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Abstract
This paper describes a multi-layered, intelligent agent
software architecture, developed for mobile and
undersea robot applications in the defense sector, and
to provide tele-autonomy to space-based manipulator
robots. The architecture has a deliberative layer
which uses a state-based planner, a middle layer for
sequencing partially ordered plans using robot skills,
and a lower layer repertoire of continuous robot skills.
The system has been shown to provide a higher level
of human supervision that preserves safety while
allowing for task level direction, reaction to out-of-
norm parameters, and human intervention at all levels
of control. For this workshop, we hypothesize that the
architecture is a useful framework in which to explore
learning techniques. In particular, we outline
techniques appropriate to learning within a given
layer, techniques for migrating competences from
higher to lower layers, and overall system adaptation
from its interaction with the environment. Examples
are reinforcement learning for tuning individual skills,
case-based techniques to improve the re-planning
capability of the deliberative layer, and chunking or
explanation-based learning to migrate new strategies
created by the planner into standard procedures for the
sequencing level.

Background and Motivation

0 A set of robot specific reactive skills. For example,
grasping, object tracking, and local navigation. These are
tightly bound to the specific hardware of the robot and
must interact with the world in real-time.

0 A sequencing capability which can differentially
activate the reactive skills in order to direct changes in the
state of the world and accomplish specific tasks. For
example, exiting a room might be orchestrated through the
use of reactive skills for door tracking, local navigation,
grasping, and pulling.

o A deliberative planning capability to reason in depth
about goals, resources and timing constraints.

These capabilities allow a robot, for example, to accept
guidance from a human supervisor, plan a series of
activities at various locations, move among the locations
carrying out the activities, and simultaneously avoid danger
and maintain required resource levels.

We have been successful in applying this architecture to
mobile land [Bonasso et al 92] and undersea robots
[Bonasso & Barrett 93] in the defense sector, and to
mobile, two-armed manipulator systems in support of
NASA. We believe the architecture is developed to the
point where it can be used as a framework for integrating
the work of other Al disciplines such as spoken language
techniques and machine learning. This paper discusses the

Since the late eighties we have investigated ways to grchitecture from the standpoint of how various learning
combine deliberation and reactivity in robot control techniques might be accommodated.

architectures [Sanborn et al 1989, Bonasso 91, & Bonasso

et al 92], in order to program robots to carry out tasks The next section details the architecture in each of its three

robustly in field environments. Field environments are |ayers. The subsequent section discusses ideas for applying

can occur unpredictably, and wherein the locations of
objects and other agents is usually not known with . . . .
certainty until the robot is carrying out the required task. Ar chitecture Discussion via Space Examples

A robot control software architecture, developed at MITRE We have recently been using the architecture as a
is an outgrowth of several lines of situated reasoning framework for controlling a two-armed manipulator robot
research in robot intelligence [Firby 89, Gat 91, Connell maintaining a space station from the ground. The idea is
91, Slack 92, Yu et al 94, Elsaesser & Slack 94], and hasthat an intelligent ground control station can enable a
proven useful for enabling mobile robots to accomplish ground crew to supervise the routine maintenance activities
tasks in field environments. This architecture separates theof the robot, and thus allow the on-orbit personnel to
general robot intelligence problem into three interacting concentrate on user missions. We use examples from this
pieces (see Figure 1, below, Figure 2 is discussed in thedomain to illustrate the architecture.

section on learning):



The Planner This operator matches a goal to inspect or repair a list of
sites. The arguments invoke functions which query either
The planning system is envisioned to be a state-based, nonthe planner's world model (a frame system of CLOS
linear hierarchical planner a la SIPE. The planner we use, objects) or the dynamic memory of the sequencing tier of
known as AP [Elsaesser & MacMillan 91], is a multi-agent the architecture. The planner expands this operator by
planner which can reason about metric time for scheduling, searching for other operators whose purpose unifies with

monitor the execution of its plans, and replan accordingly. the various propositions in the plot. For example a number

A typical AP plan operator for carrying out routine
maintenance at various sites is:

