
 

  
Abstract— The State Of Charge Indicator (SOCI) for the 

Lithium Poly Carbon Monoflouride (Li/CFx) battery has a wide 
range of applications. However, the dynamic environmental 
conditions, such as the ambient temperature, can alter the 
characteristic response of the battery and introduce non-linear 
behavior. This paper discusses the in-lab development of an 
Artificial Neural Network (ANN) based SOCI for the Li/CFx 
battery. The ANN is trained on the recorded data – voltage, 
current and ambient temperature, to produce a non-linear model 
and to accurately predict the State Of Charge (SOC) of the 
battery. The SOC prediction is based on the recent behavior of 
the battery. Preliminary experimental results using recorded 
datasets from the Battery Design Studio are presented for the 
Lithium Ion battery. The working model for the Li/CFx is 
currently under development. The reported results demonstrated 
good performance of the developed SOCI, with less than 2% 
average relative error on data at previously observed ambient 
temperatures. 
 

Index Terms— Li/CFx Batteries, State of Charge, Artificial 
Neural Networks 

I. INTRODUCTION 
 HE State Of Charge Indicator (SOCI) is an essential part 
of many user-friendly electronic device batteries. For 

instance, electronic watches, cellular telephones, pagers, 
laptops, calculators or portable medical devices are typically 
equipped with a SOCI, reporting the current state of the 
battery [1]. It enables the user to assess the remaining 
operational time. Clearly, this can be essential in operations, 
where inaccurate information about the remaining operational 
time can be critical or fatal. Because the portable devices are 
required to operate in various environmental conditions, the 
SOCI should account for additional factors, such as the 
ambient temperature, which can substantially affect the 
behavior of the given battery. 
 A SOCI for the Lithium Polycarbon Monoflouride (Li/CFx) 
battery is considered in this paper. Even though the SOCI for 
the Li/CFx was developed by private industry, currently there 
is no SOCI solution for the Li/CFx battery that would account 
for the non-linear effects of the environmental conditions. The 
Li/CFx batteries are used for example for medical industry 
pacemakers, and other portable devices [2].  

 This paper discusses the “in-progress” development of an 
 

 

intelligent SOCI for the Li/CFx battery, by means of Artificial 
Neural Networks (ANNs). Currently, the research effort is 
based on recorded data for the widely used Lithium Ion 
(Li/Ion) battery using the Battery Design Studio. The working 
model for the Li/CFx battery is under development. Due to the 
inherent similarities of both batteries, the current preliminary 
results will be later used towards the ultimate goal of 
developing an intelligent SOCI for the Li/CFx battery. 
 Artificial Neural Networks (ANNs) are powerful machine 
learning paradigm capable of data-driven synthesis of 
complex non-linear models of the system of interest [3]-[5]. 
The synthesis proceeds in a supervised manner. Hence, the 
ANN attempts to minimize the classification error defined as 
the difference between the desired and the actual response of 
the model.  
 In the presented SOCI development, the ANN architecture 
is trained on input data obtained from various test procedures 
of the battery. The model predicts the current SOC of the 
battery based on the recent history of the voltage, current and 
the ambient temperature. Hence, the model accounts for non-
linear behavior introduced by the varying environmental 
conditions into the system. 
 The rest of the paper is organized as follows. Section II 
gives a brief background of the Li/Ion and the Li/CFx batteries 
and of the architecture and the training of the ANNs. Section 
III provides analysis of the data acquisition setup and the 
recorded data itself. The design of the intelligent SOCI is 
presented in Section IV. Up-to-date experimental results are 
reported in Section V. The paper is concluded in section VI. 

II. BACKGROUND 
 This section gives a brief overview of the Li/Ion and the 
Li/CFx batteries as well as of the Artificial Neural Networks. 

A. Li/Ion Batteries 
Lithium Ion batteries are one of the most common batteries 

in portable consumer electronics. The battery consists of 
carbon anode, metal oxide cathode. They are surrounded by 
lithium salt electrolyte in an organic solvent [6]. The main 
advantages of Li/Ion batteries are their high energy density, 
low maintenance, no need for periodic discharge and fast and 
low self-heating charging [7]. Moreover, they do not suffer 
from the common memory effect and can be purchased at 
accessible costs. 
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B. Li/CFx Batteries 
The compound of the Li/CFx battery is synthesized by a 

direct fluorination of carbon with fluorine gas at temperatures 
of 3000C to over 6000C. The positive electrode is a 
composition of lithium poly-carbon monoflouride, acetylene 
black conductor and poly-tetrafluorethulene binder. The 
negative electrode is manufactured by press-filtering the 
lithium metal onto the current collector. Organic electrolyte is 
used. Gamma-butyrolactone is used for the cylindrical cell and 
a mixture of propylene carbonate and 1,2-dimethoxyergane 
for the coin cell [8] 

The main advantages of Li/CFx batteries are their higher 
energy density, longer shelf life and improved low and high 
temperature operation [9].  

