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Animats: Computer-Simulated Animals in Behavioral Research!?
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ABSTRACT: The term animat refers to a class of
simulated animals. This article is intended as a
nontechnical introduction to animat research. Ani-
mats can be robots interacting with the real world or
computer simulations. In this article, the use of
computer-generated animats is emphasized. The
scientific use of animats has been pioneered by
artificial intelligence and artificial life researchers.
Behavior-based artificial intelligence uses animats
capable of autonomous and adaptive activity as
conceptual tools in the design of usefully intelligent
systems. Artificial life proponents view some human
artifacts, including informational structures that show
adaptive behavior and self-replication, as animats
may do, as analogous to biological organisms. Animat
simulations may be used for rapid and inexpensive
evaluation of new livestock environments or manage-
ment techniques. The animat approach is a powerful
heuristic for understanding the mechanisms that
underlie behavior. The simple rules and capabilities of
animat models generate emergent and sometimes
unpredictable behavior. Adaptive variability in ani-
mat behavior may be exploited using artificial neural
networks. These have computational properties simi-

lar to natural neurons and are capable of learning.
Artificial neural networks can control behavior at all
levels of an animat’'s functional organization. Improv-
ing the performance of animats often requires genetic
programming. Genetic algorithms are computer pro-
grams that are capable of self-replication, simulating
biological reproduction. Animats may thus evolve over
generations. Selective forces may be provided by a
human overseer or be part of the simulated environ-
ment. Animat techniques allow researchers to culture
behavior outside the organism that usually produces
it. This approach could contribute new insights in
theoretical ethology on questions including the origins
of social behavior and cooperation, adaptation, and the
emergent nature of complex behavior. Animat studies
applied to domestic animals have been few so far, and
have involved simulations of space use by swine. |
suggest other applications, including modeling animal
movement during human handling and the effects of
environmental enrichment on the satisfaction of be-
havioral needs. Appropriate use of animat models in a
research program could result in savings of time and
numbers of animals required. This approach may
therefore come to be viewed as both ethically and
economically advantageous.
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Introduction

Until recently, ethology, the scientific study of
animal behavior, has been practiced entirely through
observation of living animals and their interactions
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with the environment. Recent advances in the study of
artificial intelligence have presented ethologists with
an opportunity to develop a new approach to animal
behavior research. This article is intended to provide a
nontechnical introduction to animat research. The
term animat (Wilson, 1991) refers to a class of
computer-simulated animals, or robots. These can
exist within an artificial environment, either physical
or computer-generated, devised by a researcher, or
else can be designed to interact with the real world.
The animat research paradigm has its origins in
behavior-based artificial intelligence and artificial life
research. This article examines these disciplines and
some of the key concepts that they employ. The
present and possible future application of these ideas
for the study of behavior is examined. In particular, I
consider some possible uses of computer-simulated
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animats as tools in applied animal behavior research.
The development of animat techniques and their use
in modeling animal behavior has previously been
discussed by Stricklin et al. (1995), as background to
their own animat-based studies of space use by swine.
However, with the exception of this work, the con-
siderable potential of the animat approach to animal
behavior research remains largely unexplored to date.

Is Artificial Intelligence Intelligent?

The traditional goal of artificial intelligence
research has been the creation of systems that exhibit
humanlike intelligent behavior (Brooks, 1991). As the
speed, power, and availability of computer hardware
have increased, some systems have been developed to
perform tasks that, if done by a human, would seem to
require significant cognitive abilities. These include
expert systems to provide decision support in areas
such as medical diagnosis (Szolovits and Pauker,
1993). A recent, well-publicized, triumph of artificial
intelligence is embodied in a chess-playing computer,
Deep Blue, that is able to defeat the best of human
players (Michie, 1997).

