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Abstract

Contradiction is often seen as a defect of intelligent systems and a dangerous limi-
tation on efficiency. In this paper we raise the question of whether, on the contrary,
it could be considered a key tool in increasing intelligence in biological structures.
A possible way of answering this question in a mathematical context is shown, for-
mulating a proposition that suggests a link between intelligence and contradiction.

A concrete approach is presented in the well-defined setting of cellular automata.
Here we define the models of “observer”, “entity”, “environment”, “intelligence”
and “contradiction”. These definitions, which roughly correspond to the common
meaning of these words, allow us to deduce a simple but strong result about these
concepts in an unbiased, mathematical manner.

Evidence for a real-world counterpart to the demonstrated formal link between
intelligence and contradiction is provided by three computational experiments.

The structure of this paper

(1) Introduction
(2) Background: contradiction in science, mathematics, philosophy
(3) Some notes about our epistemological approach
(4) A way of formalizing the problem

• 4.1. A cellular automaton as a “world” in which we can study entities
• 4.2. An observer judges the presence of entities
• 4.3. A definition of the intelligence of an entity
• 4.4. A definition of the contradictory nature of an entity

(5) The key result in our model
(6) Computational experiments
(7) Some controversial points: our answers
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1 Introduction

In this paper we are going to examine the relationship between intelligence
and contradiction, hopefully clarifying the presence and importance of incon-
sistency in thought and in the processes trying to emulate it. To arrive at our
objective, we shall need to put the concepts of “observer”, “entity” and “envi-
ronment” on a mathematical footing, so that formal definitions of intelligence
and contradiction can be proposed.

This model will allow us to treat our controversial subject precisely, illustrating
the possibility of a quantitative mathematical approach to the problem, and
its intrinsic advantages.

2 Background: contradiction in science, mathematics, philosophy

Contradiction is undoubtedly one of the most interesting concepts

in science. It has been studied since ancient times and it would be impos-
sible to take into account all the literature on this subject, whether from a
logical, philosophical, or psychological viewpoint ([45]). Many scholars, from
the Greek philosophers onwards, have studied contradiction often regarding it
as a key presence in human thought processes. On the other hand, mathemat-
ical research views contradiction as incompatible with any workable theory
and has studied inconsistency almost exclusively in terms of the danger it
represents to formal structures. Even after Gödel published his famous “Sec-
ond Theorem”, mathematicians continued to consider contradiction simply as
a nuisance to be eliminated. The situation did not change after the work of
mathematicians such as Church, Kleene, Rosser and Turing on the limitations
of logical systems and computational machines, demonstrating the weakness
of a näıve approach to the concept of “mathematical truth”. On this subject
we also refer to [13,34,61]. Paraconsistent logics (i.e., logics where not every
statement follows from a contradiction) were created in order to constrain the
presence of inconsistencies (cf., [1] for relevant logics, [28] for non-adjunctive
systems, [11] for non-truth-functional logics, and [16] for many-valued sys-
tems).

Paradoxically, mathematics has almost always considered the problem of in-
consistency of thought as either taboo or an irrelevant subject. In this sense
there is an enormous difference between the research of mathematicians and
that of philosophers. An interesting attempt to close the gap between the
studies carried out in these two fields was made at the beginning of the previ-
ous century by the Russian mathematician, philosopher and theologian A. P.
Florenskij ([18]). We mention this work also because it contains a fascinating
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survey of the concept of contradiction. From an epistemological point of view,
an interesting debate about this and other problems concerning mathematics
has recently been raised by the mathematician and philosopher G. C. Rota
(cf., e.g., [49]). Another key reference is the work done by G. Priest, concern-
ing the relationship between contradiction and mathematical logic (cf., e.g.,
[46]).

Psychology and economics are also involved in research on contradiction. The
concepts of inconsistency between attitudes or behaviors (cognitive dissonance)
(cf. [17]) and time-inconsistent agent (cf.,e.g., [7,55]) are generally studied in
these fields. However, it should be noted that the term “inconsistent” is often
used in a precise or technical sense, depending on the particular scientific
context.

We shall not make any attempt to review the extensive bibliography of the psy-
chological, economical, philosophical and epistemological approaches to con-
tradiction, since this would extend this paper far beyond our limited purposes.

Informally, we could define contradiction as the phenomenon in which a given
entity evolves in two different ways (at different times) from the same initial
state. In Section 4.4 we shall justify this definition by comparing it with al-
ternative definitions. A typical example of this phenomenon could be that of
a person who answers differently to the same question at different times. We
could object that, in a deterministic and mechanical paradigm, those different
answers simply reveal either different states of mind or a difference between
the questions, but this objection is misleading. In fact, if we look at phe-
nomena as events perceived by an observer, it does not make sense to consider
differences that are not perceived by the observer. To us, the expression “same
initial state” simply means that the observer does not perceive changes in the
pair (entity, environment) that he/she is observing. Hence, we see contradic-
tion as a concept that intrinsically depends on an observer. In fact, even the
classical approach given by Turing ([58]) to the problem of testing intelligence
suggests the key role of the observer as judge. In any case, a mathematical
attempt to formalize the notions of intelligence and contradiction probably
cannot avoid reference to the concept of observer, since such formalization
cannot avoid involving a testing procedure, which requires the presence of an
observer (possibly neither human nor intelligent). This does not imply that
an entity cannot observe itself; indeed, an entity can perfectly well study the
“intelligence” of another entity, and an agency inside a given entity can study
the “intelligence” of other agencies inside the same entity (or even of itself!)
(we refer to [40,50,63]) for the concept of agency). The role of the observer in
judging intelligence has been studied by many researchers (cf., e.g., [22,29]).
An important reference to the central role of the observer is contained in the
fundamental work of Maturana and Varela ([38]).
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Experience shows us that contradictions are very common in the

