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Abstract— The State Of Charge Indicator (SOCI) for the
Lithium Poly Carbon Monoflouride (Li/CFx) battery has a wide
range of applications. However, the dynamic environmental
conditions, such as the ambient temperature, can alter the
characteristic response of the battery and introduce non-linear
behavior. This paper discusses the in-lab development of an
Artificial Neural Network (ANN) based SOCI for the Li/CFx
battery. The ANN is trained on the recorded data — voltage,
current and ambient temperature, to produce a non-linear model
and to accurately predict the State Of Charge (SOC) of the
battery. The SOC prediction is based on the recent behavior of
the battery. Preliminary experimental results using recorded
datasets from the Battery Design Studio are presented for the
Lithium Ion battery. The working model for the Li/CFx is
currently under development. The reported results demonstrated
good performance of the developed SOCI, with less than 2%
average relative error on data at previously observed ambient
temperatures.

Index Terms— Li/CFx Batteries, State of Charge, Artificial
Neural Networks

I. INTRODUCTION

HE State Of Charge Indicator (SOCI) is an essential part

of many user-friendly electronic device batteries. For
instance, electronic watches, cellular telephones, pagers,
laptops, calculators or portable medical devices are typically
equipped with a SOCI, reporting the current state of the
battery [1]. It enables the user to assess the remaining
operational time. Clearly, this can be essential in operations,
where inaccurate information about the remaining operational
time can be critical or fatal. Because the portable devices are
required to operate in various environmental conditions, the
SOCI should account for additional factors, such as the
ambient temperature, which can substantially affect the
behavior of the given battery.

A SOCI for the Lithium Polycarbon Monoflouride (Li/CFXx)
battery is considered in this paper. Even though the SOCI for
the Li/CFx was developed by private industry, currently there
is no SOCI solution for the Li/CFx battery that would account
for the non-linear effects of the environmental conditions. The
Li/CFx batteries are used for example for medical industry
pacemakers, and other portable devices [2].

This paper discusses the “in-progress” development of an
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intelligent SOCI for the Li/CFx battery, by means of Artificial
Neural Networks (ANNs). Currently, the research effort is
based on recorded data for the widely used Lithium Ion
(Li/Ion) battery using the Battery Design Studio. The working
model for the Li/CFXx battery is under development. Due to the
inherent similarities of both batteries, the current preliminary
results will be later used towards the ultimate goal of
developing an intelligent SOCI for the Li/CFx battery.

Artificial Neural Networks (ANNs) are powerful machine
learning paradigm capable of data-driven synthesis of
complex non-linear models of the system of interest [3]-[5].
The synthesis proceeds in a supervised manner. Hence, the
ANN attempts to minimize the classification error defined as
the difference between the desired and the actual response of
the model.

In the presented SOCI development, the ANN architecture
is trained on input data obtained from various test procedures
of the battery. The model predicts the current SOC of the
battery based on the recent history of the voltage, current and
the ambient temperature. Hence, the model accounts for non-
linear behavior introduced by the varying environmental
conditions into the system.

The rest of the paper is organized as follows. Section II
gives a brief background of the Li/lon and the Li/CFXx batteries
and of the architecture and the training of the ANNSs. Section
III provides analysis of the data acquisition setup and the
recorded data itself. The design of the intelligent SOCI is
presented in Section IV. Up-to-date experimental results are
reported in Section V. The paper is concluded in section VI.

II. BACKGROUND

This section gives a brief overview of the Li/lon and the
Li/CFXx batteries as well as of the Artificial Neural Networks.

A. Li/lon Batteries

Lithium Ion batteries are one of the most common batteries
in portable consumer electronics. The battery consists of
carbon anode, metal oxide cathode. They are surrounded by
lithium salt electrolyte in an organic solvent [6]. The main
advantages of Li/lon batteries are their high energy density,
low maintenance, no need for periodic discharge and fast and
low self-heating charging [7]. Moreover, they do not suffer
from the common memory effect and can be purchased at
accessible costs.