C. Artificial Neural Network 
 Artificial Neural Networks (ANNs) constitute powerful 
computational paradigm, capable of non-linear modeling of 
the system of interest [3]-[5]. Since their origin, they were 
applied in wide range of engineering applications such as, 
pattern recognition [10], signal prediction [11] or intrusion 
detection [12].  
 Originally inspired by the biological neural system, ANNs 
are typically composed of multiple simple processing units – 
neurons, organized in multiple layers. Each neuron first acts 
as a summation unit computing the sum of the incoming m-
dimensional input signals – X(t)={x1(t),…, xm(t)}, weighted by 
the synaptic weights - wi. Further, the obtained net value is 
transformed through the activation function - ϕ , to produce 
the final output – y(t): 
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  Fig. 1 depicts the artificial neuron model. 

 The feed-forward ANN considered here is trained in a 
supervised manner. Hence, the desired response d(t) has to be 
provided for each input pattern X(t). The presented ANN-
based SOCI uses a hybrid training algorithm, combining the 
Levenberg-Marquardt (LM) method with the Error Back-
Propagation (EPB) learning rule [4], [13], [14]. This method 
was developed with the intention to overcome some of the 
limitations of the standard EPB algorithm, utilizing the 
classical numerical optimization techniques. 
 The goal of the training process is to iteratively minimize 
the total classification error given by: 
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  Here, N and P stand for the number on input patterns and 
the number of output neurons, respectively. (2) can be further 
simplified into: 

 
Fig. 1. Artificial neuron model. 

  

 
TABLE I 

BATTERY DESIGN TEST PROCEDURE AT 20C 
Step Control Condition End Condition Limit Condition Report  

# Type Type Value Type Value Type Value Volts [V] Time Temp [0C] 
1 Discharge Current 0.42 A Time 3.4583 hr Voltage 4.167 V 0.01 10 min 20 
2 Rest   Time 10 min   0.01 10 min 20 
3 Discharge Current 0.42 A Voltage 2.8 V   0.01 10 min 20 
4 Rest   Time 20 min   0.01 5 min 20 
5 Charge Current 1.68 A Time 2.5 hr Voltage 4.167 V 0.01 2.5 hr 20 
6 Rest   Time 10 min   0.01 10 min 20 
7 Discharge Current 1.05 A Voltage 2.8 V   0.01 10 mn 20 
8 Rest   Time 20 min   0.01  5 min 20 
9 Charge Current 1.68 A Time 2.5 hr Voltage 4.167 V 0.01 2.5 hr 20 

10 Rest   Time 10 min   0.01 10 min 20 
11 Discharge Current 2.10 A Voltage 2.8 V   0.01 10 min 20 
12 Rest   Time 20 min   0.01 5 min 20 
13 Charge Current 1.68A Time 2.5 hr Voltage 4.167 V 0.01 2.5 hr 20 
14 Rest   Time 0   0.01 10 min 20 
15 Discharge Current 4.20 A Voltage 2.8 V   0.01 10 min 20 
16 End          
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  The LM method derives its weight update rule from the 
original Newton’s method: 
 
 gAW 1−=Δ  (4) 
 
 Here, A and G constitute the Hessian and the gradient, 
respectively. Considering the error E in (3), which is a sum of 
squares, the Hessian and the gradient can be computed as: 
 
 JJA T2=   (5) 
 
 eJg T r2=  (6) 
 
  Here, e

r
denotes the vector of the error signal and J is the 

Jacobian of the partial derivative of the error with respect to 
the weight set. In the used hybrid training algorithm, the 
Jacobian is computed using a modified EBP algorithm. 
 In order to alleviate the problems with ill-defined Jacobian 
matrices, the LM method introduces an identity matrix I and a 
learning parameter μ . Hence, the LM weight update rule can 
be formalized as: 
 

 [ ] eJIJJW TT r1−
+=Δ μ  (7) 

 
 By setting 0=μ , the LM algorithm reduces to the Gauss-
Newton method. For larger values of μ the steepest descent 
technique is implemented. The actual value of parameter μ  is 
dynamically controlled. It is initially set to 0.001. When the 
total error (3) increases (decreases), value of μ  is multiplied 
(divided) by 10. 

