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ABSTRACT: Biofiltration has shown to be a promising technique for handling malodours arising from process
industries. The present investigation pertains to the removal of hydrogen sulphide in a lab scale biofilter packed with
biomedia, encapsulated by sodium alginate and poly vinyl alcohol. The experimental data obtained under both steady
state and shock loaded conditions were modelled using the basic principles of artificial neural networks. Artificial neural
networks are powerful data driven modelling tools which has the potential to approximate and interpret complex input/
output relationships based on the given sets of data matrix. A predictive computerised approach has been proposed to
predict the performance parameters namely, removal efficiency and elimination capacity using inlet concentration,
loading rate, flow rate and pressure drop as the input parameters to the artificial neural network model. Earlier,
experiments from continuous operation in the biofilter showed removal efficiencies from 50 to 100 % at inlet loading
rates varying up to 13 g H,S/m®h. The internal network parameter of the artificial neural network model during
simulation was selected using the 2% factorial design and the best network topology for the model was thus estimated.
The results showed that a multilayer network (4-4-2) with a back propagation algorithm was able to predict biofilter
performance effectively with R? values of 0.9157 and 0.9965 for removal efficiency and elimination capacity in the test
data. The proposed artificial neural network model for biofilter operation could be used as a potential alternative for
knowledge based models through proper training and testing of the state variables.
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INTRODUCTION

Hydrogen sulphide (H,S) is used extensively as a
digesting agent in the pulp and paper industry.
However, the potential large emitters of hydrogen
sulphide includes electric power plants (burning coal
or fuel oil containing sulfur), oil and gas extraction
operations, oil refineries, pulp and paper mills, sewage
treatment plants, large pig farms, confined animal
feeding operations and aerobic composting of low
C/N material. Hydrogen sulfide is commonly found in
coal and petroleum deposits and may be mobilized by
human manipulation of these resources. Most
hydrogen sulphide releases are directly to the ambient
atmosphere. Inhalation is the major route of exposure
to hydrogen sulfide in the environment. Hydrogen
sulfide is disruptive to the mitochondrial electron
transport system and is thus expected to affect all
systems; the most sensitive systems are the respiratory
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and central nervous systems. Hydrogen sulfide is also
an ocular and respiratory tract irritant. The
Occupational Safety and Health Administration
(OSHA) has set an acceptable ceiling limit for hydrogen
sulphide of 20 parts hydrogen sulphide per 1 million
parts of air (20 ppm) in the workplace. Hence there
arises a potential need to adapt suitable control
techniques for the effective removal of these emissions
from related process industries. Biofiltration is a cost
effective technology for treatment of waste gases
containing low concentrations of VOCs at large flow
rates (Rene etal., 2005). The high removal efficiencies
(REs) achieved along with uncomplicated flexible
design, low operational and maintenance costs edges
biofilters over other biological treatment techniques
such as biotrickling filters and bioscrubbers (Kennes
and Veiga, 2001). Anew, biofiltration may be considered
as a suitable solution for H,S emissions, as investment
and operation costs are lower and performances are
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comparable with other abatement systems and comply
with permit requirements. Biofilters have proved to
remove H,S emissions effectively from gas streams
using a bed of biologically active material such as
compost, peat, wood bark, etc. A wide range of
experimental studies have been carried out recently
by researchers to evaluate the influence of operational
parameters on the performance of biofilters handling
H.S vapours individually and as mixtures (Lee et al.,
2006; Duan et al., 2006; Sagastume and Nayola, 2006;
Yu et al., 2007; Galera et al., 2008). In recent years,
immobilization of microbes in support matrix such as
alginate beads or suitable polymeric materials has
gained popularity in the field of biofiltration. The main
advantages of adopting immobilization techniques in
biofiltration is to provide high cell concentrations,
improve genetic stability, protection from shear
damage and to enhance favorable microenvironment
for microbes (nutrient gradients and pH). Chung et
al., (1996) evaluated the effects of operational factors
such as retention time, temperature and inlet
concentration on the performance of a biofilter packed
with Thiobacillus thioparus immobilized with Ca-
alginate pellets and found an optimal S-loading of
25 g m™/h. A wide variety of bacterial strains have
shown potential ability to handle odors containing
H,S. Bacterial species like Pseudomonas putida,
Xanthomonas sp., Thiobacillus denitrifans and
Thiobacillus ferroxidans have been used by
researchers to eliminate H,S compounds (Chung et
al., 1996; Cha et al., 1999). Traditionally the
performance of biofilters has been modeled/predicted
using process based models that are based on mass
balance principles, simple reaction kineticsand a plug
flow of air stream (Ottengraf and Oever, 1983;
Shareefdeen et al., 1993; Deshusses et al., 1995; Jin
et al., 2006). The main advantages of these process
models are that they are based on the underlying
physical process and the results obtained generally
provide a good understanding of the system.
However this depends on numerous model parameters
and obligates information on specific growth rate of
microbes, biofilm thickness and density, values of
diffusivity, partition, yield and distribution coefficient,
intrinsic adsorption etc. The accurate estimation of
some of these parameters requires elaborate technical
facilities and expertise, the absence of which hinders
the preciseness of the model and limits the application
and reliability of the model. An alternate modelling