(Operator conduct-inspections-or-repairs

‘purpose
(sites-inspected-or-repaired ?planner ?list-of-sites)
:agents :none
:arguments (
(?broken-sites
(list (get-sites-with-broken-items)))
(?number-of-broken-sites
(length (quote ?broken-sites)))
(expand ?number-of-broken-sites
(?broken-site)
(?broken-site
(list
(nth *ap-subst-count*
(quote ?broken-sites)))))
(?number-of-sites
(length (quote ?list-of-sites)))
(expand ?number-of-sites (?site)
(?site
(list
(nth *ap-subst-count*
(quote ?list-of-sites)))))

:preconditions ( (at ?planner cl-user::dock) )
:plot

;; The plot is to wake-up, get any tools and replacements,
;; Inspect or repair each site, then return

(sequential

(ready-status ?planner ready)

(expand ?number-of-broken-sites
(?broken-site)
(ready-for-site-repair ?planner

?broken-site))
(attached-to ?planner none) ;;detached
(expand ?number-of-sites (?site)
(inspected-or-repaired ?planner ?site))
(status ?planner docked)

)

-effects ( (sites-inspected-or-repaired ?planner
?list-of-sites) )

of operators have the (inspected-or-repaired ?planner ?site’
purpose depending on the preconditions and arguments,
e.g.,

(Operator repair-site-with-broken-item-needing-
replacement-only

‘purpose (inspected-or-repaired ?planner ?site)
:agents :none
:arguments (
(?site-item
(first  (cl-user::get-all-items-at-except
?site 'cl-user::pdgf)))
(truth (cl-user::memory-ask
“(cl-user::class ?site-item
fire-extinguisher cl-user::true)))
(?replacement
(get-broken-item-replacement
?site-item))

:preconditions ( (status ?site-item off-nominal) )
:plot

(sequential
(item-in ?replacement oru-pouch)
(at ?planner ?site)
(attached-to ?planner ?site)
(repaired ?planner ?site-item)
(attached-to ?planner none))

.effects ((inspected-or-repaired ?planner ?site) )

)

which describes how to repair fire-extinguishers by using a
suitable replacement.

The repairs themselves have several standard procedure
which the planner need not keep track of in detail. But the
planner needs knowledge of these to determine the
resources needed and the nominal times required. For
example, the hard-repair-at-site operator (next page) shows
the need for a manipulator to stabilize the robot while

repairing heavy items, and to use a wide-field of view

vision agent.

Each primitive operator (e.g. fix-item-with-arm on the next
page) has a user-supplied function that estimates the time
to complete the operation which is used for propagating
earliest and latest start and end times throughout the
resulting plan tree.



(Operator hard-repair-at-site
purpose (repaired ?planner ?site-item)
:arguments (
(?site (get-site-from-memory
?site-item))
(?weight
(get-size-from-memory ?site-item))
(truth (>= ?weight 20)) )
:constraints ( (and
(member ?arm-1 ‘(left-arm right-arm))
(member ?arm-2 ‘(left-arm right-arm)))
(check-arm-for-tool-and-strength
?site-item ?weight ?arm-1)
(eq
(gsv ?vision-agent ‘field-of-view)
'wide) )

:preconditions ( (attached-to ?planner ?site) )

:plot (sequential
(grappled ?arm-2 ?site)
(simultaneous
(examined ?vision-agent ?site-item)
(fixed ?arm-1 ?site-item) )

-effects (
(repaired ?planner ?site-item)
(arms-status ?planner unfolded)

(Operator fix-item-with-arm
‘purpose (fixed ?arm ?site-item)
:arguments (
(?site
(get-site-from-memory ?site-item)) )
:preconditions ( (attached-to ?planner ?site) )
-effects ( (fixed ?arm ?site-item)
(arms-status ?planner unfolded) )
:task-time duration-of-fix-item-with-arm

)
The Sequencer

We are using a new version of Firby's Reactive Action

A basic repair RAP used in the routine maintenance
activity invoked by the fix-item-with-arm operator of the
planner (the sequencer will use the suggested arm as ¢
recommendation) is