Most successful artificial intelligence applications
exploit the ability of digital computers to store huge
databases of information and to perform repetitive
operations on those data at superhuman speed. The
dominant approach to artificial intelligence until
recently, also called the knowledge-based, or top-down,
approach (Maes, 1993), has been to design systems
that take advantage of this capability. Knowledge-
based systems typically display great competence
within a narrow specialty. The problem domain is
precisely defined, and the structure of the program
reflects these constraints. Likewise, the extent of
knowledge required for the task is predefined.
Machines like the chess-playing Deep Blue exemplify
this approach.

However, Deep Blue plays chess quite differently
than a human does (Michie, 1997). Expert players
use pattern recognition to assess the configuration of
pieces and the general directions the game might take
from a small number of likely moves. Deep Blue lacks
the intuitive skill of a grandmaster and instead relies
on brute computing power to evaluate billions of
future positions. Researchers in the artificial intelli-
gence community recognize that knowledge-based
artificial intelligence systems are not intelligent in the
same sense that animals, including humans, are.
Moreover, a goal of the field has been to rectify this
discrepancy.

Behavior-Based Artificial Intelligence
Behavior-based, or bottom-up, artificial intelligence

(Maes, 1993) has arisen as an alternative to the
knowledge-based approach, and in some respects may
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be considered its antithesis. Behavior-based artificial
intelligence exploits the complexity of behaviors that
can arise in systems with very few rules and few
restrictions on the type of output they can produce.
Much research has focused on the interaction between
the system and its environment, and the goal is to
develop agents that are generally capable and self-
directed within the environment, rather than special-
ized in a tiny domain and otherwise helpless. Such
agents are often conceived as simulating the activity
of an animal, whether real or hypothetical. Thus,
behavior-based artificial intelligence has also become
known as the autonomous agent, or animat, approach
(Maes, 1995). Animat research may refer to work
with embodied robots in the physical world or to
simulated animals operating in virtual environments
that are designed to present appropriate challenges
(Tyrell and Mayhew, 1991).

In behavior-based artificial intelligence work there
is developing an emphasis on robots (e.g., Brooks,
1990; Husbands et al., 1997). Some researchers feel
that embodiment within a physical environment is
vital to the development of meaningful intelligence
(Steels, 1995). Robots have also proved useful in
modeling the behavior of real animals (e.g., Webb,
1996; Kuwana et al., 1997). For most conceivable
ethological investigations applied to farm animals,
however, it seems likely that computer-generated
animats, rather than robots, will be the synthetic
subjects of choice.

Animats as Artificial Life

Animats are human-engineered behavioral systems
that may be considered to have some attributes in
common with living organisms. The new field of
artificial life has been called the biology of the possible
(Langton, 1996). Artificial life researchers suggest
that conventional biology is limited in that it is
concerned only with products of “natural” evolutionary
processes. If it is possible to engineer artifacts or
computer programs, which by some reasonable defini-
tion could be called “living,” then, as artificial life
proponents argue, a comparative biology should de-
velop to include study of such artificial organisms.
Artificial life is closely related to, but not synonymous
with, behavior-based artificial intelligence in that it
emphasizes bottom-up methodology (Moreno et al.,
1997). An artificial life approach could be used to
investigate problems in biology (Dyer, 1995; Taylor
and Jefferson, 1995) and agriculture (Mueller, 1995).
The evolution of artificial organisms and the emer-
gence of competing “species” have been modeled by
Tom Ray (Kawata and Toquenaga, 1994; Ray, 1995).
Parasitism and counteradaptations by hosts have
evolved in these simulations. Biological processes have
also inspired developments in artificial life. Computer
viruses are replicating programs that infect and
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interfere with the function of host computers. Com-
puter viruses are viewed by some as a form of artificial
life (Spafford, 1995). A biologically inspired immune
system to combat computer viruses has been deve-
loped by Kephart (1994). The study of self-replicating
packages of information in computer systems may
suggest new approaches in immunology and genetics.
Boden (1996) introduces a comprehensive collection of
essays on the philosophical issues in artificial life.