behavior of living beings and other complex systems. Thus, when
a complex system is constructed, much effort usually goes into guaranteeing
consistency in the defined structure. Mathematicians seem to be particularly
disturbed by contradiction, although it is a vital part of reality. In the past,
the existence of contradiction was studied as a formal and philosophical prob-
lem, but was ignored by mathematics and computer science. Nowadays the
situation is quite different. Interest in artificial intelligence compels us to look
at the occurrence of contradiction as a practical problem. As Minsky and oth-
ers have pointed out, reasonable models of intelligence suppose the presence
of internal conflicts that must be solved in order to make unambiguous deci-
sions (cf., e.g., [40,48,62]). Moreover, it is clear that an intelligent entity must
be able to manage contradiction (as happens, for instance, in artificial vision
when two different interpretations of an image conflict with each other), and
people working in artificial intelligence are well aware that conflicts cannot be
separated from decisions. In other words, an intelligent entity must be able
to solve internal conflicts and change its vision of the world (see, e.g., [14]).
Furthermore, a significant proportion of software development and research
is spent in detecting, analyzing and handling inconsistency in development
processes and products (cf. [21]) and there is a considerable amount of liter-
ature on this subject. We also refer to [63] for a discussion of the problem of
inconsistency in agent theory.

In any cases the concept of contradiction is much more than just an inevitable
practical problem, and even in software engineering many researchers have
begun to accept inconsistencies not only as problems to solve but also as a
reality to live with (cf., e.g., [3]), and some have developed a body of research
that seeks to “make inconsistency respectable” (cf. [19]). It is also interesting
to point out the presence of contradictions in the behavior of Search Engines
for the World Wide Web (cf. [4]).

Besides this, a contradictory action frequently reveals itself to be a

valuable quality allowing entities to survive changes in their world.

The unusual behavior of a cell caused by genetic mutation can be seen as a
sort of contradiction in the way we have previously described it, as long as the
mutation (i.e., the cause of a change in behavior) is not perceptible. Hence
contradiction can be seen as a virtue rather than as a defect. Furthermore, the
constant presence of inconsistencies in our thoughts leads us to the following
natural question: is contradiction accidental or is it the necessary companion
of intelligence? As we pointed out previously, this question is no longer only
important from a philosophical point of view, since any attempt to construct
artificial entities capable of intelligent behavior demands an answer to this
question.
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The sole aim of this paper is to place this question in a mathematical frame-
work and to propose a formal line of attack. In order to do this we have chosen
to use the concept of cellular automaton (a structure invented by J. von Neu-
mann ([42]) to study the phenomenon of self-replication), since it combines
simplicity of definition with the capability of simulating complex systems.

In our model, we obtain a result suggesting a strong link between contradiction
and intelligence. Roughly speaking, our finding can be expressed in this way:

Any sufficiently intelligent entity must be contradictory.

Obviously, this result depends on some hypotheses that some readers may
not agree with, and so our answer is far from being absolute: it is given only
to point out a possible approach to the study of inconsistency in complex
systems.

However, this result is not counter-intuitive, even in a deterministic world:
in plain words it can be explained in the following way. Intelligence can be
seen as the capability of an entity to survive changes in the environment by
adapting to new conditions. If both the changes in the environment and the
adaptation of the entity are sufficiently clear to an observer who is examining
what is going on, then their presence can be perceived and there is no contra-
diction (since the different behavior is justified by the changes in the entity
and the environment). On the other hand, if the changes in the environment
and the adaptation of the entity become too complex and subtle for the ob-
server to see the differences in all these data, then the behavior of the entity
may begin to be seen as contradictory, since the observer cannot perceive the
differences causing this change in behavior. Therefore, the entity may become
contradictory for the observer when the intelligence of the entity produces be-
havior that is too complex for that particular observer. As an example, when
someone changes his/her mind about something, we usually consider him/her
to be contradictory if we cannot understand the details of the mental process
prompting him/her to make this change in opinion. On the other hand, if we
are able to understand the changes producing this different behavior (“the
reasons of the change in opinion”), then no contradiction is perceived.

We shall devote this paper to formalizing this idea in a mathematical context.

3 Some notes about our epistemological approach

The subject we are going to treat is quite controversial. Terms such
as “intelligence” and “contradiction” allow for so many different interpreta-
tions that our first aim is to clarify the epistemological setting we wish to use.
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The reader will find that all the ideas in this paper will be discussed from a
point of view that stresses the belief that intelligence cannot be studied inde-
pendently from the context in which it develops and is observed. This belief
is based on the consideration that an analysis of phenomena where feedback
between the observed object and the observer is not negligible requires this
retroaction to be carefully examined. Intelligence is a typical case of this feed-
back, since the attempt to study the intelligence of an entity cannot ignore
the possibility (the fact) that the entity tries to influence (influences) the ob-
server. Studying intelligence independently from the context is effectively a
contradiction in terms. While we are aware that our choice biases this whole
paper, we wish to stress the framework we are using and to bring out some
explicit links with some well-known lines of thought.