(define-rap (repair-antenna ?item)
(succeed (and (location ?item external)
(on-off ?item on)
(working-status ?item operational)))
(preconditions (class ?item antenna true))
(method m-1
(context (and (arm-place ?arm ?someplace)
(not (= ?arm foot))
(not (arm-holding ?arm ?any))))
(task-net
(t0 (arm-pickup ?arm ?item)
((arm-holding ?arm ?item) for t1))
(arm-toggle-p ?arm ?item) (for t2))
(eye-examine-p ?arm ?item)
((on-off ?item on) for t3))
(wait-p 15) (for t4))
(arm-putdown-at ?arm ?item external) (for t5))
(eye-examine-p external ?item) (for t6))
(put-away-tool ?arm)))))

(tl
(t2

(t3
(t4
(5
(t6

The robot must turn the antenna (the toggle operation is
generic for turn or turn on/off) until it reaches its desired
orientation (usually takes 15 seconds). This RAP will
succeed when the antenna is on and operational (which will
be its state when the antenna is properly oriented). The
RAP only works with items of the antenna class. It consists
of a single method which is invoked when there is a free
arm to use, and involves seven sequential steps (each o
which has its own RAP definition). The RAP interpreter
insures the proper order and the critical preconditions of
subsequent steps by use of the "for" clause after each
subtask invocation. The RAP interpreter will instantiate the
m-1 method for each arm that is available. If the method
fails for that arm, it will try the other. Further, it will try
each method twice (a user parameter), before giving up.

The memory query in the succeed clause will usually be
made true by the firing of memory rules associated with the
RAPs in the sub tasks. Memory rules are associated with
each RAP as shown in the mort-turnto-angle example (next
page) from one of our mobile robots named Mortimer.

Packages (RAPs) [Firby 93] as the instance of our The RAP first enables the robot's primitive turning skill,
sequencing system to encode routine behavior as sequenceproviding the desired angle, turning speed and accuracy
of situated skills. The RAP interpreter uses a library of factor. Then it enables the primitive event mort_at_angle
RAPs to decompose sequences of behaviors to accomplishwhich waits until the robot has turned to the desired angle
a task. The system can quickly transform a planner and returns the actual angle. Concurrently, a primitive
directed task (i.e., primitive AP operator) into a context RAP, which is a Lisp function, informs the user of what is
specific sequence of skills (which may be run concurrently) happening via a speech channel. The turning action and the
by caching solutions to common tasks. The richness of the speech act must occur before task t4 where the turning
RAP system can be seen from the following examples. action is disabled; the second speech act can occur
concurrently with t4. The lack of a succeed clause allows



the RAP to execute once and then return as if (succeed t)

were the case.

(define-rap (mort-turnto-angle ?angle ?velocity
?sensitivity)
(method m1
(task-net

(t1 (mort_turnto ?angle ?velocity ?accuracy)

(wait-for
(mort_at_angle ?angle ?accuracy
?realangle)
:succeed (at-angle ?realangle))
(for t3)(concurrent-with t2)(for t4))

(t2 (host-dospeek "mort turning" 3 t)(for t3))

(t3 (host-dospeek "mort at angle" 3 t)

(define-memory-rule (arm-move ?arm ?place) :event
(match-result
((arm-not-moving ?place)
(rule (t
(mem-del (arm-place ?arm))
(mem-add (arm-place ?arm ?place)))))))

Here, an event is enabled to determine that the arm has
started moving (the primitives have time-outs which can
trigger other memory rules if needed). Afterwards, a NO-
OP RAP (a null Lisp function) is enabled in order to enable
an event which waits for the arm to cease moving, at which
time the memory rule will fire asserting the place of the
arm, which will allow the RAP succeed clause to become

