bins
employed in the model will alter the results obtained;
as a general rule, it is best to keep this number small
in order to prevent locations in the outer boundary
from affecting results (Venton et al., 2003). Recordings
made farther away from the diffusion site are less
likely to be due to presynaptic release from a particular
cell. A thorough exploration of bin sizes is beyond the
scope of our present work; extensive discussions of
MM dynamics are available elsewhere (e.g., Nicholson,
1995, 2001).

The following equation represents kinetics of the DA
reuptake:

� DnðtÞ½ �uptake ¼
Vmax DnðtÞ½ �
Km þ DnðtÞ½ � ; ð9Þ

with constants Vmax and Km. The total change in
extracellular DA is

� DðtÞ½ �total ¼
1

N

X
n

� DnðtÞ½ �diffusion
 !

� 1

N

X
n

� DnðtÞ½ �uptake
 !

þ DðtÞ½ �ext; ð10Þ

where [D(t)]ext is a concentration of DA released in
the extracellular space by an adjacent SNc cell. Using
the above equation, DA concentrations can be up-
dated as follows:

DðtÞ½ �total ¼ Dðt� 1Þ½ �total þ gD� DðtÞ½ �total; ð11Þ
where gD is a parameter controlling the rate of
change of DA concentrations over time. In its current
form, the proposed account does not differentiate
between the influence of heteroreceptors and autore-
ceptors on diffusion and reuptake. In addition, fur-
ther details would be required to capture differences
between D1 and D2 receptors.

Putting it all together: A synaptic plasticity
rule based on multiplicative interactions

In the voltage-based model, the following Hebbian-
based multiplicative rule is proposed to link synaptic
activity to DA fluctuations, and update connection effi-
cacies accordingly:

�wðtÞ ¼ ApreðtÞApostðtÞ ½DðtÞ�total � b
� �

; ð12Þ

where b is a baseline of DA concentration. In the
spike-based model, this equation is modified by
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replacing the terms Apre(t) and Apost(t) (representing
pre- and postsynaptic activity respectively) with a
term F(Dt) from Eq. 7 representing the STDP rule:

�wðtÞ ¼ Fð�tÞ ½DðtÞ�total � b
� �

: ð13Þ

The particular influence of DA concentrations on syn-
aptic plasticity can be captured by setting b > 0. In
this way, low concentrations of DA will have a nega-
tive impact on plasticity, while higher concentrations
will have a positive impact (see Results section).
Using the rule of Eq. 12 or Eq. 13, connection weights
can be updated as follows:

wðtþ 1Þ ¼ wðtÞ þ gw �wðtÞ; ð14Þ

where gw is a learning rate parameter. A potential
competitor to the multiplicative rule of Eq. 12
(voltage-based model) could be one involving an addi-
tive influence of DA on neural activity:

�wðtÞ ¼ ApreðtÞApostðtÞ þ ½DðtÞ�total � b
� �

: ð15Þ

Such a rule states that synaptic activity and DA concen-
trations contribute separately to plasticity, without inter-
actions between them. Similarly, an additive rule can be
derived for the spike-based model by modifying Eq. 13:

�wðtÞ ¼ Fð�tÞ þ ½DðtÞ�total � b
� �

: ð16Þ

Simulations of induced activity
and DA concentration

In the framework proposed here, various conditions of
stimulations are obtained by different means for the volt-
age-based and spike-based models. For the former, it is
the average amount of activity over time that is consid-
ered, and discrete values of Ipre(t), Ipost(t), and [D(t)]ext in
the range [0,. . .,200] are injected. For the latter, it is the
frequency of stimulation that is considered, and induced
stimuli (for both neural activity and DA release) are rep-
resented by a binary state of either 0 (absence) or 100
(presence). When such stimuli are injected in synaptic
stimulation (e.g., Ipre(t) ¼ 100), the result is a direct
induction of spiking activity in the cell. Using this
scheme, it is possible to precisely control the frequency of
stimulation (i.e., the number of spikes per second), and
induce phasic as well as tonic activation of the cortico-
striatal pathways (see Appendix A). While qualitatively
similar results emerge from the voltage-based and spike-
based models, both provide unique insights into the cel-
lular mechanisms of corticostriatal plasticity.

RESULTS
Voltage-based simulations

Simulations with the voltage-based model involved
stimulating cortical and striatal neurons through a

presynaptic–postsynaptic train regime (where presyn-
aptic activation preceded postsynaptic activation by a
single time-step), and simultaneously inducing DA
release (for details of methods see Appendix A).

Simulations performed in this fashion replicate known
results relative to the influence of DA concentrations on
synaptic plasticity (Fig. 2). In particular, a biphasic rela-
tionship between DA and synaptic plasticity emerged
from the results (Fig. 2A), as characteristic of experimen-
tal data taken over a wide number of reports (Reynolds
and Wickens, 2002). With DA depletion, there is no syn-
aptic change possible. If concentrations of DA are low,
LTD is produced. If these concentrations are gradually
increased, eventually an equilibrium point is reached
and no synaptic change is produced. If DA concentra-
tions are increased further above this equilibrium point,
LTP is produced. DA concentrations can be increased
further, leading to further induction of LTP. However,
past a certain level of concentration, the effect of DA on
synaptic change reaches an asymptote beyond which no
further increase in LTP is possible.

Taken as a whole, the voltage-based simulations
described here provide a mechanistic account of the
biphasic relationship between DA concentrations and
synaptic activity (i.e., Fig. 1B), relying on the influence
of induced activity on firing rates (modeled by Eq. 1;
Fig. 2B) and DA concentrations (modeled by MM equa-
tions; Fig. 2C). By assuming a threshold delimiting DA
concentrations that yield LTD vs. LTP (c.f., horizontal
line in Fig. 2C), a multiplicative interaction between
synaptic voltage and DA concentrations directly pro-
duces a biphasic relationship analogous to that observed
experimentally (compare Fig. 1B with Fig. 2A).