As previously explained, we believe that intelligence and contra-

diction are phenomena concerning the relation between an entity

and an observer within an environment. As a consequence, we think
it is nonsense to speak about intelligence and contradiction as concepts inde-
pendent from the context, i.e., the experimental setting where intelligence is
studied. The definitions of “entity”, “environment”, “intelligence” and “con-
tradiction” considered in the following sections must always be taken with
reference to a given observer and not as an absolute. This means that we
should really say entity detection, environment detection, intelligence detec-
tion and contradiction detection made by a given observer (in the same way
as, in quantum mechanics, the concept of “particle” is replaced with that of
“observation of a particle”). From this point of view we must not assume that
our opinion about a phenomenon (e.g., the presence of an entity at a given
place) is the one accepted by the considered observer: once it has been chosen,
we cannot superimpose our own personal judgment on the one it expresses.
Nevertheless we shall maintain the use of the words “entity”, “intelligence”
and “contradiction” for the sake of concision. In any cases the real and relative
meanings of these terms will always have to be carefully recalled.

Some aspects of our approach are surely not new. The reader will
find many links to ideas previously expressed by other researchers. The treat-
ment of concepts such as entity and dependence on the observer is certainly
related to the work by Maturana and F. Varela (cf., e.g., [38]). The hypothesis
that intelligence is situated in the world, not in disembodied systems such
as theorem provers or expert systems, can be found in behaviorism and, in
particular, in Brooks’ research (cf., e.g., [8]). The same can be said about the
idea that intelligent behavior arises as a result of an agent’s interaction with
its environment, and that intelligence is “in the eye of the beholder” and is
not an innate, isolated property. The interdisciplinary methodology, together
with the use of mathematical concepts and the assertion that any experience
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is subjective, may remind us of the approach by G. Bateson (cf., e.g., [5,6]).
The importance given to a global point of view and the impossibility of split-
ting up the problem of perception into independent components derives from
Gestaltpsychologie (cf., e.g., [30]).

A common base to these approaches might be found in the use of a phenomeno-
logical and global framework. In other words, our attitude of mind is to think
of intelligence as an emergent property that cannot be studied at a unique
level. In particular, we look at perception and comprehension as intrinsically
related processes (cf. [24]), and assume that intelligence cannot be examined
without reference to the act of perceiving. All of our research is centered on
the hypothesis that any attempt to study intelligence and contradiction can-
not ignore this phenomenological and global point of view, which is strongly
dependent on the choice of an observer. This implies that our attention is
not given to isolated entities, but to relations between observers and entities
acting within an environment.

Like any other epistemological framework, the framework we are going to use
in this paper can be criticized or even rejected. While we shall motivate any
choices we make, the reader should consider our research within the setting
we have described.

Note 1 In Section 4 we shall give formal definitions of the concepts we have
mentioned in this section. We shall proceed by setting out some hypotheses in
our model, in order to emulate some properties of the real world: for the sake
of clarity we shall first informally describe each property we wish to emulate,
and then we shall give its counterpart in the formal mathematical language
of cellular automata. In Section 5 we shall obtain the above mentioned result
concerning the connection between contradiction and intelligence. In Section 6
we shall present the results of three computational experiments supporting the
line of thought expressed in this paper. In Section 7 some controversial points
and our corresponding answers will be presented.

4 A way of formalizing the problem

4.1 A cellular automaton as a “world” in which we can study entities

The first thing we need is a mathematical structure through which we can try
to give an acceptable formalization of such concepts as entity, environment,
intelligence and contradiction. Obviously, we are not interested in all the phe-
nomena involving such complex concepts, but only in constructing a simple
model to preserve some key facts of a real case. Cellular automata are good
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candidates for this, since many authors have shown their usefulness in repre-
senting many complex phenomena. In particular, they have proved capable of
emulating many physical and biological systems. The literature available on
this subject is considerable and we refer to the bibliography in [60] for many
references. Furthermore, it is well known that many cellular automata have
the property of universal computation – that is, they can emulate every Tur-
ing machine. Therefore, any computation that can be achieved by a Turing
machine can be performed by many cellular automata, too. For example, it is
well known that Conway’s famous cellular automaton Life (cf., e.g., [60]) has
this property. So, in principle, all algorithms we can implement on a computer
can also be implemented in Life. Obviously, this implementation would not be
practical and would take a great deal of space and time for execution, but this
is a common problem for Turing machines and here we are interested only in a
theoretical approach. Moreover, in spite of their huge theoretical capabilities,
cellular automata have the advantage of being very easily defined.

Some people may think that such a simple structure cannot emulate or re-
produce intelligence. In particular, some may simply maintain that a Turing
machine cannot have intelligence, for various reasons (cf. [52]). We do not
want to enter into this debate, but we stress that most of the tools available
for developing artificial intelligence (including discrete neural networks) can
be emulated by a Turing machine, so that everything we use at the moment
to study intelligence from a discrete-mathematical point of view can be re-
duced in principle to the functioning of a cellular automaton. Therefore, it is
reasonable to choose a cellular automaton as a model for our proposals.

In this paper we shall often refer to an instance C∗ of the well-known cellular
automaton Life (see Figure 1), showing a moving structure commonly known
as a glider. This simple structure allows for the construction of the logical
gates AND, OR, NOT, and on the basis of this, it has been proven that
Life can emulate every Turing machine (cf., e.g., [60]). We have chosen this
example both because of its simplicity and because of its relevance to the
theory of cellular automata. Obviously, it is hard to view this as a model of a
world populated by structures endowed with intelligence, but probably such
an interesting model would require a cellular automaton with a huge number
of cells, so our toy example is a more economical way of making our definitions
clear.