B. Li/CFx Batteries

The compound of the Li/CFx battery is synthesized by a
direct fluorination of carbon with fluorine gas at temperatures
of 300°C to over 600°C. The positive electrode is a
composition of lithium poly-carbon monoflouride, acetylene
black conductor and poly-tetrafluorethulene binder. The
negative electrode is manufactured by press-filtering the
lithium metal onto the current collector. Organic electrolyte is
used. Gamma-butyrolactone is used for the cylindrical cell and
a mixture of propylene carbonate and 1,2-dimethoxyergane
for the coin cell [8]

The main advantages of Li/CFx batteries are their higher
energy density, longer shelf life and improved low and high
temperature operation [9].

C. Artificial Neural Network

Artificial Neural Networks (ANNs) constitute powerful
computational paradigm, capable of non-linear modeling of
the system of interest [3]-[S]. Since their origin, they were
applied in wide range of engineering applications such as,
pattern recognition [10], signal prediction [11] or intrusion
detection [12].

Originally inspired by the biological neural system, ANNs
are typically composed of multiple simple processing units —
neurons, organized in multiple layers. Each neuron first acts
as a summation unit computing the sum of the incoming m-
dimensional input signals — X(¢)={x,(?),..., x,(¢)}, weighted by
the synaptic weights - w;. Further, the obtained net value is
transformed through the activation function - ¢, to produce

the final output — y(¢):
Y=g D xOw, (1)

i=1

Fig. 1 depicts the artificial neuron model.
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Fig. 1. Artificial neuron model.

The feed-forward ANN considered here is trained in a
supervised manner. Hence, the desired response d(#) has to be
provided for each input pattern X(¢). The presented ANN-
based SOCI uses a hybrid training algorithm, combining the
Levenberg-Marquardt (LM) method with the Error Back-
Propagation (EPB) learning rule [4], [13], [14]. This method
was developed with the intention to overcome some of the
limitations of the standard EPB algorithm, utilizing the
classical numerical optimization techniques.

The goal of the training process is to iteratively minimize
the total classification error given by:

N P
E=22(d,,(t)—yp<r))2 @)

i=1 p=1

Here, N and P stand for the number on input patterns and
the number of output neurons, respectively. (2) can be further
simplified into:

TABLEI
BATTERY DESIGN TEST PROCEDURE AT 20C
Step Control Condition End Condition Limit Condition Report
# Type Type Value Type Value Type Value Volts [V] Time Temp [°C]
1 Discharge Current 042 A Time 3.4583 hr Voltage 4.167V 0.01 10 min 20
2 Rest Time 10 min 0.01 10 min 20
3 Discharge Current 042 A Voltage 28V 0.01 10 min 20
4 Rest Time 20 min 0.01 5 min 20
5 Charge Current 1.68 A Time 2.5hr Voltage 4167V 0.01 2.5hr 20
6 Rest Time 10 min 0.01 10 min 20
7 Discharge Current 1.05 A Voltage 28V 0.01 10 mn 20
8 Rest Time 20 min 0.01 5 min 20
9 Charge Current 1.68 A Time 2.5hr Voltage 4167V 0.01 2.5hr 20
10 Rest Time 10 min 0.01 10 min 20
11 Discharge Current 210 A Voltage 28V 0.01 10 min 20
12 Rest Time 20 min 0.01 5 min 20
13 Charge Current 1.68A Time 2.5hr Voltage 4167V 0.01 2.5hr 20
14 Rest Time 0 0.01 10 min 20
15 Discharge Current 420 A Voltage 28V 0.01 10 min 20
16 End
978-1-4244-4854-8/09/$25580 ©2009 IEEE
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The LM method derives its weight update rule from the
original Newton’s method:

AW =4""g (4)

Here, A and G constitute the Hessian and the gradient,
respectively. Considering the error £ in (3), which is a sum of
squares, the Hessian and the gradient can be computed as:

A=2J"J (5)
g=2J"¢ (6)

Here, ¢ denotes the vector of the error signal and J is the
Jacobian of the partial derivative of the error with respect to
the weight set. In the used hybrid training algorithm, the
Jacobian is computed using a modified EBP algorithm.

In order to alleviate the problems with ill-defined Jacobian
matrices, the LM method introduces an identity matrix / and a
learning parameter x . Hence, the LM weight update rule can

be formalized as:
aw =T s+ a7 %

By setting =0, the LM algorithm reduces to the Gauss-
Newton method. For larger values of u the steepest descent
technique is implemented. The actual value of parameter y is

dynamically controlled. It is initially set to 0.00/. When the
total error (3) increases (decreases), value of z is multiplied

(divided) by 10.