Simple Rules, Complex Behavior

A recurrent theme in animat studies is the genera-
tion of complex patterns of behavior by agents with
limited capabilities defined by only simple sets of
rules. Animats often behave in ways that are not
explicitly specified in their programming. Such activi-
ties are said to be emergent. Emergence is particularly
interesting when the activity appears to be adaptive
for the animat in the particular context of the
simulation. Experimenting with the conditions and
rules that lead to emergent functionality in animat
systems is valuable to artificial intelligence research-
ers in their quest for useful intelligence. For etholo-
gists, there is a need to consider the role that
emergence plays in the ability of animals to display
adaptive and apparently sophisticated behavior. Re-
cently, it has been shown (Schaub and Korol, 1996;
Webb, 1996) that simple electronic and elec-
tromechanical robots can deal effectively with complex
environments. Mindful of Lloyd Morgan's canon,
researchers that study the cognitive bases of behavior
should consider how effective behavior could occur
without mental representations or other higher
processes, before invoking these as explanations.3

The emergence of complex behavior from simple
mechanisms has been considered in thought experi-
ments by Braitenberg (1984). In one example (Figure
1), an imaginary vehicle has two light sensors on the
front, each controlling the speed of the motor driving
the opposite side rear wheel. As the amount of light
falling on the sensor increases, so does the speed of the
connected wheel. This vehicle should move always in
the direction of the greatest light intensity and away

3Conwy Lloyd Morgan (1894) suggested parsimony in interpret-
ing behavior. His principle, known as Lloyd Morgan’s canon, urges
that “in no case may we interpret an action as the outcome of the
exercise of higher psychical faculty, if it can be interpreted as the
outcome of the exercise of one which stands lower in the
psychological scale.” Of course, as some critics (e.g., Bateson, 1991)
have observed, blind adherence to this rule is unimaginative and
yields only the simplest interpretations, not necessarily the best.
Despite criticism, the canon remains a valid caution against overly
complex interpretations of behavior. In the present context it
suggests the alternative that some “mindlike” behavior may be an
emergent effect of sensorimotor mechanisms, or lower levels of
neural processing.
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Figure 1. Two types of light-seeking vehicle. The
hardwired wvehicle (left) has two light sensors, each
connected to the opposite-side rear wheel so that the
wheel turns at a speed proportional to the intensity of
light falling on the sensor (after Braitenberg, 1984). The
vehicle on the right has a simple neural network
between the sensors and the wheels. The central
facilitatory neuron reinforces turns toward the light,
allowing the vehicle to “learn” light-seeking behavior
(after Scutt, 1994).

from shadows, eventually colliding with the source;
this behavior Braitenberg labels “aggressive.”

Real vehicles wired in this way have been con-
structed (Scutt, 1994), and they were capable of
negotiating light-occluding obstacles en route to a
light source. Scutt also describes a variation (Figure
1) in which the vehicle “learns” the light-seeking
behavior itself. The connections between sensors and
motors are represented as artificial neurons, initially
set up to be fully and neutrally interconnected. The
addition of a central facilitatory interneuron reinforces
connections that cause it to be more active, increasing
the chance of subsequent activity in those pathways.
Initially turning at random, the vehicle gradually
learns to seek the light. Learning occurs on the
boundaries between light and shadow, where frequent
changes of direction are caused. Vehicles learn most
easily in environments containing obstacles and
shadows, so that the light intensity varies from one
point to another. Vehicles in barren environments
with just an unshielded light source never learn light-
seeking behavior. It is interesting to note that in
rodents, complex environments are associated with
enhanced learning (Rosenzweig and Bennett, 1996)
and neural development (Carughi et al., 1990; Kem-
permann et al., 1997), compared with barren environ-
ments.