In any case we shall justify our choice of these definitions by showing their
appropriateness to the real world. In order to do so, we shall use a more
complex (but still simple) example that is not explicitly implemented in a
cellular automaton, since it would be too large. However, this implementation
is possible in principle, because of the properties previously mentioned. We
proceed analogously when we informally speak about an algorithmic procedure
without explicitly and formally giving a complete definition of the Turing
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machine simulating the procedure. Since we shall refer to this latter example
throughout this paper, we begin from its description:

Example 1 (“FIGHT”). At the time of this writing, contests between virtual
robots are increasingly common all over the World Wide Web. In general, this
type of game is given by an implementation on a server of a fight between pro-
grams emulating virtual robots. The task of each virtual robot is to destroy its
opponents using a set of permitted actions inside a given virtual arena. Each
program usually runs on the same server, and a specific routine (the referee)
examines the state of the fight in real time. To summarize, we have a program
containing various subroutines representing the various virtual robots, and an-
other subroutine implementing the referee. In this kind of game it is easy to
identify the concepts of “world”, “environment” and “entity”: the world is
the program implementing the arena with the fighting robots and the judging
referee, the part of the arena external to the considered entity may be inter-
preted as the environment, while each entity is represented by a virtual robot.
We point out that no human observer usually watches the game, and that all
“perceptions” and “judgments” belongs to the referee. For each time step, the
referee identifies the virtual robots their positions in the space, and their states
(dead or alive), so that it can decide the result of the competition. Observe that,
in this particular game, the referee is not affected by the destructive actions
of the virtual robots, but we can easily imagine more complex games, where
the robots can influence the decisions of the referee, as happens in the real
world. Obviously, we can think of a concrete implementation of the previous
game in a large cellular automaton, even if we do not explicitly describe it.
In the following we shall often refer to this particular cellular automaton in
order to clarify and justify some concepts, and we shall call it FIGHT. Before
proceeding, we point out that in FIGHT it makes intuitive sense to speak about
the intelligence of a virtual robot (or, if we prefer, of its human programmer)
by considering its ability to survive in the contest. We shall return to this idea
in the next sections.

For specific and concrete reference to the theme of competition between robots
we can also refer to the project RoboCup (see, e.g., [32]), involving teams of
robot soccer players.

Now that we have justified our choice of a cellular automaton as a model, let
us return to our formal approach. The environment in which we shall formalize
the concepts we are interested in is a two-dimensional cellular automaton C.
By that we mean a regular lattice of sites (called cells), in which each cell
contains a value chosen from the set {0, 1}. This lattice is subject to evolution
from an arbitrary initial state I. At each time-step, this evolution changes the
value contained in each cell c by following a (usually local) rule that does not
depend on the absolute position of c: this rule determines the new value of
the cell c and depends only on the values contained in the cells belonging to
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a specified local neighborhood of c. 1

Remark 2 Some authors confine the definition of cellular automaton to the
case of the local evolution rule (e.g., involving only the 3 × 3 neighborhood of
each cell) and prefer to call lattice dynamical systems the structures we are
using. By contrast, we are following the approach given in [60], which allows
the use of larger (bounded) neighborhoods. However, from a theoretical point of
view, any evolution rule depending on an n×n neighborhood can be emulated by
a 3×3-neighborhood rule applied to another cellular automaton with m possible
values for each cell (instead of the two values 0, 1), and so the condition of
locality is important only from a practical point of view. However, we wish to
stress once again that the aim of this paper is not to consider efficient cellular
automata, but only to point out some general phenomena arising in all those
cellular automata that have certain properties.

Now, we give a simple cellular automaton C∗ in order to make our definitions
clear. We do not imply that C∗ is interesting as a model, but only that it is
suitable as an example. We shall refer back to C∗ in the remainder of this
paper as well.

Example 3 (The glider in “Life”). In Figure 1 we show some 12 × 12 ma-
trices representing twenty consecutive states during the evolution of a cellular
automaton C∗ following Conway’s rule. 2 By calling x the number of the eight
neighbors of a cell that are non-zero, we can state the evolution rule as follows:
if x = 2 then the cell takes the same value as in the previous time step (i.e.,
we maintain its color); if x = 3, then the cell takes on value 1 (i.e., we set it
black); in all other cases the cell takes on value 0 (i.e., we set it white).

1 More formally, C can be defined in the following way. Denote by Σ the set of
functions from Z × Z to Z2, where Z is the set of the integers and Z2 is the cyclic
group of order 2. Moreover, let I be an element in Σ. Each pair in Z×Z is called a
cell. We define the two-dimensional cellular automaton C as a pair (I, f) where f is
a function from Σ to Σ. We shall call states of C the functions in Σ and initial state
of C the state I. In plain words, each state of C is a choice of the contents in the
cells of the lattice representing C. The function f will be called the evolution rule
of the cellular automaton. A state β of C will be said to be consecutive to a state α

of C if β = f(α). After t steps in the evolution of the cellular automaton we shall
call present state of C (or state at time t of C) the state st = f t(I), obtained by
applying f t times to I (we recall that each state f t(I) is a function from Z×Z to
Z2).
2 Formally speaking, the matrices represent the finite sublattice of Z×Z given by
the set {0, 1, . . . , n− 1} × {0, 1, . . . , n − 1} (the cell (0, 0) is the top left one and all
the cells outside this sublattice contain the value 0). Each matrix gives a function in
Σ. The first matrix represents the initial state I. Black cells and white cells denote
cells containing 1 and 0 respectively.
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Observe that updating happens for all cells at the same time. In this way, for
every state s in the set Σ of all the possible states of C we define the consecutive
state f(s) by following the evolution rule f .