288

procedure consists of a data driven approach wherein
the principles of artificial intelligence is applied with
the help of neural networks. Artificial neural networks
(ANNSs) such as the three-layer back propagation
network have been proved to be universal function
approximators (Hornik et al., 1989; Poggio and Girosi,
1990). ANNSs have already been applied to solve,
predict and optimize a variety of environmental and
biotechnological problems: wastewater treatment
plant performance (Hanbay et al., 2008; Torrecilla et
al., 2008), biodegradation kinetics of organic
compounds (Schuurmann and Muller, 1994), air
pollution related problems (Reich et al., 1999; Yildirim
and Bayramoglu, 2006; Lira et al., 2007; Martin et al.,
2008), predicting fed batch fermentation kinetics
(Valdez-Castro et al., 2003), and optimizing media
components for enhanced lipase production (Haider
et al., 2008). Anew, it has been shown earlier that the
performance of biofilters and biotrickling filters can
be predicted from prior estimation of easily measurable
operational parameters (Rene et al., 2006; Elias et al.,
2006).

The Ann based modelling strategy

A multi layer perceptron (MLP) using the back
propagation algorithm (Rummelhart et al., 1986) is the
most widely used neural network for forecasting/
prediction purposes (Maier and Dandy, 2001). Neural
networks acquire their name from the simple
processing units in the brain called neurons which are
interconnected by a network that transmits signals
between them. These can be thought of as a black box
device that accepts inputs and produces a desired
output. MLP generally consists of three layers; an input
layer, a hidden layer and an output layer (Fig. 1).

Each layer consists of neurons which are connected
to the neurons in the previous and flowing layers by
connection weights (W,). These weights are adjusted
according to the mapping capability of the trained
network. An additional bias term (6)) is provided to
introduce a threshold for the activation of neurons.
The input data (X)) is presented to the network through
the input layer, which is then passed to the hidden
layer along with the weights. The weighted output
(X\W,) is then summed and added to a threshold to
produce the neuron input (1) in the output layer (Yi).
This is given by:

L =W)X +6, @
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Input layer

Hidden layer

Output layer

Fig. 1: Schematic of a 3-layer neural network (X, -X are the different inputs to the network, Y ,-Y are the outputs, Wij1 and
Wij2 are the connection weights between different layers of the network)

Table 1: Range of input and output parameters used for training and testing the ANN model developed to represent biofiltration

of H,S vapors

Parameter Training data, NTr-51 Testing data, N7.-16

Min. Max. Mean Min. Max. Mean
Input
Inlet concentration, ppm 12 130 9.72 8 16 9.63
Flow rate, m*h. 8 16 52.5 12 60 47.93
Inlet loading rate, g/m*.h. 0.95 12.97 53 0.95 5.98 4.67
Pressure drop, cms of H,O 0.07 1.75 121 0.2 1.68 13
Output
RE, % 52.5 100 91.45 86 100 95.39
EC, g/m*h. 0.43 7.8 4.67 0.94 5.98 4.55

This neuron input passes through an activation
function f (1) to produce the desired output Y. The
most commonly used activation function is the logistic
sigmoid function which takes the form;

1
l+e

f0) = @
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MATERIALS AND METHODS

Experimental details pertaining to the cultivation of
microorganisms, media composition, preparation of
immobilized packing media, experimental setup, biofilter
operation and analytical techniques for data collection are
given in our previously published work (Kim et al., 2007).