Is the proposed multiplicative interaction between DA
signals and synaptic activity the only possible account of
empirical results, or might other types of interactions
capture the results just as well? While it is impossible at
present to rule out all possible types of interactions, it is
nonetheless possible to eliminate some candidates,
including an additive rule (Eq. 15). As simulations dem-
onstrate, an additive effect does not provide the target
results (Fig. 2D), because a complete deprivation of DA
leads to LTD rather than no change. Given this result,
we conjecture that the proposed multiplicative interac-
tion constitutes a parsimonious and plausible account of
available results. The additive model, at least in its cur-
rent form, cannot account for these results.

Spike-based simulations

The above results using a voltage-based model of
synaptic activity replicate some key findings associated
with the influence of DA concentrations on plasticity.
Can these same results emerge independently of the
choice of model for synaptic activity? The goal of the
current section is to show how similar effects also hold
with a spike-based model. In addition, such model ena-
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bles the incorporation of precise temporal dynamics in
spike patterns, based on STDP.

In simulations using the spike-based model, changes in
synaptic efficacy can be modulated by controlling the fre-
quency of stimulation of the corticostriatal cells (Fig. 3).
By stimulating the cortical and striatal neurons using
either HFS or low-frequency stimulation (LFS), different
consequences for plasticity are obtained: while low-fre-
quency stimulation (LFS) leads to depression, high-fre-
quency stimulation (HFS) leads to potentiation. In addi-
tion, changes in synaptic efficacy can be modulated by
inducing DA release in the SNc pathways. As in the volt-
age-based model, the spike-based model assumes a
threshold delimiting the DA concentrations that result in
LTD vs. LTP (c.f., solid horizontal lines of top figures in
Fig. 3A, B). In LFS, because only low concentrations of
extrasynaptic DA are released, this threshold is never
reached, and the net effect of DA concentrations is LTD.
Conversely, in HFS, higher concentrations of extrasynap-
tic DA are released, resulting in LTP.

A summary of the effect of stimulation frequency on
synaptic plasticity is shown in Figure 4. These results

describe how different frequencies of stimulation in the
spike-based model can account for the characteristic
curve relating DA concentrations to change in synaptic
efficacy in various experiments, as captured with the volt-
age-based model described above (Fig. 2A). In the multi-
plicative model (Fig. 4A), a low frequency of stimulation
(i.e., below approximately 20 Hz) leads to a net effect of
LTD; higher frequencies are required for the expression
of LTP. These results are in agreement with experimental
evidence showing an equilibrium point between LTD and
LTP at 20 Hz stimulation (Reynolds and Wickens, 2002).
The multiplicative model can be compared to an additive
model (Fig. 4B). The main difference between the two
resides in conditions of LFS, where the additive model
predicts LTD rather than no change in synaptic efficacy,
as corroborated experimentally (Calabresi et al., 1992;
Reynolds and Wickens, 2002), and consistent with the
multiplicative model. In general, the simulation results
obtained with the spike-based model are quite noisy
when compared to the voltage-based account, in part
because the latter embodies a smooth approximation of a
process that is in reality subject to large amounts of noise.

Fig. 2. Voltage-based model, where DA concentrations affect
changes in synaptic efficacy, and induce both LTP and LTD. A: Mul-
tiplicative model of the effect of DA concentrations on plasticity.
Injected current into the DA cell (see Appendix A): Ipre (t) ¼ Ipost (t)
¼ [1.0, 200]. A presynaptic–postsynaptic activation regime is
employed for corticostriatal cells. B: Firing rate of a stimulated cort-

ical cell as a function of input currents Ipre (t). C: Extracellular do-
paminergic concentrations as modeled through MM kinetics. The
gray line indicates the threshold b for LTD/LTP (see text). D: Addi-
tive model. (A-D) Different values of baseline DA concentrations are
plotted, from 20.09 (higher values on all graphs) to 20.19 (lower val-
ues on all graphs), at intervals of 0.01.
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In the above simulations, induced DA release and cor-
ticostriatal stimuli are delivered at the same frequency
(LFS or HFS). However, it is also possible to test condi-
tions under which DA release and corticostriatal stimuli
do not follow the same frequency. As suggested by experi-
mental evidence (Reynolds and Wickens, 2000; c.f., Fig.
1B), corticostriatal HFS in the absence of SNc stimula-
tion leads to LTD. However, when a similar manipula-
tion is combined with LFS of the SNc pathways, no
change in synaptic efficacy is induced. These results are
captured through simulations performed with a multipli-

cative model where the induction of DA release is
reduced or eliminated altogether (Fig. 5). If corticostria-
tal HFS is combined with an elimination of all induced
DA release (Fig. 5A), DA levels never reach the baseline
concentrations required for the expression of LTP; as a
result, depression is expressed. A corticostriatal HFS
combined with low frequency induction of DA release
(Fig. 5B) produces different results: because DA concen-
trations now oscillate around the LTP threshold, both
LTP and LTD are expressed (albeit only slightly), with a
net effect of little or no change in plasticity.

Fig. 3. Spike-based model of the influence of stimulation fre-
quency on plasticity in corticostriatal synapses. A: LFS (single stim-
ulation indicated by the arrow in the top figure). LFS induces DA
release in the extracellular space, but remains below the threshold
for expression of LTP (top figure, horizontal line). As a result, the

net impact on plasticity is LTD (bottom figure). B: HFS (stimulation
at 100 Hz; arrows indicate the start and end of stimulation in the
figure). Induction of HFS pushes DA concentrations above the LTP
threshold (top figure), and therefore leads to LTP (bottom figure).
Corticostriatal spike trains followed a pre-post regime.
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Results of LFS corticostriatal simulations presented
here may offer an explanation for the reversed STDP
observed in Fino et al. (2005). In this experimental work,
pulses were delivered at a 1 Hz frequency, separated by
intervals of one second. As our simulations show (Fig.
3A), with such low frequency of stimulation, DA concen-
trations never cross the threshold above which LTP
would be expressed. In addition, DA returns to a resting
concentration after approximately 500 ms, as consistent
with previous work (Venton et al., 2003). As a conse-
quence of introducing an interval of one second between
stimuli, DA would never accumulate above the required
threshold for LTP. Next, we explore how the assumption
of a negative effect of DA concentrations on plasticity
can be used to provide a quantitative fit to the cortico-
striatal STDP data provided by Fino et al. (2005).