Fig. 1. The first twenty consecutive states s0, s1, . . . , s19 in the evolution of the
cellular automaton C∗, showing a “glider” crashing against a “block”.

We recall that cellular automata can be regarded as discrete dynamical sys-
tems and that they are theoretically capable of simulating every Turing ma-
chine. Moreover they seem to be a suitable structure in which to study self-
reproducing entities (cf., e.g., [42,33,2]). Considerable literature about cellular
automata exists and we shall point to it for more details about the theory (cf.,
e.g., [9,10,23,56,44]).

Our model C is the evolving “universe” in which we shall study the phenom-
ena of intelligence and contradiction. However, we are not assuming that C
can emulate all the physical properties and laws of the real world. We sim-
ply mean that cellular automata are models capable of emulating a set of
properties of complex entities that is sufficient to explain the presence of the
contradictions we see in the real world. Obviously, we cannot be sure that
this correspondence is not accidental, but as is well known, no model can be
mathematically proved adequate to describe a real phenomenon: this can only
be verified experimentally. We shall come back to the concept of contradiction
in Sections 4.4, 5 and 6.
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4.2 An observer judges the presence of entities

Before speaking about contradiction, we must define the concept of “existence”
for an entity. Given this concept, we shall be able to discuss whether an entity
is contradictory or not. We point out that in the real world the presence of an
entity is strictly connected to the presence of an observer perceiving this entity,
and hence existence is subjective, at least from an operative point of view (cf.,
e.g., [39]). In fact, it is common for different people to see different entities in
the same environment. This is usual in visual perception (cf., e.g., [36,62]) and,
for a physicist, this position would be quite natural. An important reference
to this issue can be found in the work of Maturana and Varela ([38]).

It may not seem so obvious from a practical point of view, and one might
imagine that complex entities exist independently of any observer. For exam-
ple, someone might argue that in real life the existence of a living being at
a certain position and time is absolute, since we are looking at macroscopic
phenomena where the indeterminacy of quantum mechanics plays no role. An
answer to this objection is easily formulated: if the concept of entity were
not dependent on the observer, then no animal could hunt using camouflage,
physicians’ diagnoses would always be identical and no man could “mistake
his wife for a hat” ([51]). Scientists would always see the same causes for each
phenomenon, and all people would agree in judging who the heroes and vil-
lains in a movie or a political event are. In reality, the problem is not whether
the concept of entity is subjective or not, but whether we can avoid taking
this subjectivity into account or not. Our opinion is that the study of artifi-
cial intelligence cannot neglect this subjectivity. By referring to our cellular
automaton FIGHT, we emphasize that only the referee can judge the state of
the virtual robots. We must not forget that there is usually no human observer
to confirm or contest the referee’s decisions during the game. The possibility
of verifying such decisions is only hypothetical since no human operator could
examine all of them directly.

Therefore, we need a formal concept of “observer” in order to proceed. In an
experiment, an observer is an individual who examines both the state of a
studied entity (a reagent, a cell, an animal species...) and the condition of the
environment where the experiment happens (a laboratory, a tissue culture,
an ecosystem...). The researcher acting as observer perceives the events and
reports them according to his/her own opinion and subjective rules of judg-
ment. Informally, we might say that an observer is a “black box” 2 capable of
identifying the states of a particular entity and of the environment judged rele-
vant to its future behavior. Thus, from a mathematical viewpoint, an observer
might be defined as an ordered pair of functions (psent, psENV ), describing the
ways the observer judges the perceived states (ps) of the studied entity and
of the environment during time, respectively.
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In FIGHT, the observer (i.e. the referee) searching for a virtual robot R can
be seen as a pair of functions 2 = (psent, psENV ), too. The functions psent and
psENV take each state st of the game to the states that the software judging
the competition associates with the robot and environment in question. For
example, the perceived states psent(st) and psENV (st) could describe the health
of the robot and how crowded the environment is. The absence (death) of the
virtual robot at time t would be revealed by the equality psent(st) = 0.

Formally, we give the following

Definition 4 (Observer.) Let us choose two finite nonempty sets Pent and
PENV , which will be called sets of perceptible states for the entity and its
environment, respectively. We shall assume that Pent contains a privileged
element 0. We shall call an observer any function 2 = (psent, psENV ) : Σ →
Pent ×PENV .

Note 2 Pent and PENV can be interpreted as personal descriptions of the
states that the observer perceives for the entity and its environment. The value
0 ∈ Pent can be seen as a judgment of absence for the entity in question with
respect to the examined state of the cellular automaton. It is important to point
out that in the real world these perceptions do not retain all the information
about each event. On the contrary, they usually replace the real world with a
more compact representation. For example, a physical or biological experiment
is not described by giving all possible information about the laboratory where
the experiment is done, but a set of quantitative and qualitative data that are
judged influential or important for the results of the experiments. So Pent and
PENV may consist of formulas, verbal statements, or any other kind of data
considered useful for the description of what happens in the experiment.

The hypothesis that Pent and PENV are finite sets is important. It
means that our observers are assumed to have limited capabilities, and it will
play a key role in our proof of the proposition stated in Section 5. We empha-
size that this hypothesis corresponds to the fact that in reality the observers
can have neither infinite memory nor unbounded computational capabilities.
We consider this as self-evident, but for skeptics, many references are avail-
able in the literature. As an example, Wooldridge and Jennings ([63]) take
for granted that all real agents are resource-bounded. They also confront the
famous Logical Omniscience Problem, which arises from the assumption of
unbounded inference capabilities. Therefore, our hypothesis seems to be quite
natural.