Modeling methodology
Model input-outputs and data division

A neural network based predictive model was
developed with flow rate (X)), inlet loading rate (X,),
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pressure drop (X,) and inlet concentration (X)) as the
model inputs and elimination capacity (Y,) and removal
efficiency (Y,) as the outputs. The experimental data
was divided into training (N, , 75%) and test data (N,
25%). The test data was set aside during network
training and was only used for evaluating the predictive
potentiality of the trained network. The minimum and
maximum values of these variables for both the training
and test matrix is shown in Table 1.

Error evaluation

The closeness of prediction between the
experimental and model predicted outputs were
evaluated by computing the determination coefficient
values as shown below (Elias et al., 2006);
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Where, Y . —predictions made by the model, Y .
—observed true values from experiments, N —number
of cases analyzed, y - average value and S, - standard

deviations.

Data pre-processing and randomization
Experimental data collected from the biofilter during
the 67 days of continuous operation was randomized
to obtain a spatial distribution of the data, which
accounts for both steady state and transient steady
state operation. The data was also normalized and
scaled to the range of 0 to 1 using equation 4, so as to
suit the transfer function in the hidden (sigmoid) and
output layer (linear).
X~ Xmin
Xmax =X i

A
X=

©)

AN
Where, X is the normalized value, X . and X are the
minimum and maximum values of X respectively.

Network parameters

The internal parameters of the back propagation
network namely epoch size, error function, learning rate
(), momentum term (), training count (T ) and transfer
function are to be appropriately selected to obtain the
best network architecture that gives high predictions
for the performance variables. In this study the number
of neurons in the input layer (N,=4) and output layer
(N,=2) were chosen based on the number of input and
output variables to the network. A detailed study on
the effect of internal network parameters on the
performance of back propagation networks and the
procedure involved in selecting the best network
topology has been described elsewhere (Maier and
Dandy, 1998). However in most instances, literature
suggests the use of a trial and error approach where
the performance goal is set by the user. In this study,
the best values of the network parameters were chosen
by carrying out simulations performed using the 2« full
factorial design (Montgomery, 1991; Gopal et al., 2002).
The 2 design is of particular significance in exploring
the effect of many factors on the response variable for
a particular system. It provides the smallest number of
runs with which ‘k’ factors can be studied in a complete
factorial design (In this study, k=4, thus 16 simulations
were done with center point replicates). Determination
coefficient (R?) values were taken as the response
variable and the setting that yielded the maximum R?
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value in the test data was taken as the best network
parameter.

Softwares used

ANN based predictive modeling was carried out
using the shareware version of the neural network and
multivariable statistical modeling software, NNMODEL
(\ersion 1.4, Neural Fusion, NY) and full factorial design
was carried out by the statistical software MINITAB.