Quantitative fit to corticostriatal STDP

The data of Fino et al. (2005) reflect changes in syn-
aptic efficacy that occur an estimated 45 min after
induction of STDP. Here, we employ our multiplicative

framework to account for this data. The model of STDP
proposed in Eq. 7 has been employed to model plasticity
in several other simulations (e.g., Bi and Wang, 2002;
Bi and Poo, 1998; Song and Abbott, 2001). A particular
consideration in extending these results to corticostria-
tal synapses is that the STDP function reported by
Fino et al. (2005) is reversed when compared to that
obtained in other brain systems (Fig. 6E, filled trian-
gles). In this reversed STDP, LTD is expressed when Dt
> 0, which means that the presynaptic spike followed
the postsynaptic spike (i.e., tpre < tpost). Conversely,
LTP is expressed when Dt < 0, that is, when the pre-
synaptic spike preceded the postsynaptic spike (i.e., tpre
> tpost). The standard STDP rule predicts just the
reverse of these effects; we propose that a term relative
to the negative influence of DA concentrations on syn-
aptic plasticity is required to capture this finding.

In addition to capturing this reversed STDP, one
challenge in adapting Eq. 7 to corticostriatal synapses
is that our model must allow for a relatively large time
window between the LTP and LTD portions of the
STDP function (i.e., 610 ms), as is reflected in Fino

Fig. 4. Summary of the effect of stimulation frequency and DA
concentrations on synaptic plasticity. With a multiplicative model,
LFS induces LTD, while HFS induces LTP (A, left figure). This
effect can be linked to the release of extracellular DA (A, right fig-
ure). With an additive model, lack of corticostriatal activity leads to

strong LTD (B, left figure). In this model, DA depletion leads to
LTD, a result inconsistent with experimental evidence (B, right fig-
ure). Both multiplicative and additive models presented are gener-
ated using the spike-based model.
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et al.’s (2005) data. In order to account for this observa-
tion, the STDP model proposed in Eq. 7 is employed,
with values of the parameters wLTP and wLTD that are
increased above zero in order to widen the distance
between the LTP and LTD components. The value of
F(Dt) in Eq. 7, reflecting a measure of distance between
pre- and postsynaptic spikes, is used to determine the
change in synaptic efficacy (Eq. 13). For the purposes of
the preliminary quantitative analysis presented here,
we set the model to represent a negative influence of

DA on plasticity by making [D(t)]total – b ¼ �10, thus
leading to the following weight update:

�wðtÞ ¼ �10 Fð�tÞ: ð17Þ

While further DA measurements would be required
to obtain more precise values for these parameters, our
current instantiation suggests that, whatever these
values, DA should have a negative influence on plastic-
ity if the reversed STDP rule is to be observed. Such

Fig. 5. Spike-based model varying the frequency of induced DA
release. In A, HFS corticostriatal stimulation in combined with no
induction of DA release ([D(t)]ext ¼ 0 throughout). This manipula-
tion leads to low levels of extracellular DA, below the threshold for
expression of LTP (top figure, gray line). This results in a net effect

of LTD (middle and bottom figures). B is the same as A, but induces
a low frequency of DA (20 Hz LFS with [D(t)]ext ¼ 20). As a result,
DA concentrations sometimes cross the threshold for LTP (top fig-
ure), and changes in synaptic efficacy oscillate between LTP and
LTD (middle and bottom figures).

384 J.P. THIVIERGE ET AL.

Synapse DOI 10.1002/syn



Fig. 6. Proposed effect of DA on spike-timing dependent plasticity.
A–D: Plots were generated through Eq. 7 for STDP. Different values
of time constants (sþ and s�) are plotted in each figure, in the range
[1,10] at intervals of 1.0 mV (higher values leading to a wider window
for plasticity). Inset: filled diamonds represent different values of
[D(t)]total (c.f., Eq. 12) used to generate plots A–D. E: Data from Fino

et al. (2005) representing different recorded striatal cells (filled trian-
gles) is modeled through STDP (solid line; Eq. 7 combined with 17).
The data represents a difference from baseline condition in excitatory
postsynaptic current (EPSC); this is captured in the model through
adjustments in synaptic efficacy (Dw(t)). Model parameters: sþ ¼ 9, s�
¼ 12, Wþ ¼ 3, W� ¼ 0.29, wLTP ¼ 8, and wLTD ¼ �7.3.
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negative influence is likely to result from low concen-
trations of extrasynaptic DA, as demonstrated both
experimentally (c.f., Fig. 1B) and computationally
through the results presented here (c.f., Fig. 2A).

Using Eqs. 7 and 17, a reasonable fit to the data of
Fino et al. (2005) is obtained by selecting appropriate
parameters in the model (sþ, s�, Wþ, W�, wLTP, wLTD)
through an exhaustive search through the space of pos-
sible values, performed independently for each param-
eter (Fig. 6E). This search minimized the sum of
squared errors between each individual data point and
the corresponding value generated by the model. Per-
forming a search through the parameter space of Eqs. 7
and 17 was essential to fitting the STDP data, due to
the model’s sensitivity to its parameters.