Some of the most interesting emergent behavioral
phenomena, in both natural and artificial environ-
ments, occur when animals or agents work together as
parts of a social whole, as for example, in the trail-
following behavior of simulated ants (Colorni et al.,
1992). The ants move back and forth along a trail,
following traces of a pheromone that each deposits as
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Figure 2. Emergent problem-solving by simulated
ants (after Colorni et al., 1992).

it moves (Figure 2a). If the trail is blocked by a large
object, the ants have a rule that tells them to go
around the object until they encounter the trail again.
They do not know which direction is shorter, so they
turn randomly left or right (Figure 2b). However, if
ants set off on left or right-handed journeys around
the obstacle with equal frequency, in a given time
more of the ants complete the short journey than the
long one. For an ant coming the other way, this has
the effect that the scent will be more concentrated on
the short side, making the choice of this direction
more attractive. Eventually, the short trail becomes
much more attractive, and the long route is aban-
doned (Figure 2c). Selection of the short route is
achieved without any knowledge that it is shorter. A
single ant would not be able to do this, except by
chance. Rather, it would continue to reinforce its
original choice, long or short. Simulated ants following
similar rules can solve traveling salesman problems.
The traveling salesman problem is the task of finding
the shortest route between several hypothetical cities.
A recent ant program tackled sets of up to 1,577 cities
(Dorigo and Gambardella, 1997). The solution
provided in most cases was not a mathematically
proven optimum, but was rather a close approxima-
tion obtained by progressive refinement over many
trail-following journeys, an interesting example of
emergent heuristic computation. Understanding the
formation of trails used by free-ranging livestock to
travel between resource locations may provide an
opportunity to influence their movement patterns and
improve the use of pasture resources.

On occasions, the activity of social groups of
animats that follow simple rules can be strikingly
reminiscent of the collective behavior of their living
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counterparts. A good example is the dynamics of
flocking in birds. Craig Reynolds (1987) devised a
simulation using animats he called boids to represent
birds. These had three rules governing their spatial
behavior in relation to nearby boids: 1) stay together
(i.e., move toward nearby boids); 2) match speed to
nearby boids; and 3) avoid collisions. These produced
lifelike group movement, resembling that of real bird
flocks. Reynolds experimented with placing obstacles
in the path of his “flock”, which had no specific rule to
maintain group cohesion while negotiating obstacles.
The animat flock was undaunted by the obstacles,
simply dividing to avoid them and re-forming after-
ward. Bedau (1997) argues that the study of emer-
gent, supple dynamics on a large scale from simple,
rule-based systems, as exemplified by Reynolds’s boids
has relevance to the understanding of human mental
phenomena. The dynamics of group movement in
herds of hypothetical terrestrial agents have been
investigated by Hodgkins and Brogan (1994). Werner
and Dyer (1993) have modeled the evolution of
herding behavior and predator avoidance in a simple
simulated ecosystem.

Exploiting Variable Success in
Virtual Environments

Animals in their natural environment show varia-
tion in form and behavior. Individual learning and
natural selection exploit this variation, resulting in
animals that are better adapted, phenotypically and
behaviorally, to their environments. Animat models
may make use of artificial neural networks and
genetic programming to achieve comparable ends.

Artificial Neural Networks

Artificial neurons are analogous to the neurons of
animals in terms of their connectivity and computa-
tional properties. Arrays of such neurons, known as
artificial neural networks, have been used for all levels
of behavioral control in animats from decision making
to control of individual limb movements, as well as for
the simulation of simple, but entire nervous systems
(e.g., Beer, 1990). Gardner (1993) edits a useful
guide to the structures and uses of neural networks.
Figure 3 illustrates a common type of neural network.
Stimulation of a neuron in the input layer is passed to
neurons of subsequent layers to which it is connected
via synapses that vary in strength. The probability of
a neuron firing is proportional to the sum of the
synaptic potentials it receives from neurons in the
previous layer to which it is connected. The strength of
these connections is assigned an initial value, which
varies as the network “learns.” Training is accom-
plished by shaping the network output through
“reward,” or reinforcement. Neural pathways that
connect an input to an appropriate, or correct, output
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Figure 3. Diagram representing a typical neural
network. Three layers of neurons (circles) are joined by
synaptic connections (lines). Sensory information acti-
vates neurons in the input layer and is processed by one
or more hidden layers, which in turn activate output
neurons representing behaviors or choices. Initially, the
network is fully and neutrally connected (left). As
training proceeds, some connections are reinforced
(represented by thicker lines), increasing the probability
that these pathways will be used again (right).

