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Abstract

A push-release-seek reflex is evolved in a simulated simple agent
interacting with objects. The agent is controlled by a spiking neural
network. Succesful experiments involved a network of 125 neurons
and spike-time-dependent synaptic plasticity. Plasticity seems to be
actively used by the evolved network in memorizing some aspects of
the environment that allow the performance of the task.

1 Introduction

Genuine, creative artificial intelligence can emerge only in embodied agents,
capable of cognitive development and learning by interacting with their en-
vironment (Florian, 2003a). Before the start of the learning process, the
agents need to have some innate (predefined) drives or reflexes that would
induce the exploration of the environment. Otherwise, the agents would not
do anything once emerged in their environment, and learning would not be
possible.

In the experiments presented in this paper, some basic reflexes are evolved
for a simple simulated agent, controlled by a spiking neural network, that is
able to interact with the objects in its environment. These reflexes will be
used in future research to bootstrap the ontogenetic cognitive development
of the agent. By learning the structure of the environment, guided by value
signals, the agent may be able, in the future, to perform tasks much more
complex than the reflexes evolved here.

The preliminary evolutionary experiments also serve to provide working
spiking embodied neural networks. Their functioning may be analyzed and



the results may lead to new models of self-organization that can be imple-
mented to ground the ontogenetic cognitive development of the agent. Also,
these experiments serve to estimate the complexity of the behaviors and
of the neural structures that can be evolved in reasonable computing time
using current computers.

2 The agent, its environment and its task

2.1 The simulator

The agent and its environment are simulated using Thyrix, a simulator
specifically designed for evolutionary and developmental experiments for
embodied artificial intelligence research (Florian, 2003¢). The simulator
provides a two-dimensional environment with simplified, quasi-static (Aris-
totelian) mechanics, and supports collision detection and resolution between
the objects in the environment.

2.2 The agent’s morphology

The agent’s morphology was chosen as the simplest one which would allow
the agent to push the circular objects in its environment without the slipping
of the objects on the surface of the agent. This slipping may appear, for
example, if a circle pushes another circle, and the pushing force is not exactly
oriented on the line connecting the centers of the two circles.

We wanted maximum simplicity both for economy (to allow evolution
and development in less computing time) and for having few degrees of
freedom, which may allow dynamical analysis and simpler statistical analysis
of the behavior of the agent. However, we have tried to respect the principle
of ecological balance (Pfeifer and Scheier, 1999, pp. 455-463) in the design
of the agent’s morphology and sensorimotor capabilities.

Thus, the agent is composed of two circles, connected by a variable length
link. The link is “virtual”, in the sense that it provides a force that keeps
the two circles together, but it does not interact with other objects in the
environment, i.e. external objects can pass through it without contact. With
this morphology, the agent can easily push other circles in its environments,
by keeping them between its two body circles, without the need of balancing
them to prevent slipping.

2.3 The agent’s effectors and sensors

The agent can apply forces to each of its two body circles. The forces
originate from the center of the circles and are perpendicular to the link
connecting them. They may be considered to originate from some virtual
“rockets”. Two effectors correspond to each of the two body circles, one
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Figure 1: The agent’s morphology.

commanding a forward-pushing force, and one commanding a backward-
pushing force. There are thus four “rocket” effectors. The net motor force
acting on one body circle is the sum of the forward and backward forces.
These effectors allow thus the agent to move backward or forward, to rotate
in place, and, in general, to move within its environment.

A fifth effector commands the length of the virtual link connecting the
two body circles, between zero and a maximum length. If the actual length
of the link is different from the commanded length, an elastic force (propor-
tional with the difference between the desired and actual length) acts on the
link, driving it to the desired length.

The agent has contact sensors equally distributed on the surface of its
two body circles (8 contact sensors per circle, spanning a 45° angle each).
The activation of the sensors is proportional to the sum of the magnitudes
of the contact forces acting on the corresponding surface segment, up to a
saturation value.

Each circle also has 7 visual sensors. Each sensor has a 15° view an-
gle, originating from the center of the circle. Thus, each circle has a 105°
viewing angle, centered around the “forward” direction. The activation of
the sensors is proportional to the fraction of the viewing angle covered by
external objects. The range of the sensors is infinite.

The agent also has proprioceptive sensors corresponding to the effectors.
Each body circle has two velocity sensors, measuring the velocity in the
forward and backward directions, respectively. The sensors saturate at a
value corresponding to the effect of the maximum motor force that can be
commanded by the effectors. The agent also has a proprioceptive sensor
that measures the actual length of the link connecting the two body circles,
that saturates at the maximum length that can be commanded by the link
effector.
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Figure 2: The agent used in the experiments, pushing a ball in the environ-
ment. The gray circles compose the body of the agents, the green segment
represents the elastic link connecting them. The light blue rays emerging
from them represent the viewing angles of the visual sensors, the red rays
represent the activation of these sensors. The open circles are the balls.