While the model does not provide a perfect quantita-
tive fit to the data—due to factors including potential
sources of noise in the data—it was nonetheless able to
capture the main qualitative characteristics of varia-
tion in synaptic efficacy following induction of STDP.
More precise quantitative fits would only be expected
to provide refinements to these results, which already
demonstrate the relevance of the proposed model in
capturing corticostriatal STDP. Another caveat is the
small number of data points obtained in the Fino et al.
(2005) study; however, we consider it likely that further
data would only corroborate the presence of an STDP
rule in corticostriatal synapses. Along with previous
successes in modeling STDP in several systems (e.g., Bi
and Poo, 1998; Song and Abbott, 2001), our results pro-
mote further the proposed STDP rule (c.f., Eqs. 7 and
17) as an ubiquitous principle for plasticity across
many brain systems.

Inducing STDP under various conditions
of DA concentration

While the previous section provided a quantitative fit
to experimental data using a fixed value of DA, it is
also possible to vary the influence of DA concentra-
tions, and evaluate the computational consequences of
a multiplicative interaction between DA concentrations
and STDP. We investigate the effects of DA concentra-
tions on the STDP rule by setting arbitrary values of
[D(t)]total in Eq. 13 (Fig. 6, inset), and inducing an
STDP stimulation. While the values chosen for
[D(t)]total are not meant to fit particular empirical data,
they nonetheless capture the essence of the relation-
ship between DA concentrations and change in synap-
tic efficacy (Fig. 1B). As results of simulations suggest,
DA may be able to drastically alter the form of the
STDP rule, potentially reversing the conditions under
which LTP and LTD are expressed (Figs. 6A–D).
Indeed, our simulations suggest that the biphasic influ-
ence of DA concentrations on plasticity (Fig. 6, inset)
can modulate both the direction and magnitude of
change in synaptic efficacy induced by STDP. In this

way, moderate to high concentrations of DA could pro-
duce a similar form of plasticity as observed across
many other brain centers (e.g., Zhang et al., 1998),
where a pre-post regime induces potentiation, and a
post-pre regime induces depression. Conversely, lower
concentrations of DA may inverse this rule, and induce
depression in pre-post regimes, and potentiation in
post-pre regimes.

DISCUSSION

Our computational integration of STDP and DA
kinetics suggests that the characteristic influence of
DA concentrations on plasticity may be the conse-
quence of a multiplicative rule. When taken together,
the various aspects of the proposed framework were
able to capture a wide range of seemingly contradictory
experimental results on conditions leading to the
expression of LTP and LTD. For instance, our simula-
tions suggest that a combination of pre- and postsynap-
tic activity can result in LTD (Calabresi et al., 1992;
Lovinger et al., 1993; Walsh, 1993; Wickens et al.,
1996), LTP (Charpier and Deniau, 1997; Reynolds and
Wickens, 2000), or no change in synaptic efficacy (Ako-
pian et al., 2000; Partridge et al., 2000; Spencer and
Murphy, 2000), depending on the concentrations of DA
released around the time of corticostriatal activation.
Qualitatively, the results of simulations were not found
to depend on the type of neural model employed (i.e.,
spike-based vs. voltage-based), but failed to emerge if
the multiplicative rule was replaced with an additive
model. These results constitute a step forward in dem-
onstrating the ubiquity of multiplicative interactions
between DA concentrations and synaptic activity.

The proposed simulations raise the intriguing yet
empirically-motivated possibility that the STDP rule
may be reversed when DA extrasynaptic concentra-
tions are below certain levels. The conjectured STDP
\flip" under low DA concentrations explains the results
of Fino et al. (2005), who reported a reverse STDP in
corticostriatal synapses. In this experiment, induced
stimulations were performed under LFS, with 600
stimuli at 1 Hz, each separated by a one second delay.
According to our conjecture, this manipulation may
have led to low extrasynaptic DA concentrations, thus
resulting in the inversed STDP observed in their data
as well as in our model (Figs. 6B–C). At the current
time, this explanation remains speculative and awaits
further experimental validation. A fundamental ques-
tion that is not addressed here is how certain concen-
trations of DA are tied to the expression of LTD and
LTP, and in particular what is the molecular manifesta-
tion of a threshold in concentration where the net effect
of DA concentration on synaptic plasticity changes
from LTD to LTP (e.g., Fig. 2C, horizontal line). Specu-
latively, there may be a certain level of DA concentra-
tion above which a high enough postsynaptic influx of
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Ca2þ is induced (Young and Yang, 2004), in turn re-
sponsible for the expression of LTP. With lower DA con-
centrations, lower levels of Ca2þ may be induced, lead-
ing to LTD. This possibility leaves unanswered the
question of why and how a particular threshold of DA
concentration is responsible for these events. Interest-
ingly, reversed STDP (also termed \anti-STDP") has
been reported in other systems, including the electro-
sensory system of a weakly electric fish (Bell et al.,
1997), the cerebellum (Wang et al., 2000), and the dor-
sal cochlear nucleus of the brain stem (Tzounopoulos
et al., 2004). In these systems, the hypothesized role of
anti-STDP is to equalize synaptic efficacies. Because
anti-STDP directly counters STDP, it may act only
under certain limited conditions, and potentially be
triggered by neuromodulatory processes (Goldberg
et al., 2002; Rumsey and Abbott, 2004). Results of our
theoretical approach suggest, for the first time, that a
balance between STDP and anti-STDP could be under
the influence of extrasynaptic DA concentrations pres-
ent around the time of corticostriatal activation. How
DA concentrations can be employed to control the joint
operation of STDP and anti-STDP in order to promote
both associative learning and synaptic homeostasy, as
well as the functional consequences of this joint opera-
tion, are currently being investigated using the frame-
work proposed here.

The function proposed here to relate DA concentra-
tions to changes in synaptic efficacy may be employed
to guide further experimentation on the conditions
under which the STDP rule may be reversed. One of
the main predictions to follow from simulations is that
HFS would induce a standard (i.e., non-reversed)
STDP, when compared to the LFS condition. Interest-
ingly, this effect could potentially be addressed with
current experimental technologies; for instance,
through in vitro patch-clamping combined with amper-
ometric measurements of evoked DA (e.g., Lavin et al.,
2005; Venton et al., 2003).