III. DATA ACQUISITION AND ANALYSIS 
 The battery testing procedure using the Battery Design 
Studio is described in this section. Further the recorded 
parameters are defined together with the computation of the 
SOC. 

A. Battery Design Studio 
 Battery Design Studio was used to simulate the Li/Ion 
battery discharge characteristics [15]. Battery Design Studio is 
computer aided drafting program which performs the SOC 
simulations based on battery chemistry parameters. Since 
there is not a current working model for Li/CFx at this time, 
simulations were run for a 2.25Ah Li/Ion battery.  These 
simulations included numerous testing patterns with different 
charge/discharge rates at different ambient temperatures. 
Table I shows an example of the testing procedure. 
 The output parameters from Battery Design Studio are 
Time [Hours], Voltage [Volts], Current [Amps], Temperature 
[0C], and Cycle Capacity [Ah].  

  The Battery Design Studio model for the Li/CFx is under 
development. The Li/Ion battery was chosen for this initial 
stage of the research effort for its similarities with the Li/CFx. 
The current preliminary results will be later used towards the 
ultimate goal of developing an intelligent SOCI for the Li/CFx 
battery. 

B. Data Analysis 
 Multiple parameters are being recorded during the testing 
procedure. Namely at each time sample the Voltage [Volts], 
current [Amperes], temperature [0C] and the Cycle Capacity 
[Ah] are measured. The SOC value can be calculated as the 
normalized difference between the given battery capacity and 
the measured cycle capacity: 
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Fig. 2. Recorded voltage (a), current (b), temperature (c) and SOC (d). 

  



 

  By recording the testing procedure at different 
temperatures, various charging and discharging behaviors 
were obtained. Thus, it is believed that the temperature has a 
significant impact on the battery characteristic and thus on the 
SOC prediction and it has to be considered in the developed 
model. Fig. 2 shows the recorded voltage, current and 
temperature along with the computed SOC at 00C during the 
testing sequence.  

IV. INTELLIGENT SOC INDICATOR 
 This section discusses the development of an ANN-based 
intelligent SOC indicator system. 

A. Data Preprocessing 
 The developed SOCI outputs the prediction of the actual 
SOC of the given battery. Since, the ambient temperature is 
believed to introduce non-linear elements into the dependence 
of the SOC on the voltage and current, the Artificial Neural 
Network (ANN) is utilized.  
 The current value of SOC at time t is being predicted based 
on the recent history of the battery life. Thus, the task of the 
ANN is to process the input vector containing the recent 
measurements and output the SOC prediction at given time. 
The non-linear model of the battery behavior is constructed by 
a supervised training process. Empirically, a 7 dimensional 
input vector was constructed. The recent three measurements 
of voltage - vol(t) and current - curr(t) combined with the 
current ambient temperature measurement - temp(t) constitute 
the input attributes. The output is the current value of SOC – 
SOC(t). Hence, the training dataset is composed of input 
vectors X(t) and the desired response d(t): 
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 The process of transforming the stream of measured data 
into the training vectors X(t) is depicted in Fig. 3. 

B. ANN Based SOC Indicator 
 A feed-forward ANN was used to model the non-linear 
behavior of the SOC characteristic for the Li/CFx battery. The 
neural network was trained in a supervised manner. The 
training vectors defined in (10) and (11) were used.  
 A specific combination of two neural network training 
algorithms – the Levenberg-Marquardt (LM) method and the 
Error Back-Propagation (EBP) learning algorithm - was used. 
This training algorithm was selected for its fast convergence 
and stable performance.  
 Experiments were done in order to determine the optimal 
architecture of the designed ANN. It was concluded that ANN 
architecture with 1 hidden layer is sufficient to accurately 
model the given problem. The final architecture used 10 
neurons with hyperbolic tangent transfer function in the 
hidden layer and 1 output neuron with sigmoidal transfer 
function. Fig. 4 displays the chosen ANN architecture. 