Thus, the agent has a total of 5 effectors and 35 sensors (16 contact
sensors, 14 visual sensors, and 5 proprioceptive ones). Each sensor or effector
can have an activation between 0 and 1.

2.4 The environment

In the experiments presented in this paper, the environment consisted of one
agent and 6 circles (“balls”) that the agent can move around. The spatial
extension of the environment was not limited. The balls have variable ra-
diuses (between 0.06 m and 0.26 m), comparable to the radius of the agent’s
body circles (0.1m).

During each trial, the agent and the balls were positioned randomly in
the environment, without contact, in a rectangular perimeter of 6 m by 4 m.

2.5 The task

The task of the agent was to move alternatively each of the balls in its
environment, on a distance as long as possible, in limited time (100s of
simulated time). More specifically, the fitness of each agent was computed



as the sum of the distances on which each ball was moved, but with a
threshold of d; = 2m for each ball. Thus, the agent had to move all balls,
instead of just detecting one ball and pushing it indefinitely. The sum of
distances may thus range between 0 and 12m.

This task was considered to evolve a push-release-seek reflex, that might
be used in future experiments to bootstrap more complex behaviors, such
as arranging the balls in a particular pattern, sorting the balls by size, or
categorizing different kinds of objects.

If the agent would move in straight line at the maximum speed corre-
sponding to the maximum forces it can produce, pushing the six balls for
equal time, and neglecting the time needed for taking curves, seeking the
balls, switching between balls, the distance that it may cover in the limited
time is 55.945m. Given the existence of distances between balls, the fact
that the speed is lower when taking curves, that the agent has to release
the balls when switching them, we may evaluate that the task is relatively
difficult. It may require the coordination of the motor effectors for attaining
high speeds, the evaluation of the distance or time spent pushing a certain
ball, and eventually some memorization, either of objects size or positions,
that would prevent the repeated pushing of the same balls.

To determine the fitness of a particular individual, we have averaged its
performance on three trials, with random initial configurations of the balls.

3 The controller

3.1 The spiking neural network

The controller of the agent consisted of a recurrent spiking neural network.
We have used this type of network as it seems to be the most suited for the
control of embodied agents, among the classes of neural networks amenable
to large scale computer simulation (Florian, 2003b). The controller has as
input the activations of the agent’s sensors, and as output the activations
of the agent’s effectors.

We have designed a fast, event-driven spiking neural simulator. The
simulator was inspired by Muresan’s Neocortex (Muresan and Ignat, 2004),
however is simpler and faster, as we didn’t need features like retinotopic
maps, multiple types of neuron updating, and we used a single type of
neuron.

The network consists of leaky integrate-and-fire neurons (Gerstner and
Kistler, 2002, Chapter 4) with a resting potential of —65mV, a threshold
potential of —40mV, a resistance of 10 M2 and a decay constant of 10 ms.

The simulator uses discrete time with a resolution of 1ms. At each
time step, only the neurons that receive spikes are updated (hence the event
driven nature of the updating of the network). If the updated neurons fire,
their spikes are stored in a list. This spike list will be used during the next
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Figure 3: Typical example of spike-timing dependent plasticity. The relative
change in synaptic efficacy Aw/w is plotted against the delay At between
the postsynaptic and presynaptic spike. Synaptic potentiation (Aw/w > 0)
appears when the postsynaptic spike follows (is caused by) the presynaptic
spike (At > 0) (after Bi, 2002).

time step to update the affected postsynaptic neurons. Thus, the spikes
propagate within an axonal delay of one time step.

3.2 Spike-time dependent plasticity

During some experiments, the neural network featured spike-time depen-
dent plasticity (STDP). STDP is a phenomenon that was experimentally
observed in biological neural systems (Bi, 2002). The changes Aw of the
synapse efficacies depend on the relative timing At between the postsynap-
tic and presynaptic spikes (see Fig. 3). The synapse is strengthened if the
postsynaptic spike occurs shortly after the presynaptic neuron fires, and is
weakened if the sequence of spikes is reversed, thus enforcing causality. No-
tably, the direction of the change depends critically on the relative timing.

We have modeled STDP following the method of Song et al. (2000).
The values of the parameters used were A, = 0.005, A_ = 1.05A4,, and
T+ =7 = 50ms.

Following Di Paolo (2002b), we have implemented directional damping
for the synapse efficacies. The synapse efficacies, which are variable due
to STDP are limited to the interval [0, wyq4z], Where wy,q, can be either
positive or negative, and is a genetically determined maximum (in absolute
value) efficacy. We thus have 0 < w/wpq, < 1.



4 The agent-controller interface

In interfacing a spiking neural controller with an embodied agent, a con-
version of the analog input and output signal to binary spikes has to be
performed. Following Di Paolo (2002b), the analog values of the sensor acti-
vations were converted to a spike train using a Poisson process with a firing
rate proportional to the activation. The maximum firing rate of the input
neurons was set to 100 H z.