RESULTS AND DISCUSSION
Experimental

The initial loading rates during the starting phase for
the biofilter treating H,S was 1 g H,S/m/h. at a
concentration of 12 ppm and an empty bed residence time
(EBRT) of 51 sec. Further, during every step increase in
the loading rates, it was observed that the biofilter took
about 2 or 3 days to adapt to the new concentration and
reached a new steady state value shortly. The removal
profiles thus obtained are shown in Figs. 2 and 3 as a
function of the inlet concentrations and loading rates.
Initially, when the loading rates were less than 1 g H,S/m/
h. the RE increased gradually from 45 to nearly 100%,
which indicated good activity of the immobilized cells to
treat H,S vapors. The loading rate of H,S was gradually
increased to 1.7 g/m%h. on the 6™ day of continuous
operation. The response was a sudden decline in the
RE from 99 % to 85 % followed by a new steady state at
the end of the 10" day where the RE was 99 %. However,
when the loading rate was increased to 2.5 g/m3h., the
RE dropped again to nearly 80 %. The response of the
immobilized cells was rapid as evident from the decline
of RE and the same performance (99 %) was later
reached within 5 days of continual operation at the
given condition. The input was changed in 7 steps up
toa loading rate of 8 g H,S/m/h., during which the RE
remained constant at 82 %. It has been shown that H,S
metabolism by heterotrophic sulphur oxidizing bacteria
is a detoxification process and high inlet concentrations
have often been reported to decrease the H,S removal
efficiency (Chung et al., 1996). The microbes were not
able to sustain this higher load and did not exhibit a
marked increase in oxidizing H,S effectively. In the later
stages of operation, when the loading rate was held
constant at 6 gH,S/m/h. the RE was 100%. After 60
days of operation, the inlet loading rate was increased
significantly to 13 g/m3h. by varying both the
concentration and flow rate.
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It was found that there was a noticeable decrease
in the RE values (52%). The elimination capacity
profiles were almost linear till an inlet load of 8 g H,S/
m¥h., which indicates that the biofilter performed with
100 % efficiency till this critical load. However, for
higher initial concentration and higher flow rate used
in the later steps, the elimination capacity of the filter
bed increased at a slower rate, becoming nearly
constant at inlet loads beyond 8 g H,S/m%h.
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ANN based modeling

To model the performance of the biofilter, neural
based simulations were carried out using the standard
back error propagation network. The experimental data
collected from the biofilter was suitably divided into
the training and test data set, pre-processed and
randomized before carrying out simulations. The model
was evaluated with the test data and the effect of
network parameters on the R? value was used as a
measure to choose the best network architecture.
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Fig. 2: Time course profile of inlet and outlet concentration during continuous biofiltration of H,S vapors

20
100 | : 18 g
f\.‘.'-\ .i.\\ =" --l--\-,-’-\ 7 £
o | o 116 2
/ \..!. 2
80 I S
g 1 14 E
z | L1 5
S -~
g 60 bS
5 w 70 F
S R Adaaa 1s g
e 40 s
D j=2)
o AAMMA] AMAAMMAAAAAAAAAAAAA, 16 i
K
o
20 1 4 B
....... =

...... 1,

0 1 1 1 1 1 1 0

0 10 20 30

40 50 60 70

Biofilter operational time (days)

—+— Flow rate

—8— Removal efficiency (%)

—a&— Inlet loading rate

Fig. 3: Effect of inlet loading rate on removal efficiency during continuous biofiltration of H,S vapors
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Effect of network internal parameters

The different range of values of network internal
parameters used to train the network based on the
factorial design of experiments are given in Table 2.
The model predictions were used to compute the
determination coefficient values. These values were
then used by the software to obtain the main and
interaction effects plot, which is shown in Figs. 4 and
5 respectively. The following interpretations were made
from the main effects plot; (1) increasing the number of
neurons in the hidden layer decreases the R? value
significantly (1) an increase in the training count from
low (1000) to high levels (16000) displays significantly
higher R? value for the model (111) the effect of learning
rate did not play a major role in increasing the R? value,
but it played a complementary role in speeding up the
error convergence and (IV) the momentum term

increased the R? value when increased from lower to
high levels. On the other hand, the interactions effects
plot didn’t show any regular interaction. However there
were little interactions between learning rate and the
number of neurons in the hidden layer. All other
interactions were found negligible.

Table 2: Range of different network parameters used to train
the neural model

Parameter Value
Hidden neurons (Ny) 4-12
Training cycles, T, 1000 - 16000
Learning rate, 01-09
Momentum, a 04-09
Epoch size, & 50
Confidence interval 95%
Error tolerance 0.0001
Best R? 1
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Fig. 4: Main effects plot showing the effect of network internal parameters on the determination