An assumption of the proposed model is that DA con-
centrations can affect the plasticity resulting from the
timing of pre- and postsynaptic spikes relative to one
another. The results captured by our model are directly
dependent upon this assumption. If, for instance, DA
could only influence pre- and postsynaptic spikes inde-
pendently of one another, higher concentrations would
shift the STDP rule out of a time window where plastic-
ity is possible. These results would stand in stark con-
trast to empirical evidence showing that high concen-
trations of DA (i.e., through HFS) induce LTP. Thus,
the model proposed here argues for the necessity of DA
concentrations to affect the relative timing of pre- and
postsynaptic spikes in order to capture the data pre-
sented.

One question that has not been fully addressed
empirically concerns the origins of an equilibrium point
where, at certain mid-level concentrations of DA, no

synaptic change is induced (c.f., Fig. 1B). As a potential
answer, Reynolds and Wickens (2002) suggested that it
is \ongoing activity in the corticostriatal and nigrostri-
atal pathways [that] maintains an equilibrium level of
synaptic efficacy at the zero-crossing point." However,
it is difficult to relate this proposition to the actual DA
concentrations inducing plasticity, let alone to a mecha-
nism by which it would occur. One direct answer to this
issue comes from the proposed interaction between
synaptic activity and DA. As modeled (c.f., Eqs. 12–13),
an equilibrium point between LTP and LTD is reached
when the DA signal itself reaches the threshold b.
Given a value of [DA(t)]total ¼ b, it is straightforward to
see that the change in synaptic efficacy will fall to zero
(i.e., Dw ¼ 0.0), because it is the result of a multiplica-
tion between the DA signal and synaptic activity.
Hence, the model predicts that an equilibrium point
between LTP and LTD is attained when the DA signal’s
net effect on plasticity is null. One drawback of this
prediction is that it may be difficult to validate empiri-
cally without a clear conception of the independent
effect of DA concentrations on plasticity. Validation of
the proposed hypothesis may thus require several steps
of investigation. At the current time, most investiga-
tions of corticostriatal plasticity have not performed
direct measurements of extracellular DA concentra-
tions (e.g., Kerr and Wickens, 2001; Reynolds et al.,
2001; Wickens, 1996); this would be essential for a full
validation of the simulations proposed here.

Through future theoretical investigations, it could be
possible to explore other impacts of DA on STDP,
including modulations in time constants sþ and s�,
affecting the size of the time window within which plas-
ticity is possible (Fig. 6). With larger values of DA (posi-
tive or negative), the size of this plasticity window will
be larger. As a result, LTP and LTD may be obtained
between cells whose spike arrival times are further
apart. The narrowing and widening of the plasticity
window could be accounted for by known links between
STDP and voltage-gated Ca2þ channels. According to
the standard model of long-term plasticity, moderate
Ca2þ levels above baseline can induce LTD, while suffi-
ciently high levels can induce LTP (Bi and Rubin, 2005;
c.f., Karmarkar and Buonomano, 2002). A proposed
role of DA could be to modulate the plasticity window
by controlling the time-course of Ca2þ activation. This
conjecture is likely dependent upon two (or more) sepa-
rate mechanisms for LTP and LTD (see Bi and Rubin,
2005), which implies that DA concentrations would
need to act independently on each of these mecha-
nisms. Previous theoretical work has recognized these
possible links between neurotransmission and modula-
tion in plasticity window (Senn et al., 2000), albeit not
in the specific context of corticostriatal synapses.

While the proposed model constitutes an advance-
ment in understanding the interactions between syn-
aptic activity and neurotransmission, further efforts
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are required to understand the contribution of other
possible factors influencing corticostriatal plasticity.
These include, for instance, the activation of group I
metabotropic glutamate receptors responsible for LTD
(Calabresi et al., 1999; Dos Santos Villar and Walsh,
1999; Gubellini et al., 2001). In addition to DA and
STDP factors contributing to the different results of
LTP and LTD, other likely contributors have been iden-
tified, including the anatomical location of recorded
and stimulated neurons, and certain developmental
changes associated with corticostriatal plasticity
(Reynolds and Wickens, 2002). Given certain deliberate
limits in the scope of the proposed model, more com-
plete accounts will be required to incorporate these fac-
tors computationally (for a review of biophysical mod-
els of STDP, see Pfister et al., 2006; Senn et al., 2000).

Further theoretical efforts are also required to estab-
lish links between the current model and investigations
of reinforcement learning. In this field, one of the most
studied models is TD learning (Houk et al., 1995; for a
review, see Montague et al., 2004b). TDmodels of cortico-
striatal circuits envision DA as a signal of error in
reward prediction (Hollerman and Schultz, 1998). Not
unlike the model presented here, TD learning represents
synaptic plasticity as a three-way multiplicative rule
involving presynaptic (cortical) activity, postsynaptic
(striatal) activity, and phasic variations in DA (Suri and
Schultz, 1999). The most salient difference between our
model and TD is that the latter describes plasticity along
a coarser time-scale. As a result, TD is not amenable to
STDP, a phenomenon that requires neural activity at a
fine-grained timing. Further theoretical investigations
are required to link the proposed framework to TD learn-
ing. Bridging the two models would help strengthen
links between the biokinetics of DA diffusion on the one
hand, and reinforcement learning approaches on the
other. One possible starting point could be the work of
some authors suggesting that STDP rules, such as the
one proposed here, embody a form of spike-based rein-
forcement learning (Roberts, 1999; Rao and Sejnowski,
2001; Xie and Seung, 2004). The upshot of such an inves-
tigation may be a demonstration that the DA concentra-
tions induced experimentally (e.g., Fig. 1B) can be
expressed naturally in a behaving animal according to
particular task demands and reward schedules.