The spikes of the motor neurons were converted to an analog value by
a leaky integrator of time constant 7 = 10 ms. The maximum value of the
effector activation, 1, corresponds to a firing rate of the motor neuron of
100 H z.

Each sensor of the agent, of activation s, 0 < s < 1, drove two input
spiking neurons, one being fed with activation s and the other with activation
1—s. Thus, both the activation of the sensor and its reciprocal was fed to the
network, and there are 70 input neurons in the network. The reason of this
duplication of the sensory signal in the spiking neural network is twofold.
First, this allows the network to be active even in the absence of sensory
input. For example, if the agent is in a position where nothing activates
its sensors (there is no object in its visual range, no tactile contact etc.),
there must be however some activity in the neural network, in order for
the effectors to be activated and the agent to orientate to stimuli. Second,
this mechanism implies that the total input of the network is approximately
constant in time (the number of spikes that are fed to the network by the
input). This might be important for future analysis of the network’s activity
in the framework of the theory of far-from-equilibrium systems.

5 The evolutionary algorithm

We have evolved controllers with both fixed and variable topology networks.
The networks contain input neurons (driven by the sensors), hidden neurons,
and motor neurons (that drive the agent’s effectors).

The parameters determined by evolution were the values of the synaptic
efficacies w (in the non-plastic case), or the values of the maximum (in
absolute value) synaptic efficacies wpq, (in the STDP case). In addition
to these, in the case of variable topology networks, the topology was also
determined by evolution.

5.1 Evolution of fixed topology networks

The fixed topology networks were fully connected (i.e., all neurons were con-
nected to all neurons in the network, except input neurons, which had only
efferent connections). In this case, there are 50 hidden neurons, in addition



to the 70 input neurons and the 5 output neurons. The networks thus con-
sists of 125 neurons and 6875 synapses. The genome directly encodes the
synaptic efficacies (w or wy,q,) of these synapses.

We have used a standard evolutionary algorithm, with a population of 80
individuals, truncation selection (the top 25 % individuals reproduce) and
elitism. 10 % of the offspring result from mating with single cut crossover.
Mutation is applied uniformly to all genes.

5.2 Evolution of variable topology networks

We have also evolved networks with variable topology. There are several
advantages in evolving such networks. The number of hidden neurons does
not have to be arbitrarily established before the evolution. The network is
allowed to grow from a small initial number of neurons, up to the number
needed to solve the task, through a process of complexification. Full connec-
tivity is not needed: the connections between neurons are evolved, and thus
the network might have a smaller number of connections than the maximum
possible. Less neurons and less synapses lead to less computing time needed
for the evaluation of these networks, and thus may result in faster evolution.

The method used for evolving growing networks was a modified version
of the NeuroEvolution of Augmenting Topologies method (NEAT) (Stanley
and Miikkulainen, 2002).

6 Results

We evolved first fixed topology networks. Networks with both static and
plastic synapses evolved to solve the required task, with the performance
of the best individuals reaching a plateau at about 11.3, very close to the
maximum possible of 12 (see Fig. 4). Plastic networks evolved much faster,
in terms of generations, than networks with static synapses. However, the
simulation of plastic networks require a higher computational effort.

We have also tried to evolve variable topology networks. In this case,
the best fitness reached plateaus around 4.5 and thus we could not evolve
networks to solve the task. Further work is needed to investigate reasons
for the failure and solutions for the growth of the networks.

7 Conclusion

We have succesfully evolved a fully connected spiking neural network of 125
neurons, that allows a simple agent to alternatively push the 6 balls in its
environment. This push-and-seek reflex may be used in future experiments
to bootstrap the development of more complex behaviors. Also, the dynam-
ics of the network may be analyzed to uncover the mechanisms used by the
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Figure 4: Evolution in the fixed topology, STDP case. The top curve rep-
resents the best fitness in a generation, and the bottom one represents the
average fitness.

agent for the measurement of the distance it pushed a particular ball, or the
memory mechanisms which permit the agent to choose balls not pushed yet.

The current experiment evolved a network much larger than the spiking
neural networks evolved in previous studies for the control of embodied
agent, which employed no more than 23 neurons (Floreano and Mattiussi,
2001; Floreano, Schoeni, Caprari and Blynel, 2002; Floreano, Zufferey and
Mattiussi, 2002; French and Damper, 2002; Di Paolo, 2002a,b; Katada et al.,
2003). This was possible because we used a fast agent-environment simulator
especially designed for evolutionary and developmental experiments, and a
fast event-driven neural network simulator.

Further research will analyze the evolved networks, will try to evolve
variable topology networks able to solve the task, and will also try to evolve
networks capable of solving more dificult tasks, such as sorting the balls by
size.
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