Once again, we point out that nothing is taken for granted about the working
of the observer 2. It is like a “black box” that decides – in an unknown way –
whether at a specific time a certain type of entity is present or not, and what
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the states of this entity are, as well as the states of the environment influencing
its future behavior according to the judgment of the observer. So any kind of
decisional mechanism is acceptable inside the black box. The symbol “2” has
been chosen to suggest this fact.

As an example of an observer in C∗, we may consider a process that displays
the location of the glider and the state taken on by the environment where it
is moving. 3

An observer in FIGHT would be a more interesting example, but its precise
definition in some programming language could take many pages of this paper.
However, it is not difficult to imagine how it would work. For every set X of
cells, the observer could compare the contents of X with some set of stored
patterns. In this way it would determine whether or not X contains a given
virtual robot R and whether it is “alive” or not. Similarly, it could determine
the state of the neighborhood judged relevant to the future evolution of the
robot.

It is obvious but important to stress that an observer does not usually perceive
the environment as coinciding with the whole set Z × Z, representing our
“universe”. It is quite clear that a psychologist observing a patient cannot
consider all possible data in the universe in order to examine the reaction of
the individual. The psychologist must select a small set of data belonging to a
small environment (the patient’s answers, drawings, expressions...). Thinking
of an observer knowing and processing all the data in the universe is similar
to imagining a psychologist capable of using all the data in the patient’s life.
This is not only practically impossible: it could also be completely misleading
from a theoretical point of view, since omniscient observers are totally different
from real-world observers.

3 From a formal viewpoint, we are considering the function 2
∗ = (ps∗ent, ps∗ENV ),

where ps∗ent(st) is an element in the set P∗

ent containing all possible nonempty subsets
of Z × Z and the symbol 0, and P∗

ENV is the set of all possible states for the
“matrix” displayed in Figure 1 (or, alternatively, a set of qualitative descriptions
of these states). In other words, in this case P∗

ent represents the set of all possible
locations for the glider, while P∗

ENV can be seen as the set of all states that the
environment can take on. Obviously, this is only one among many possible choices
for the sets P∗

ent and P∗

ENV . An analogous observer who recognizes the block that
is going to be destroyed by the glider could be considered. In our example, ps∗ent(st)
is the set representing the “body of the glider” for 0 ≤ t ≤ 14 and ps∗ent(st) = 0 for
t ≥ 15. It is worth noting that our formalization would allow to represent a fuzzy
disappearing of the considered entity. It would be sufficient to take the time t to a
fuzzy set instead of a set. This can be easily obtained by changing the sets P∗

ent and
P∗

ENV .
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Now we turn to the task of formally defining the concept of “entity”.

In real life, an entity usually appears to be stable in our perception of it.
Obviously, this trivial remark hides one of the greatest philosophical debates
in history, and a discussion of the subject would require a much longer paper.
Here we confine ourselves to referring to the interesting essay “The primacy
of identity” in [49]. In fact, we are only interested in giving an acceptable
definition for practical purposes and we merely point out that stability and
coherence in perception constitute the key factor in determining “existence”
from a subjective point of view (cf., e.g., [36]). Therefore, it seems natural to
define the existence of an entity as persistence in perception with respect to a
given observer. In plain words, we shall call an entity each maximal sequence of
consecutive nontrivial (i.e., different from 0) images of the function psent. From
the semantic viewpoint, such a sequence shows that the observer perceives the
existence of the considered structure (e.g., a glider) during the corresponding
sequence of time steps. Maximality expresses the request that our sequence is
as long as possible. We will formalize this concept in the next definition.

Definition 5 (Entity and lifetime.) Each maximal sequence of “consecutive”
perceived states in Pent − {0} will be called an entity with respect to the ob-
server 2. In other words, an entity with respect to 2 is defined as a sequence
(psent(st), psent(st+1), . . . , psent(st+q)) with psent(st),psent(st+1), . . . , psent(st+q) 6=
0, psent(st+q+1) = 0 and psent(st−1) = 0 (if t > 0). We shall call the set
{t, t+1, . . . , t+ q} the lifetime of the entity. The value psent(st+h) (0 ≤ h ≤ q)
will be called the state of the entity perceived by 2 at time t + h.

With reference to Figures 1 and 2, the sequence (ps∗ent(s0), ps
∗

ent(s1), . . . , ps
∗

ent(s14))
gives an example of an entity (the “glider”) “perceived” by the observer 2

∗

in C∗.

Similarly, it makes sense to consider the environment of an entity:

Definition 6 (Environment.) If E = (psent(st), psent(st+1), . . . , psent(st+q)) is
an entity, then the sequence (psENV (st), psENV (st+1), . . . , psENV (st+q)) will be
called the environment of E . The value psENV (st+h) (0 ≤ h ≤ q) will be called
the state of the environment perceived by 2 at time t + h.

Note that we do not set any particular constraint on the observer’s judgment
about the concept of environment influencing the entity’s behavior.

Obviously, human observers are much more complex than the ones we have
defined. Proximity in position during time, for instance, is important for recog-
nizing the presence of an entity in our world, in most cases. However, this and
other properties are not necessary in order to derive the proposition about
intelligence and contradiction that we wish to obtain in Section 5. For this
reason we did not require these hypotheses in our definitions.
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In our model, at each time τ , each observer 2 tries to find the entity it is
capable of recognizing. The result of that search (that is, the pair 2(sτ ))
represents both the state it perceives for the entity and the state of the envi-
ronment judged relevant to its future behavior. If psent(sτ ) = 0, the entity is
not found in the “universe” at time τ by the given observer. Each “maximal
chain of consecutive nonzero perceived states” is an entity. Obviously, other
kinds of choices would be possible, but we are not interested in enumerating all
of them: we only wish to point out the consequences of a reasonable definition.