are strengthened by a process of back-propagation,
which acts on each connection from output through
hidden layers back to the input layer. This increases
the probability that a particular route through the
network will be used again. This learning process may
be directed by a human overseer, but in some cases
networks can learn from interacting with their en-
vironment without active human intervention re-
quired.

Genetic Programming

The defining characteristics of an animat can be
represented as lines of computer instructions or data
within the simulation program. If the parameters of
all animats are not identical, there may be variations
in individual success in the simulation. Genetic
programming acts on this variation to preserve and
magnify adaptive traits. The set of instructions that
defines a particular animat correspond to the genome
of an animal. In a process analogous to biological
reproduction, the genotypes of successful individuals
are replicated in later generations of animats. In-
dividuals with advantageous characteristics can be
copied exactly, or the system can incorporate a rate of
mutation to maintain some variability for future
exploitation. Alternatively, as in Figure 4, two sets of
instructions can be combined to form offspring with
both parents’ characteristics (for relevant discussions
on genetic algorithms, see Mitchell and Forrest, 1995
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and Ch. 19 in Haefner, 1996). As with neural
networks, the selection process can be implemented by
a person (corresponding to selective breeding of a
domestic animal) or can be integral to the simulated
environment.

Applied Animat Research

There has been almost no attempt thus far to use
animats in applied animal behavior research. This is
probably due to widespread unfamiliarity with the
concepts. The exception has been work on the space
requirements of pigs by Stricklin et al. (1995, 1997,
1998). In an interesting series of experiments, they
have used an animat approach to model the effects of
group size and pen shape and size on behavior. The
authors believe that animat modeling has considera-
ble potential in applied ethology as a means of
investigating space requirements. They also propose
that artificial intelligence research in general can
contribute insights into cognition, awareness, and
other psychological processes as well as philosophical
issues of mind. Thus, they believe that artificial
intelligence research is relevant to animal welfare
issues.

One important advantage of computer simulation,
which Stricklin et al. (1995) have discussed, is the
ability to try out, in the initial development stages,
the effect of pen design on the movement of pigs before
actually constructing them. It might be productive to
extend this idea to facilities for moving and handling
animals on a large scale. One could envisage an
animat-based computer-aided design system for de-
veloping efficient handling facilities for cattle and
other livestock. This would probably entail a mixture
of top-down and bottom-up thinking. We know that
factors such as human presence, chute width and
curvature, and changes in light intensity can influence
animal movement (Grandin, 1993). However, the
understanding of such complex relationships tends to
be intuitive and is only somewhat empirical. This very
complexity can make the subject of animal handling
and chute design an ideal candidate for an animat
approach.

A possible research strategy for developing a
practical, animat-based, handling facility design simu-
lator is summarized in Figure 5. An early task would
be to devise a feature set for animats that resulted in
a convincing simulation of animal movement. One
could start by drawing up a list of all influences likely
to affect the direction and speed of movement of an
animal. These would include proximity of other
animals and physical barriers, light levels, presence of
a person, and other factors. Sophisticated models
might incorporate influences such as hunger, effects of
previous experience, and perhaps weather conditions.
The causal links between these factors and the
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Figure 4. Genetic programming. In this case, sexual
reproduction by recombination of copies of two parental
algorithms.