III. DATA ACQUISITION AND ANALYSIS

The battery testing procedure using the Battery Design
Studio is described in this section. Further the recorded
parameters are defined together with the computation of the
SOC.

A. Battery Design Studio

Battery Design Studio was used to simulate the Li/lon
battery discharge characteristics [15]. Battery Design Studio is
computer aided drafting program which performs the SOC
simulations based on battery chemistry parameters. Since
there is not a current working model for Li/CFx at this time,
simulations were run for a 2.25Ah Li/lon battery. These
simulations included numerous testing patterns with different
charge/discharge rates at different ambient temperatures.
Table I shows an example of the testing procedure.

The output parameters from Battery Design Studio are
Time [Hours], Voltage [Volts], Current [Amps], Temperature
[°C], and Cycle Capacity [Ah].
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The Battery Design Studio model for the Li/CFx is under
development. The Li/lon battery was chosen for this initial
stage of the research effort for its similarities with the Li/CFx.
The current preliminary results will be later used towards the
ultimate goal of developing an intelligent SOCI for the Li/CFx
battery.

B. Data Analysis

Multiple parameters are being recorded during the testing
procedure. Namely at each time sample the Voltage [Volts],
current [Amperes], temperature [’C] and the Cycle Capacity
[Ah] are measured. The SOC value can be calculated as the
normalized difference between the given battery capacity and
the measured cycle capacity:

BatteryCapacity — CycleCapacity(t)

SOC(t) = ; (®)
BatteryCapacity
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Fig. 2. Recorded voltage (a), current (b), temperature (c) and SOC (d).



By recording the testing procedure at different
temperatures, various charging and discharging behaviors
were obtained. Thus, it is believed that the temperature has a
significant impact on the battery characteristic and thus on the
SOC prediction and it has to be considered in the developed
model. Fig. 2 shows the recorded voltage, current and
temperature along with the computed SOC at 0°C during the
testing sequence.

IV.

This section discusses the development of an ANN-based
intelligent SOC indicator system.

INTELLIGENT SOC INDICATOR

A. Data Preprocessing

The developed SOCI outputs the prediction of the actual
SOC of the given battery. Since, the ambient temperature is
believed to introduce non-linear elements into the dependence
of the SOC on the voltage and current, the Artificial Neural
Network (ANN) is utilized.

The current value of SOC at time ¢ is being predicted based
on the recent history of the battery life. Thus, the task of the
ANN is to process the input vector containing the recent
measurements and output the SOC prediction at given time.
The non-linear model of the battery behavior is constructed by
a supervised training process. Empirically, a 7 dimensional
input vector was constructed. The recent three measurements
of voltage - vol(f) and current - curr(f) combined with the
current ambient temperature measurement - femp(t) constitute
the input attributes. The output is the current value of SOC —
SOC(f). Hence, the training dataset is composed of input
vectors X(f) and the desired response d(?):

X()= {vol(t), vol(t —1),vol(t - 2),curr(t),
curr(t —1),curr(t —2), temp(t)}

(€)

d(t) = {soc)} (10)

The process of transforming the stream of measured data
into the training vectors X(z) is depicted in Fig. 3.
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Fig. 3. Extraction of the training data from the measured data.
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Fig. 4. ANN-based SOC Indicator.

B. ANN Based SOC Indicator

A feed-forward ANN was used to model the non-linear
behavior of the SOC characteristic for the Li/CFx battery. The
neural network was trained in a supervised manner. The
training vectors defined in (10) and (11) were used.

A specific combination of two neural network training
algorithms — the Levenberg-Marquardt (LM) method and the
Error Back-Propagation (EBP) learning algorithm - was used.
This training algorithm was selected for its fast convergence
and stable performance.

Experiments were done in order to determine the optimal
architecture of the designed ANN. It was concluded that ANN
architecture with 1 hidden layer is sufficient to accurately
model the given problem. The final architecture used 10
neurons with hyperbolic tangent transfer function in the
hidden layer and 1 output neuron with sigmoidal transfer
function. Fig. 4 displays the chosen ANN architecture.