Further simulations should also address other
aspects of the study by Fino et al. (2005) that are
beyond the scope of the current work. For instance,
anti-Hebbian plasticity was obtained in conditions
where postsynaptic cells were maintained at their rest-
ing potentials. These results remain to be captured
through some variation of the rules proposed here;
among other considerations, such rule would need to
differentiate between pre- and postsynaptic mecha-
nisms for plasticity.

Much additional work will also be required in order to
fully elucidate the question of whether a multiplicative

rule is implemented at the cellular level; here, our goal
was simply to investigate the computational consequen-
ces of such rule, and perform some preliminary compari-
sons to an additive model. Further comparisons along
similar lines will need to be performed in order to rule
out (or perhaps validate) alternative explanations.

Despite its speculative nature, our proposal may
open promising lines of investigation in the study and
treatment of neurological diseases, given that patholog-
ical modulations in DA may lead to opposite effects on
plasticity when compared to normal cases. For
instance, in Parkinson’s disease (PD), there is typically
a marked depletion of DA in the dorsal striatum (Kish
et al., 1988). So far, computational efforts to model PD
(e.g., Monchi et al., 2000) have not thoroughly explored
the possibility that an equilibrium in DA neurotrans-
mission may be required for normal cellular communi-
cation and plasticity.

In sum, while many aspects of the proposed interac-
tions between synaptic activity and DA remain specu-
lative, the current work nonetheless captures an im-
portant nonlinear function relating DA concentrations
to changes in synaptic efficacy (see Fig. 2A). Further, it
is argued that a basic multiplicative rule lies as the ba-
sis of this interaction, and that this rule is independent
of the type of neural model employed. The proposed
account leads to several predictions regarding the
influence of DA on STDP that are directly testable
using available technologies. Because of the simplicity,
robustness, and ease of interpretation of this rule,
there exists the prospect that it could serve as basis for
several other findings relating synaptic activity and
neurotransmission.
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versité de Montréal) and Peter Schizgal (Concordia
University).

REFERENCES

Abbott LF, Nelson SB. 2000. Synaptic plasticity: Taming the beast.
Nat Neurosci 3:1178–1183.

Akopian G, Musleh W, Smith R, Walsh JP. 2000. Functional state of
corticostriatal synapses determines their expression of short- and
long-term plasticity. Synapse 38:271–280.

Ashby FG, Ell SW, Valentin VV, Casale MB. 2005. FROST: A dis-
tributed neurocomputational model of working memory mainte-
nance. J Cog Neurosci 17:1728–1743.

Bell CC, Han VZ, Sugawara Y, Grant K. 1997. Synaptic plasticity in
a cerebellum-like structure depends on temporal order. Nature
387:278–281.

Bi G-Q, Poo MM. 1998. Synaptic modifications in cultured hippo-
campal neurons: Dependence on spike timing, synaptic strength,
and postsynaptic cell type. J Neurosci 18:10464–10472.

Bi G-Q, Rubin J. 2005. Timing in synaptic plasticity: From detection
to integration. Trends Neurosci 28:222–228.

388 J.P. THIVIERGE ET AL.

Synapse DOI 10.1002/syn



Bi G-Q, Wang H-X. 2002. Temporal asymmetry in spike timing-de-
pendent synaptic plasticity. Physiol Behav 77:551–555.

Bjorklund A, Lindvall O. 1986. Catecholaminergic brain stem regu-
latory systems. In: Mountcastle VB, Bloom FE, Geiger SR,
editors. Handbook of physiology: The nervous system, Part I, Vol. 4.
Bethesda: American Physiological Society. p155–235.

Brown J, Bullock D, Grossberg S. 1999. How the basal ganglia use
parallel excitatory and inhibitory learning pathways to selectively
respond to unexpected reward cues. J Neurosci 19:10502–10511.

Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G. 1992. Long-
term synaptic depression in the striatum: Physiological and phar-
macological characterization. J Neurosci 12:4224–4233.

Calabresi P, Centonze D, Gubellini P, Marfia GA, Bernardi G. 1999.
Glutamate triggered events inducing corticostriatal long-term
depression. J Neurosci 19:6102–6110.

Calabresi P, Fedele E, Pisani A, Fontana G, Mercuri NB, Bernardi
G, Raiteri M. 1995. Transmitter release associated with long-term
synaptic depression in rat corticostriatal slices. Eur J Neurosci
7:1889–1894.

Centonze D, Gubellini P, Picconi B, Calabresi P, Giacomini P, Ber-
nardi G. 1999. Unilateral dopamine denervation blocks cortico-
striatal LTP. J Neurophysiol 82:3575–3579.

Charpier S, Deniau JM. 1997. In vivo activity-dependent plasticity
at cortico-striatal connections: Evidence for physiological long-
term potentiation. Proc Natl Acad Sci USA 94:7036–7040.

Choi S, Lovinger DM. 1997. Decreased probability of neurotransmit-
ter release underlies striatal long-term depression and postnatal
development of corticostriatal synapses. Proc Natl Acad Sci USA
94:2665–2670.

Dan Y, Poo MM. 2004. Spike timing-dependent-plasticity of neural
circuits. Neuron 44:23–30.

Debanne D, Gahwiler BH, Thompson SM. 1994. Asynchronous pre-
and postsynaptic activity induces associative long-term depression
in area CA1 of the rat hippocampus in vitro. Proc Natl Acad Sci
USA 91:1148–1152.

Debanne D, Gahwilder BH, Thompson SM. 1998. Long-term synap-
tic plasticity between pairs of individual CA3 pyramidal cells in
rat hippocampal slice cultures. J Physiol (Lond) 507:237–247.

Dos Santos Villar F, Walsh JP. 1999. Modulation of long-term synaptic
plasticity at excitatory striatal synapses. Neurosci 90:1031–1041.

Egger V, Feldmeyer D, Sakmann B. 1999. Coincidence detection and
changes of synaptic efficacy in spiny stellate neurons in rat barrel
cortex. Nat Neurosci 2:1098–1105.

Feldman DE. 2000. Timing-based LTP and LTD at vertical inputs to
layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56.