(concurrent-with t4)) true.
(t4 (mort_turnto_disable)))))
The Xill Level

(define-memory-rule (mort-turnto-angle ?angle ?velocity

?sensitivity) :event The sequencer's job is to coordinate the dynamic activation
and deactivation of situated skills in order to configure the
reactive layer for the task at hand. There are three types ol
skills: primitive actions (and their disabling counterparts),
primitive events and primitive queries (queries were
designed to appear as normal memory requests, when ir
The memory rule fires when an event executing in the RAP fact they query the robot device itself). An example of each
returns a :succeed clause matching the result expected foris shown below:
that rule. Arbitrary Lisp functions can be invoked, but the
special rule form allows the updating of the RAPs memory (define-primitive-action (move-current-arm ?place)
in a principled fashion. The following RAP used with a  (enable (:move_current_arm (:place . ?place))))
manipulator controlled from a ground station (i.e., with
communications delays) shows the use of the memory rule (define-primitive-action (disable-move-current-arm ?place)

(match-result
((at-angle ?realangle)
(rule ( (= ?realangle 90.0)
(mem-add (mort-direction EAST)))))))

to allow the RAP to complete:

(define-rap (arm-move ?arm ?place)
(succeed (arm-place ?arm ?place))
(preconditions (current-mode joint-immediate))
(method pdgf-approach
(context (= ?place pdgf-approach))
(task-net
(t1 (move-current-arm 1)
(wait-for (arm-moving ?speed) :succeed
(arm-moving ?speed)) (for t2))
(t2 (no-op)
(wait-for (arm-not-moving ?place) :succeed
(arm-not-moving ?place)) (for t3))
(t3 (disable-move-current-arm ?place))))
(method truss-approach
(context (= ?place truss-approach))
(task-net
(t1 (move-current-arm 2)
(wait-for (arm-moving ?speed) :succeed
(arm-moving ?speed)) (for t2))
(t2 (nop)
(wait-for (arm-not-moving ?place) :succeed
(arm-not-moving ?place))
(for t3))
(t3 (disable-move-current-arm ?place)))))

(disable :move_current_arm ?place))

(define-primitive-event
(arm-init-mode ?model ?mode2 ?which-mode)
(event-definition
(:arm_init_mode
(:gstatel . ?model)(:gstate2 . ?mode2)))
(event-values :bound :bound :unbound))

(define-primitive-query (selected-mode ?mode)
(query-definition (:selected_mode))
(query-values :unbound))

Each skill is written in the language of the robot computer

(both C and Rex languages have been used) and has a set:
inputs, outputs, states and parameters. The inputs of
actions, events and queries can only come from other
actions, and the outputs of actions can only go to other
events or actions. Event and query outputs consist of both a
true/false output as well as any values to be returned. Thus
to find out the status of the result of an action, an event or
query skill must be constructed. Parameters are settings
passed by the RAP upon invocation, such as accuracy of ¢
turning angle.



The move-current-arm action above has a single parameter by the programmer. A RAP for selecting which arm to use
the arm to be moved. The arm-init-mode event checks for is somewhat complex since if the selected arm is not the
the occurrence of one of two initialization modes and current arm, a set of memory queries needs to be invoked
returns the mode detected. The select-mode query returnsabout the new arm. Additionally, the current arm needs to
the current selected mode of the robot device. be placed in a standby mode prior to selecting the new arm.
Once in the middle of the day, when an arm was brought

In our experience with mobile and manipulator robots,
approximately 20 - 25 skills make up a sufficient skill base
from which to design RAPS to exercise the total robot
capability. These include one or two D-skills -- skills to
gather status information directly from the robot hardware,

on line after being down for repairs, the select-an-arm RAP
timed out while waiting for the standby setting to be

established for the new arm. This was because when the
robot system first starts up (or one of the arms has gone
down and must be reinitialized), there is a system state in

and the rest C-skills, or those which define the low-level which no arm has been selected, and further, no command:
competence of the robot. including mode settings can be accepted until an arm is
selected. To solve the problem, the programmer added ar
additional method to check for that unique state and forego

Learnin h
d setting the current arm on standby.