movement of the animats could be set initially to
arbitrary weights. One should not try to anticipate
these relationships by imposing a fixed set of rules
from the outset. The detailed behavior of a group of
animats, just as with their live counterparts, is likely
to be emergent and, thus, more or less unpredictable
from initial conditions. It will be more productive to
allow animats to learn to be reasonable mimics of real
livestock. This could be achieved by using an artificial
neural network to represent the relations between
environmental influences and the resultant behavior.
This would require a supervised training procedure in
which animat behavior is shaped toward a lifelike
approximation of animal movement. Alternatively, a
realistic system could be selectively “bred” using a
genetic algorithm approach that treats the weights of
the various parameters as a genotype to be replicated.
A combination of these two methods could also be used
as Werner and Dyer (1993) have done in their
modeling of predator-prey interactions. The most
lifelike models would need to be validated against
observations of live animals in chutes and alleys. Once
one had arrived at an apparently valid model, it would
be possible to experiment with altering features of the
physical environment and study the ability of the
model to demonstrate convincing animal movement in
differently shaped facilities. Such a system could bring
about considerable improvements in facility design,
even if it were only used to eliminate hopelessly poor
designs before committing resources to building them.

It might also be possible to use animat-based
software to predict pasture usage and competition for
resources by livestock. There have been attempts
before to model space and resource usage of cattle at
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pasture using computers (e.g., Senft et al., 1983,
1985). These have been done using a top-down
approach and have been moderately successful, if
simplistic. They do not seem to have found any
practical application to date. It should be possible to
do better using a bottom-up approach. A good deal of
research would be involved in constructing a behavior-
based model of pasture usage by cattle or sheep, but |
think the effort would be very worthwhile. A useful
predictive model would require a substantial program
of behavioral observation of animals at pasture. This
is required not only for selecting parameters to
incorporate into the model but also for subsequent
validation and refinement. Such a project would be of
ethological value in its own right. It is unlikely that a
model could be developed that would predict the
actions of individual animals with any degree of
precision. However, this is not necessary in order for
the system to be of practical use. The most useful
application would probably be the ability to predict, at
a herd or flock level, the effects that changing
watering points or fencelines, improving drainage,
felling woodland, and other management considera-
tions have on the use of space and forage by the
animals.

Animat-based investigations might also contribute
to improvements in animal welfare by facilitating the
development of enriched environments that help to
meet the ethological needs of captive animals. Tech-
niques such as the application of consumer demand
economics (Nicol and Dawkins, 1990; Dawkins, 1983)
allow us to measure the relative importance, or
absolute necessity, of various environmental features
and resources from an animal's point of view. This
information should allow the development of animats
with more or less realistic motivational states and
goal-directed behavior. These models could be used to
predict the effect on behavior and satisfaction of
ethological needs that could be expected from any
proposed changes to housing systems. This approach
could be used in poultry housing to model space use
and the welfare value of perches, different substrates,
and other refinements. Animats could be used to
model enriched environments for zoo animals. Effec-
tively enriched zoo enclosures are not only of benefit to
animal well-being, but they also offer the public a
more interesting exhibit (e.g., Markowitz et al,
1995).

The animat approach could be used by behavioral
ecologists to examine the applicability, to farm
animals, of mathematical models of the optimization
of resource usage. It is also possible to use some of the
associated techniques to investigate cognitive
processes (e.g., the processes of recognition and
representation that subserve intraspecific communica-
tion). Recently, Reby et al. (1997) demonstrated the
training of an artificial neural network to recognize
the voices of individual deer. They taught the network
using iterations of a number of vocalizations of four
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fallow deer. The network learned to achieve 100%
recognition of the training samples and was able to
predict which animal an unheard sample came from
with over 90% success rate. This is significant because
it models an active cognitive process, the representa-
tion of individual identity, which is an important
element in the ethology of communication and the
social context in which communicative exchanges take
place. This kind of study can yield insights into the
development and maintenance of individual recogni-
tion among real animals, and, thus, helps us to learn
more about the cognitive basis of communication.