Fino E, Glowinski J, Venance L. 2005. Bidirectional activity-depend-
ent plasticity at corticostriatal synapses. J Neurosci 25:11279–
11287.

Froemke RC, Dan Y. 2002. Spike-timing-dependent synaptic modifi-
cation induced by natural spike trains. Nature 416:433–438.

Froemke RC, Poo MM, Dan Y. 2005. Spike-timing-dependent syn-
aptic plasticity depends on dendritic location. Nature 434:221–
225.

Gerstner W, Kistler W. 2002. Spiking neuron models. Cambridge:
Academic.

Goldberg J, Holthoff K, Yuste R. 2002. A problem with Hebb and
local spikes. Trends Neurosci 25:433–435.

Gubellini P, Saulle E, Centonze D, Bonsi P, Pisani A, Bernardi G,
Conquet F, Calabresi P. 2001. Selective involvement of mGlu1
receptors in corticostriatal LTD. Neuropharmacology 40:839–846.

Gurney K, Prescott TJ, Wickens JR, Redgrave P. 2004. Computa-
tional models of the basal ganglia: From robots to membranes.
Trends Neurosci 27:453–459.

Gütig R, Sompolinsky H. 2006. The tempotron: A neuron that learns
spike timing-based decisions. Nat Neurosci 9:420–428.

Hollerman JR, Schultz W. 1998. Dopamine neurons report an error
in the temporal prediction of reward during learning. Nat Neuro-
sci 1:304–309.

Houk JC, Adams JL, Barto AG. 1995. A model of how the basal gan-
glia generate and use neural signals that predict reinforcement.
In: Houk JC, Davis JL, Beiser DG, editors. Models of information
processing in the basal ganglia. Cambridge, MA: MIT Press.
p249–274.

Karmarkar UR, Buonomano DV. 2002. A model of spike-timing de-
pendent plasticity: One or two coincidence detectors? J Neurophy-
siol 88:507–513.

Kerr JN, Wickens JR. 2001. Dopamine D-1/D-5 receptor activation
is required for long-term potentiation in the rat neostriatum
in vitro. J Neurophysiol. 85:117–124.

Kish SJ, Shannak K, Hornykiewicz O. 1988. Uneven pattern of do-
pamine loss in the striatum of patients with idiopathic Parkin-
son’s disease. Pathophysiol Clin Implic 318:876–880.

Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Sea-
mans JK. 2005. Mesocortical dopamine neurons operate in dis-
tinct temporal domains using multimodal signaling. J Neurosci
25:5013–5023.

Legenstein R, Naeger C, Maass W. 2005. What can a neuron learn with
spike-timing-dependent plasticity? Neural Comput 17:2337–2382.

Lovinger DM, Tyler EC, Merritt A. 1993. Short- and long-term synap-
tic depression in rat neostriatum. J Neurophysiol 70:1937–1949.

Magee JC, Johnston D. 1997. A synaptically controlled, associative
signal for Hebbian plasticity in hippocampal neurons. Science
275:209–213.

Mahon S, Deniau J-M, Charpier S. 2004. Corticostriatal plasticity:
Life after the depression. Trends Neurosci 27:461–467.

Markram H, Lubke J, Frotscher M, Sakmann B. 1997. Regulation
of synaptic efficacy by coincidence of postsynaptic Aps and EPSPs.
Science 275:213–215.

Miller JD, Sanghera MK, German DC. 1981. Mesencephalic dopami-
nergic unit activity in the behaviorally conditioned rat. Life Sci
29:1255–1263.

Monchi O, Taylor JG, Dagher A. 2000. A neural model of working
memory processes in normal subjects, Parkinson’s disease, and
schizophrenia for fMRI design and predictions. Neural Networks
13:953–973.

Montague PR, McClure SM, Baldwin PR, Phillips PE, Budygin EA,
Stuber GD, Kilpatrick MR, Wightman RM. 2004a. Dynamic gain
control of dopamine delivery in freely moving animals. J Neurosci
24:1754–1759.

Montague PR, Hyman SE, Cohen JD. 2004b. Computational roles
for dopamine in behavioural control. Nature 431:760–767.

Nicholson C. 1995. Interaction between diffusion and Michaelis-
Menten uptake of dopamine after iontophoresis in striatum. Bio-
phys J 68:1699–1715.

Nicholson C. 2001. Diffusion and related transport mechanisms in
brain tissue. Rep Prog Phys 64:815–884.

Partridge JG, Tang KC, Lovinger DM. 2000. Regional and postnatal
heterogeneity of activity-dependent long-term changes in synaptic
efficacy in the dorsal striatum. J Neurophysiol 84:1422–1429.

Pfister J-P, Toyoizumi T, Barber D, Gerstner W. 2006. Optimal
spike-timing-dependent plasticity for precise action potential fir-
ing in supervised learning. Neural Comput 18:1318–1348.

Reynolds JNJ, Wickens JR. 2000. Substantia nigra dopamine regu-
lates synaptic plasticity and membrane potential fluctuations in
the rat neostriatum, in vivo. Neurosci 99:199–203.

Reynolds JNJ, Wickens JR. 2002. Dopamine-dependent plasticity of
corticostriatal synapses. Neural Networks 15:507–521.

Reynolds JNJ, Hyland BI, Wickens JR. 2001. A cellular mechanism
of reward-related learning. Nature 314:67–70.

Rao RPN, Sejnowski TJ. 2001. Spike-time-dependent Hebbian plastic-
ity as temporal difference learning. Neural Comput 13:2221–2237.

Roberts PD. 1999. Computational consequences of temporally asym-
metric learning rules. I. Differential hebbian learning. J Comput
Neurosci 7:235–246.

Rumsey CC, Abbott LF. 2004. Equalization of synaptic efficacy and
activity- and timing-dependent synaptic plasticity. J Neurophysiol
91:2273–2280.