Figure 2 depicts our instantiation of the complete

architecture. The planner invokes partially ordered plans There are also many examples of reinforcement learning
which are then specifically ordered and reordered by the peing used to increase the performance of reactive robot
sequencer's RAP interpreter, based on the actualgyijls, for example [Brooks 89]. In particular we are

environment. The interpreter in effect specifies for any jnterested in having our skills learn various parameters that
phase of a task the skill set which when invoked will bring control their behavior. For example, our obstacle

about the completion of that phase. The interpreter also aygidance skill has several thresholds for determining
maintains a dynamic memory of key states of the robot and yyhether a certain direction is open or closed. Adjusting
the world used to invoke various RAPs. The planner, when these thresholds for each new environment is time
notified by the interpreter of the completion of a planned consuming. As each layer of the architecture incorporates
activity, queries the same memory to determine the jts own learning algorithms the performance of the

progress of the plan and invokes replanning when gychitecture as a whole should improve.

necessary.

. ) ) . Learning across layers
We hypothesize three different ways of applying learning

to our architecture. Firs_t, learning can be applied within \while each layer can incorporate its own learning
each layer of the architecture to increase that layer's gigorithms fairly easily, interesting issues arise when we
performance and thus the performance of the archltectureattempt to do learning within the architecture as a whole.
as a whole. Second, learning can take place across layersy, thjs case, we are interested in "migrating” competencies
that is, activities that once required planning can, over time, from the deliberative layer down to the skill layer in order
be mpved to the sequencer and finally to a skill. Third, {5 increase performance. It is easy to come up with
learning can be used to alter the response of the examples of such learning in people, for example, piano
architecture to the environment. For example, the pjaying takes incredible deliberative attention at first, but
sequencer could learn the correct timings for each skill in a hecomes automatic with practice. Such learning usually
reactive package. Each of these three areas are explored ify|jows a power law where increased repetition leads to
the following subsections. increased performance. Several systems, such as Soar ar
ACT* [Anderson 83] exhibit this kind of learning, but they
are single-layer architectures. How can we achieve similar

. - . ) _results within a multi-layer system?
Learning within layers can be addressed immediately using

known techniques. There are several examples of learningThere are two possibilities.  First, when a plan is

being used to increase a planner's performance, forgyccessful, the planner can create a new RAP that
example, Soar [Laird et al 87] and [Knoblock et al 91]. We empodies the actions and variable bindings of that plan and
can envision a case-based learning system for our plannergqq this RAP to the RAP memory. Now the planner can

especially in repairs to the plan; repairs to a plan can be yge that new RAP as an atomic action within a larger plan.
cached using the current robot context available from the Thjs js the chunking approach taken by systems such as
RAP memory. Soar, and is akin to explanation based approaches which

) use reduction on formal representations. The second

level skills can be the basis of learning new methods in the sequencer fails to achieve its goal. In this case, the plannel
sequencing layer, a process of learning by observation is re-invoked and a new plan is developed. At this point, it

(e.g., [DeJong 86]. There is a simple but illustrative \yoyld be possible for the planner to change the context,
example from our manipulator work which was "learned"

Learning within layers



preconditions or succeed clauses of the RAP that failed. appropriate context. This is possible in part because of the
The planner could also add a new context and method to ansimilarities in representations between RAPs and a-state
existing RAP in order to prevent failure during future based planner.
executions.

3) The sequencer has control of the firing rates of the
The previous paragraph discusses migrating competenciesskills. These rates are currently hard-coded, but could
from planning to sequencing. In addition, competencies easily be adjusted autonomously.
can migrate between the sequencing layer and the skills.
At this point we have thought very little about how to take ~ 4) The skill layer allows information to flow between
the results of sequencing and chunk them into skills. An skills without passing through another layer. Thus, skills
intermediary approach might be to have skills learn to can be "chained" together to produce larger skill sequences.
automatically sequence themselves, based on previous
experiences. For example, if the "goto-person” skill is As we learn more about our architecture through
always activated immediately after the "find-person" skill, implementation on more robots, we will certainly identify
then the skill layer could begin to automatically activate the more areas where learning will help to increase robot
former as soon as it is done with the latter, without waiting performance. In each of these cases we will need to
for specific directions from the sequencer. In this case, the identify appropriate metrics to allow for comparisons
sequencer's roll is to start a skill chain and then interrupt between the architecture without learning and the
that chain if the robot is supposed to do something out of architecture with learning. In this way, we can determine
the ordinary. the most appropriate use of learning algorithms within a

robot architecture.

Learning about the environment
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