Remark 7 In this paper we are not interested in discussing the complexity of
the search performed by the observer. On this subject we refer to [57] as an
example of an approach to the problem.

Fig. 2. The “body” ps∗ent(st) of the glider (displayed in grey at the first 15 times in
the evolution of C∗). The block does not appear in this figure. For t ≥ 15 we have
ps∗ent(st) = 0, meaning that the glider is not found on the scene by the observer,
since it has been destroyed in the collision against the block visible in Figure 1.

4.3 A definition of the intelligence of an entity

This is obviously a key point. It is clear that at this time it is not possible to
say exactly what intelligence is but, on the other hand, we certainly do not
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Fig. 3. Different observers can see different entities in the same environment. This
photograph depicts three views of the same bronze sculpture by Guido Moretti,
showing a Necker cube transforming into an impossible triangle.

need or wish to enter into the debate concerning this problem. However, it is
equally clear that we are not looking for the answer to this huge problem but
for a reasonable formal idealization allowing us to proceed in a mathematical
context.

Many definitions of intelligence have been proposed in the past, among oth-
ers, biological, computational, epistemological, anthropological and sociolog-
ical (cf., e.g., [31]). Themes such as multiple intelligences (cf., e.g., [20,27]),
cultural relativism (cf. [41]) or the behaviorist interpretation of intelligence
(cf. [8]) have been studied by many researchers. We simply refer to the ex-
cellent survey and the rich bibliography contained in [54]. However, in order
to follow a mathematical approach to our problem, we need a formal defi-
nition allowing for a quantitative comparison of intelligence across different
entities. This eliminates all high-level or self-referential definitions: references
to concepts as complex as intelligence are not useful to our goal. Therefore,
expressions like “the attitude to solving problems” (cf. [40]) cannot be a good
definition, since they require clarification of very difficult concepts (in this case
the concept of “problem”). The classical Turing test (cf. [58]) is perhaps the
most famous attempt to define intelligence through an experimental frame-
work. Unfortunately, this test and its various reformulations are not suitable
for a mathematical approach, since they occur more as tools in a philosoph-
ical debate than as practical procedures. In particular, they give neither a
formal definition nor a quantification of intelligence and do not make clear
any criterion of judgment for the observer, so that it is difficult to imagine
of translating this approach into a mathematical structure. In any case the
Turing test suggests that measuring intelligence strongly depends on an ex-
periment made by an observer acting as a judge. After all, this is the way
intelligence is commonly measured, and it is not surprising that I.Q. tests re-
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flect the thoughts and opinions of the psychologists who prepare them. So it
seems natural to look at intelligence as something we can measure by a test
made by an observer. Since a test is a practical process, we cannot think of the
observer as an omniscient individual, capable of perceiving and examining all
data about the entity it is studying. More realistically, all it can do is subject
the entity to some tests and formulate its own opinion about the results. As
an example, our opinion about the intelligence of someone is not based on a
complete knowledge of his/her life but on some particular experiences con-
cerning his/her behavior. On the other hand, a classical way of approaching
the goal of formally defining intelligence is that of looking at it as the capabil-
ity that an entity has to adapt to changes in the environment (cf., e.g., [54]).
From this point of view, intelligence can be measured by quantifying success
in adaptation. Such success can simply be expressed by the length of life of
the entity considered: this is the approach we have chosen in this paper.

It may be opportune to observe that the structure of a classical intelligence
test can easily fit into this framework. The role of observer is taken by the
psychologist administrating the test, which usually consists of some trials and
problems that must be overcome by the person examined. Overcoming a dif-
ficulty (such as solving a problem) can be seen as a form of survival inside a
particular game. Obviously, when we use the word “survival” we do not nec-
essarily mean survival in a biological sense. In our setting, surviving simply
means remaining a player in the game.

When we say that intelligence may be expressed by the length of life of the
considered entity, we do not at all mean that it is explicitly represented in
this way (see Remark 8 below), but that it can be represented in this way
if suitable language is used. For example, the efforts to solve puzzles in a
mathematical competition are not usually described as an attempt to survive.
Nevertheless, the number of puzzles that each participant has solved during
the contest could be formally seen as a length of life.

Our final comment is that we are not necessarily thinking of the observer as
the creator of the difficulties that the examined person must face. This may
happen in the case of the intelligence test, but we are mostly interested in cases
when the observer does not completely understand the problems presented and
the corresponding solutions. These are cases in which the most interesting
phenomena of contradiction may happen, as we shall see in the following.

For the reasons we have explained, the intelligence of an entity in a cellular
automaton C can be seen as the number of consecutive states of C during
which the studied entity exists with respect to a given observer.

Remark 8 (“The man and the sequoia”). An easy but misleading criticism
of our approach could be the assertion that there is very little relation between
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length of life and intelligence. For example, we could observe that if we consider
a human being (a man, say) and a sequoia in a forest, it is likely that the man
will “survive” for a far shorter time than the sequoia, but this is not a good
reason for thinking that the former is less intelligent than the latter.