V. EXPERIMENTAL RESULTS 
 Several experiments were carried out in order to determine 
the performance and accuracy of the developed ANN-based 
SOC indicator for the Li/CFx batteries. Up to this date, the 
testing procedure was executed on training data recorded for 3 
different ambient temperatures – 00C, 400C and 750C for the 
Li/Ion battery. In future work, more data will be measured, 
covering the whole theoretical operational temperature range 
of Li/CFx batteries with sufficient density. Therefore, the 
presented experimental results can be considered preliminary 
and they will be subject to further improvements. 

A. SOC Prediction Complexity 
 Firstly, the complexity of the problem of SOC prediction as 
well as the suitability of the designed ANN architecture (Fig. 
4) was analyzed. While ultimately the ANN-based model 
should generalize over previously unseen data, it initially 
needs to be powerful enough to capture the recorded behavior. 
Hence, the ANN-based SOCIwas trained on measured data at 
all three recorded ambient temperatures – 00C, 400C and 750C. 

 

 
 

Fig. 3. Extraction of the training data from the measured data. 

 
Fig. 4. ANN-based SOC Indicator. 

  



 

Consequently, the system was tested on particular sequences 
and the average relative error was measured. Because the 
SOC(t) is a value between 0 and 1, the average relative error 
can be computed as: 
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 The experimental results are reported in Table II. Further, 
the prediction and the desired response are visually compared 
in Fig. 5. The results demonstrate a good performance of the 
developed model, when the average relative error was fewer 

than 2%. This suggested that the designed ANN-based SOCI 
is capable of modeling the non-linear behavior of the SOC 
parameter for the Li/Ion batteries. In future work the same 
technique will be applied to data from the Li/CFx battery. 

B. Prediction in Unseen Conditions 
 Secondly, the ability to generalize in previously unseen 
conditions of the developed SOC indicator was tested. In this 
experiment datasets recorded at two distinct temperatures 
were used as training data, while the third dataset was used as 
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Fig. 5. ANN-based SOC prediction at 0C (a), 45C (b) and 75C (c). 
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Fig. 6. ANN-based SOC prediction for training data at 0C and 75C (a) and 

testing data at 40C (b). 

(a) 

(b) 
 

Fig. 7. ANN-based SOC prediction for training data at 0C and 40C (a) and 
testing data at 75C (b). 

  

TABLE II 
ANN-BASED SOCI PREDICTION ERROR 

Training Set Testing Set Avg_Train_Err 
0C, 40C and 75C 0C 1.70% 
0C, 40C and 75C 40C 1.42% 
0C, 40C and 75C 75C 1.26% 

 

TABLE III 
ANN-BASED SOCI PREDICTION ERROR 

Training Set Testing Set Avg_Train_Err Avg_Test_Err 
0C and 75C 40C 1.37% 8.11% 
0C and 40C 75C 1.20% 4.91% 
40C and 75C 0C 0.60% 17.61% 



 

a previously unseen testing data. In this manner, the trained 
ANN-based model was forced to generalize and predict the 
SOC parameter behavior at temperature that it has not 
previously encountered. Clearly, a decline of performance was 
expected. 
 This decline is apparent from Table III, where the average 
relative training and testing errors are shown for all three 
possible combinations of training and testing data. While, the 
training error is again less than 2%, the testing error 
substantially increased, especially for testing at 00C (17.61%). 
The prediction and the desired response are visually compared 
in Fig. 6 and Fig 7. for testing at 400C and 750C. 
 This observation suggested that the ambient temperature 
has a significant influence on the characteristic behavior of the 
Li/Ion batteries. Most importantly, this means that 
substantially more data at different temperatures are necessary 
to develop a complex and accurate ANN-based SOC indicator 
that will perform well over the whole operational temperature 
range. 

VI. CONCLUSION AND FUTURE WORK 
 This paper presented the up-to-date results of the in-lab 
development of an intelligent SOCI for the Li/CFx battery. 
The designed SOCI uses artificial neural network to predict 
the current SOC based on the recent history of voltage, current 
and the ambient temperature. By accounting for the ambient 
temperature, the model is capable of dealing with the non-
linear elements of the system behavior due to varying 
environmental conditions.  
 The reported experimental results were based on recorded 
data from the Battery Design Studio during several test 
procedures at different ambient temperatures for the Li/Ion 
battery. It was demonstrated that the developed SOCI is 
capable of accurate prediction with less than 2% average 
relative error on data at previously observed temperatures. 
 Future work involves developing a working model of the 
Li/CFx battery for the Battery Design Studio and applying the 
designed algorithm to the new data. Finally, the SOCI will be 
implemented into a micro-controller component constituting 
an evaluation embedded system. 
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