V. EXPERIMENTAL RESULTS

Several experiments were carried out in order to determine
the performance and accuracy of the developed ANN-based
SOC indicator for the Li/CFx batteries. Up to this date, the
testing procedure was executed on training data recorded for 3
different ambient temperatures — 0°C, 40°C and 75°C for the
Li/lon battery. In future work, more data will be measured,
covering the whole theoretical operational temperature range
of Li/CFx batteries with sufficient density. Therefore, the
presented experimental results can be considered preliminary
and they will be subject to further improvements.

A. SOC Prediction Complexity

Firstly, the complexity of the problem of SOC prediction as
well as the suitability of the designed ANN architecture (Fig.
4) was analyzed. While ultimately the ANN-based model
should generalize over previously unseen data, it initially
needs to be powerful enough to capture the recorded behavior.
Hence, the ANN-based SOClwas trained on measured data at
all three recorded ambient temperatures — 0°C, 40°C and 75°C.
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Fig. 5. ANN-based SOC prediction at 0C (a), 45C (b) and 75C (c).

Consequently, the system was tested on particular sequences
and the average relative error was measured. Because the
SOC(?) is a value between 0 and 1, the average relative error
can be computed as:

1 N
Err= WZ]SOC(t) —d(t)| .[100%] (11

i=1

The experimental results are reported in Table II. Further,
the prediction and the desired response are visually compared
in Fig. 5. The results demonstrate a good performance of the
developed model, when the average relative error was fewer

TABLE II
ANN-BASED SOCI PREDICTION ERROR
Training Set Testing Set Avg_Train_Err
0C, 40C and 75C 0C 1.70%
0C, 40C and 75C 40C 1.42%
0C, 40C and 75C 75C 1.26%
TABLE III
ANN-BASED SOCI PREDICTION ERROR
Training Set Testing Set | Avg Train Err | Avg Test Err
0C and 75C 40C 1.37% 8.11%
0C and 40C 75C 1.20% 4.91%
40C and 75C 0C 0.60% 17.61%
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Fig. 6. ANN-based SOC prediction for training data at 0C and 75C (a) and
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Fig. 7. ANN-based SOC prediction for training data at 0C and 40C (a) and
testing data at 75C (b).

than 2%. This suggested that the designed ANN-based SOCI
is capable of modeling the non-linear behavior of the SOC
parameter for the Li/lon batteries. In future work the same
technique will be applied to data from the Li/CFx battery.

B. Prediction in Unseen Conditions

Secondly, the ability to generalize in previously unseen
conditions of the developed SOC indicator was tested. In this
experiment datasets recorded at two distinct temperatures
were used as training data, while the third dataset was used as



a previously unseen testing data. In this manner, the trained
ANN-based model was forced to generalize and predict the
SOC parameter behavior at temperature that it has not
previously encountered. Clearly, a decline of performance was
expected.

This decline is apparent from Table III, where the average
relative training and testing errors are shown for all three
possible combinations of training and testing data. While, the
training error is again less than 2%, the testing error
substantially increased, especially for testing at 0°C (17.61%).
The prediction and the desired response are visually compared
in Fig. 6 and Fig 7. for testing at 40°C and 75°C.

This observation suggested that the ambient temperature
has a significant influence on the characteristic behavior of the
Li/lon batteries. Most importantly, this means that
substantially more data at different temperatures are necessary
to develop a complex and accurate ANN-based SOC indicator
that will perform well over the whole operational temperature
range.

VI. CONCLUSION AND FUTURE WORK

This paper presented the up-to-date results of the in-lab
development of an intelligent SOCI for the Li/CFx battery.
The designed SOCI uses artificial neural network to predict
the current SOC based on the recent history of voltage, current
and the ambient temperature. By accounting for the ambient
temperature, the model is capable of dealing with the non-
linear elements of the system behavior due to varying
environmental conditions.

The reported experimental results were based on recorded
data from the Battery Design Studio during several test
procedures at different ambient temperatures for the Li/lon
battery. It was demonstrated that the developed SOCI is
capable of accurate prediction with less than 2% average
relative error on data at previously observed temperatures.

Future work involves developing a working model of the
Li/CFXx battery for the Battery Design Studio and applying the
designed algorithm to the new data. Finally, the SOCI will be
implemented into a micro-controller component constituting
an evaluation embedded system.
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