Value of Animats in Animal Behavior Research

The extent to which artificial life research will
become recognizable as a distinct scientific discipline
within the life sciences is difficult to predict. It is
apparent though that computer simulation and model-
ing have achieved respectability as research tools in

WATTS

such disciplines as ecology, population biology, and
neuroscience. The approach of modeling the behavior
of individual organisms is, at least partly, a spin-off
from conceptual developments in artificial intelligence
research. This author contends that animats have
considerable potential as research tools for the broad-
minded behavior scientist.

The range of questions that could be tackled using
an animat-based approach is extensive. Unlike some
other biological disciplines, ethology lacks a technol-
ogy for culturing the phenomenon of interest (i.e., the
behavior) outside of the organism that normally
produces it. The animat approach allows for the ex
vivo generation of behavioral phenomena and the
opportunity to manipulate the expression of the
behaviors and the environment with precision, flexi-
bility, and freedom from extraneous influences that
are unlikely ever to be matched in studies with living
animals. Modeling behavior in this way could facili-
tate the development of hypotheses that could be
tested by further studies on the species represented by

POSTULATE FACTORS AFFECTING DEFINE BEHAVIORAL OUTPUTS POSSIBLE
ANIMAL MOVEMENT [FAM] » FOR ANIMATS [BO]
E.g. E.g.
+ Sounds - animal, human, mechanical walk
Proximity and direction of : nearby run
INITIALIZATION | animals, people, walls, resources stop
STAGE [food, water, shelter) turn ||_=ﬂ
+Lines of sight to the above turn "_ght
+Movement of nearby animals vocalize
+Motivational states - fear, hunger, look |F“
thirst, thermal stress, curiosity - look right
+Previous exposures to environment Generate naive rest
neural network
FAM - input layer |
BO - output layer Yes
Cha.nge some features in 'l INITIALIZE SIMULATION | Has FAM list
environment or numbers N been changed?
. . o J/
of animats or their start Vg
positions .
[RUN SIMULATION],  IReward neural
No network Consider
REFINEMENT y altering
es .
STAGE Has model appeared Does model FAM list
convincing in trials te a Is current Y
with several differently Yes genera No activity more Mo
contigured environments 4 reasonably ————Jitelike than
and different numbers litelike recent?
of animats? simulation
of behavior?
VALIDATION Yes Use system to model existing real facilities. ,| Assess predictive N Refine further
STAGE Compare animat activities to real animals validity of model as required

Figure 5. A possible approach to developing an animat-based system to model and predict livestock movements in
handling facilities. (*The lists of factors that affect movement and behavioral outputs are not intended to be

exhaustive.)
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the model. This process would reduce the number of
animals required for research or teaching purposes. It
may therefore come to be regarded as an ethically
advantageous and cost-effective strategy. As a heuris-
tic, animat modeling offers a chance to generate some
important insights into a variety of questions includ-
ing the origins of sociality, cooperative behavior
(including altruism), and adaptation through emer-
gent functionality. Behavioral ecology can exploit this
method to help validate mathematical models of
optimality, game theory, signaling, and predator-prey
interactions. A major advantage of the approach in
this regard would be the ability to run many iterations
of a theoretical model in a reasonable time while
making small adjustments to the parameters. Animat
simulations may offer something qualitatively differ-
ent in that they permit, in principle at least, empirical
evaluation of hypotheses that defy algorithmic expres-
sion.

Implications

The ideas and technologies that make animat-based
behavior research possible are unfamiliar to many
animal scientists. The use of animats could make
useful contributions to animal science. There have
been few efforts thus far to use animat methods in
animal science research. The potential uses are many.
Besides artificial intelligence, evolutionary biology,
and neuroscience, there is ample scope for applications
in livestock management. The extent to which animat
methods will be used by applied animal behavior
workers will depend on their willingness to embrace
unfamiliar ideas and their imagination in identifying
specific problems that could be tackled using animat
simulations. From an animal welfare viewpoint, and
as a cost-reducing measure, animat studies could be
rewarding, because they may allow a reduction in the
number of animals required in a research program.
This consideration alone is sufficient to warrant a
closer look at the potential of animat studies.
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