Senn W, Markram H, Tsodyks M. 2000. An algorithm for modifying
neurotransmitter release probability based on pre- and postsynap-
tic spike timing. Neural Comp 13:35–67.

Shaskan EG, Snyder SH. 1970. Kinetics of serotonin accumulation
into slices from rat brain: Relationship to catecholamine uptake. J
Pharmacol Exp Ther 175:404–418.

Schmitz Y, Lee CJ, Schmauss C, Gonon F, Sulzer D. 2001. Ampheta-
mine distorts stimulation-dependent dopamine overflow: Effects
on D2 autoreceptors, transporters, and synaptic vesicle stores. J
Neurosci 21:5916–5924.

Schonfub D, Reum T, Olshausen P, Fischer T, Morgenstern R. 2001.
Modelling constant potential amperometry for investigations of
dopaminergic neurotransmission kinetics in vivo. J Neurosci
Methods 112:163–172.

Schultz W. 1998. Predictive reward signal of dopamine neurons. J
Neurophysiol 80:1–27.

Sjostrom PJ, Turrigiano GG, Nelson SB. 2001. Rate, timing, and
cooperativity jointly determine cortical synaptic plasticity. Neuron
32:1149–1164.

Spencer JP, Murphy KP. 2000. Bi-directional changes in synaptic
plasticity induced at corticostriatal synapses in vitro. Exp Brain
Res 135:497–503.

Song S, Abbott LF. 2001. Cortical development and remapping
through spike timing-dependent plasticity. Neuron 32:339–350.

Suri RE, Schultz W. 1999. A neural network model with dopamine-
like reinforcement signal that learns a spatial delayed response
task. J Neurosci 91:871–890.

389SPIKING NEURONS, DOPAMINE, AND PLASTICITY

Synapse DOI 10.1002/syn



Sutton RS, Barto AG. 1998. Reinforcement learning: An introduc-
tion. Cambridge, MA: MIT Press.

Tang K, Low MJ, Grandy DK, Lovinger DM. 2001. Dopamine-de-
pendent synaptic plasticity in striatum during in vivo develop-
ment. Proc Natl Acad Sci USA 98:1255–1260.

Tzounopoulos T, Kim Y, Oertel D, Trussel LO. 2004. Cell-specific,
spike timing-dependent plasticities in the dorsal cochlear nucleus.
Nat Neurosci 7:719:725.

Venton BJ, Zhang H, Garris PA, Phillips PEM, Sulzer D, Wightman
RM. 2003. Real-time decoding of dopamine concentration changes
in the caudate-putamen during tonic and phasic firing. J Neuro-
chem 87:1284–1295.

Vogels TP, Abbott LF. 2005. Signal propagation and logic gating in
networks of integrate-and-fire neurons. J Neurosci 25:10786–
10795.

Walsch JP. 1993. Depression of excitatory synaptic input in rat
striatal neurons. Brain Res 608:123–128.
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APPENDIX A: DESCRIPTION OF
SIMULATIONS AND PARAMETRIC VALUES

The proposed simulations involved computations of
the membrane potential of two cells (cortical and stria-
tal) as well as a measure of extracellular DA released
from an adjacent SNc cell. Throughout, a time-constant
of s ¼ 10 ms was employed, implying that the dynami-
cal values of the model were updated once every 10 ms.

Simulations using the voltage-based model were per-
formed as follows. In order to obtain different DA con-
centrations, [D(t)]ext was varied by [D(t)]ext ¼ t � 1 for
each discrete time-step t ranging from 1 to 200. In the
spike-based model, stimulations modulated the num-

ber of consecutive time-steps during which stimulation
was set to [D(t)]ext ¼ 100 lM s�1 (the default value was
set to [D(t)]ext ¼ 0.5 lM s�1). In particular, HFS was
obtained by a cortical stimulation and DA release at
100 Hz, both lasting one second; LFS was obtained by a
single stimulation and single DA release (1 Hz).
Through simulations, it was also possible to modulate
the frequency of DA release independently of cortico-
striatal stimuli. Cortical and striatal cells were either
stimulated through a pre-post (cortical followed by
striatal) or a post-pre (striatal followed by cortical)
spike train regime at every time-step, depending on the
specific condition tested (see Methods). After the mem-
brane potentials were computed, it was determined
whether a spike was produced or not for each cell,
according to whether the firing threshold was exceeded
or not. If a spike was produced, the time t of spike ar-
rival was stored. Finally, weight updates were com-
puted.

Parameters for the voltage-based model are as fol-
lows: b ¼ 0.07, s ¼ 10 ms, b ¼ 20, and Trefract ¼ 3 ms.
Initial weights w were set to random values between
0.0 and 1.0. Initial membrane potentials were set to
Vpre (t) ¼ 1.0 mV and Vpost (t) ¼ 1.0 mV. Parameters for
the spike-based model were as follows: s ¼ 10 ms, sS ¼
3.75 ms, b ¼ 125, V0 ¼ 2.0 mV; Vrest ¼ 0.5 mV; upre ¼ 2.0
mV, and hpost ¼ 1.5 mV. Parameters for the MM equa-
tions were set to Vmax ¼ 0.08 lM s�1 and Km ¼ 0.3 lM
s�1. These values were adapted from results of striatal
rat slices (Nicholson, 1995; Shaskan and Snyder, 1970).
In the spike-based model, the parameters Wþ and W�
were set to fixed values of 0.2 and 0.3 respectively. The
parameters sþ, and s� are defined in simulations. The
update rates for connection weights and DA concentra-
tions are set to gw ¼ 0.01 and gD ¼ 0.5 respectively. Syn-
aptic weights are bounded in the interval [0.0,Wmax],
where Wmax is set to 1.0; this was implemented in the
following way:

if wðtÞ > Wmax;wðtÞ ¼ Wmax;

if wðtÞ < 0:0;wðtÞ ¼ 0:0:

390 J.P. THIVIERGE ET AL.

Synapse DOI 10.1002/syn