coefficient values during ANN modeling
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Statistical analysis in the form of analysis of variance
(ANOVA) was performed on the model and their
corresponding F, Pand T values are shown in Table 3.
As indicated by the high F values (75.2) and low P
values (0.086), the main effect of the variable was
found to be highly significant than the 2-way, 3-way
and 4-way interactions. Among the linear effect of
the factors on the determination coefficient value, the
training count and number of neurons in the hidden
layer (N,,) were found to be rich in significance than
the other factors as seen from their T values (15.12
and -2.73). This was further manifested using the
pareto plot that shows all the interactions and their
effects on the response variable, namely determination
coefficient (Fig. 6). The weight and bias term of the
hidden layer connections obtained after network
training is given in Table 4. The results from this study
indicate that low learning rate (n - 0.1), high momentum

term (o - 0.9), a training count of 16000 with 4 neurons
in the hidden layer (N,) are favourable values of the
internal network parameters to predict the RE and EC
with high determination coefficient values (0.9157 and
0.9965).

Table 3: Analysis of variance and effect of individual factors
on the determination coefficient value observed after
model training

Source ANN Model

F P
Main effects 75.2 0.086
2-way interactions 8.25 0.260
3-way interactions 1.15 0.596
4-way interactions 0.74 0.549
Effect of individual factors
Factors F P
Number of hidden neurons -2.73 0.233
Training count 15.12 0.042
Learning rate 0.61 0.651
Momentum term 8.02 0.079

Table 4: Weights of the trained neural network for the prediction of elimination capacity and removal efficiency

Neurons Win Who
Flow rate Concentration  Loading rate  Pressure drop Bias Neurons RE EC
1 -2.9015 -7.8833 -1.2883 -0.0877 0.636 1 1.8355 1.0585
2 -1.5794 0.7842 5.4983 -0.5108 -1.376 2 0.7944 1.8635
3 -21.0985 -0.2654 -17.9308 -9.5422 3.209 3 -1.0701 -2.3904
4 19.7411 6.1549 5.5601 1.6923 1.451 4 1.0296 -2.0399
Bias -0.0576 0.8355
W, — weights between input and hidden layer
W,, - weights between hidden and output layer
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Fig. 6: Pareto plot showing the standardized effects of internal parameters on
the determination coefficient values
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Predictive capability of the model

The RE and EC values predicted by the ANN model
isillustrated in Figs. 7 and 8 for the training data. It is
quite apparent that, while predicting the RE and EC,
the network was able to exactly map the data points.
However, two or three data points were not adequately
mapped by the network during training. This might
have been caused by the step increase in loading rates
where the microbes were reacclimatizing itself to attain
new steady states. The reason for decreased
performance could also be due to substrate inhibition,
mass transfer limitations or also due to by-product
accumulation within the encapsulated bio-media.

After training, the network was provided with the
separate set of data for testing the developed model.
The results presented as EC and RE is illustrated in
Figs. 9 and 10 respectively. A comparison between
the EC and RE values predicted by the model with the
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experimental values reveals the predictive capability
of the model. The model was able to adequately
identify the low and high peaks in the EC and RE
values. The R? values obtained during training and
testing were greater than 0.91, which indicated that
the predictions are accurate with best network
architecture of 4-4-2.

CONCLUSION

A laboratory scale immobilized cell biofilter evaluated
to remove H,S vapours showed RE higher than 90% at
loading rates less than 8 g H,S/m*h. This study explores
the application of ANN as a performance prediction
tool for a biofiltration process. The ANN model
showed the ability to predict the extreme
operating conditions and address the performance with
R? values greater than 0.91 for the training and test
data set.
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Fig. 7: Comparison of experimental and predicted values of removal efficiency during model training (N, -51)
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Fig. 8: Comparison of experimental and predicted values of elimination capacity during model training (N, -51)
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Fig. 9: Comparison of experimental and predicted values of removal efficiency during model testing (N, -16)
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Fig. 10: Comparison of experimental and predicted values of elimination capacity during model testing (N, -16)

The best network architecture (4-4-2) during
effective training of the model was determined by 2%
factorial design. The results from this study suggest
that neural networks can capture and extract complex
relations among the easily measurable parameters in a
biofiltration process and predict the performance.
Future research directions would target implementation
of online sensor based neural network model to
measure and control pollutant loads for optimal
performance of biofilters.
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