To have this opinion means to forget that our definition of intelligence strongly
depends on the choice of a suitable model where intelligence can be measured
as ability to survive. 4

As usual, choosing a model is a matter that depends on the aspects of reality
that we are interested in. For example, there would be no point in making a
biological simulation of a chess-player in order to measure her skill in chess,
since no one would judge her intelligence by examining her metabolism and
immunological efficiency. We should rather test her in the “virtual world” of
chess games, where threats consist not of disease but of the opponents’ moves.

Similarly, a comparison of intelligence between the man and the sequoia (with
respect to the “human” concept of intelligence) should be done in a model in
which dangers and difficulties consist of what a human being considers to be
problems to be solved.

For example, we might choose a model representing a physical world in which
the man and the sequoia are in direct competition for survival. In such a model,
we can imagine that the former could easily destroy the latter, revealing the
latter’s relative lack of intelligence.

This kind of test is similar to what we do when we think about the intellectual
deficiency of a living being. We do not look for a real proof of incapacity to
react to “dangers”. We simply simulate in our brain what would happen if
such dangers occurred to the considered living being, by referring to a model
represented in our imagination. In a “virtual world” of this kind, the lack of
intelligence of the sequoia could easily be expressed in terms of a short duration
of life.

Remark 9 (“The oscillating pendulum”). It is important to underline once
again that our definition of intelligence strongly depends on the choice of the
observer. Obviously, if the observer is quite different from a human observer
and has very limited capabilities, the correspondent definition of intelligence
will be very unusual. We make clear our position by giving another example.
Let us consider an oscillating pendulum and an observer looking at it. On the
basis of our approach, one might criticize our definition by claiming that the
observer perceives an indefinitely long “life” of the pendulum, since it never

4 When we say “choice of a model” we mean both choosing the observer and the
cellular automaton C representing the phenomenon we are studying (we must re-
member that the observer operates on the states of C).
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stops. It is worthy to remark that in this way he would assume to consider
an observer that is completely different from a human one. Indeed, a human
observer interested in examining the pendulum would have a lot of information
available about it, in her memory, and some brain activity concerning her per-
ceptions. The “right” model should not describe the physical world where the
pendulum is oscillating, but the computational structure (her brain) where the
pendulum is tested and its behavior checked. In her brain, the observer could
easily imagine to stop or even destroy the pendulum. In this model, that is the
most natural for a human observer, the lack of intelligence of the pendulum
could be easily revealed. Considering a different model (e.g. just representing
the physical evolution of the pendulum) would mean to choose some kind of
mechanical observer that simply registers a list of actions much like a cam-
era can do, without any usual mental activity. Judging the intelligence of the
pendulum by examining the regularity of its oscillations would be much like
judging the intelligence of a chess player by examining the regularity of his
heartbeats. It should not be surprising if the choice of an unusual observer
produces a concept of intelligence that is not the most natural one.

Formally we give the following definition.

Definition 10 (Intelligence of an entity.) Let us assume that an entity E =
(psent(st), psent(st+1), . . . , psent(st+q)) with respect to an observer 2 is given.
Then we say that q, i.e. |lifetime| − 1, is its intelligence.

Hence, e.g., the intelligence of the entity represented in Figure 2 is 14. The
simplicity of this example should not deceive the reader. More complex cases
could be easily shown, which are not so trivial and might be interesting for
applications. As an example among many, we could consider the problem of
quantifying the efficiency of a given commercial software agent A. A natural
way to do this could be simulating a standard test market M and testing A

inside M . In this case the intelligence of A (i.e., the lifetime during which the
agent can survive in the standard market) might be taken as a useful reference
for comparison between similar agents.

We underline that the concept of intelligence, like the concept of entity, is
strictly dependent on the chosen observer. While we have already justified
this position, we refer the interested reader to [8] for further discussion of the
idea that intelligence is “in the eye of the observer”.

Note 3 It is important to point out that measuring intelligence is becoming a
key problem in computer science. As an example, the use of collaborative agent
systems requires the ability to measure the extent to which a set of collaborative
agents is able to accomplish the goals it was built for (cf., e.g., [43]). In other
words, we want to know if it is reliable or not, and to compare its “intelligence”
to that of other collaborative agent systems pursuing the same aim (e.g., think
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Fig. 4. An observer judges the intelligence of an entity by measuring her survival
capability in the considered environment.

of controlling a nuclear installation or a chemical plant). This necessity makes
the measurement of intelligence a more and more important task in software
engineering, and gives another practical motivation to our research.

4.4 A definition of the contradictory nature of an entity

Following the dictionary (“contradiction.” Merriam-Webster OnLine: Colle-
giate Dictionary. 2000. http://www.merriam-webster.com/dictionary.htm (6
Aug. 2001).), the word contradiction has the following meanings in the ordi-
nary language:

(1) act or an instance of contradicting;
(2) a: a proposition, statement, or phrase that asserts or implies both the

truth and falsity of something;
b: a statement or phrase whose parts contradict each other (“a round

square is a contradiction in terms”);
(3) a: logical incongruity;

b: a situation in which inherent factors, actions, or propositions are
inconsistent or contrary to one another.

What is common to these definitions is a conflict of behavior, as happens
when a statement is both asserted and negated, either by different subjects
or by a single individual. For example, we call a human being contradictory
if he/she supports both a statement and its negation. If we accept the point
of view that the concepts of intelligence and contradiction depend on the
judgment of an observer, we can reformulate the previous definitions by saying
that contradiction is a phenomenon in which an observer perceives that an
individual or a group of individuals produces behaviors which are, in some
sense, incompatible. These types of behavior include opinions and assertions
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but are not necessarily limited to these. As we know (see previous definition
3b) actions can also be contradictory, and the word “contradictory” is often
used to denote a change in behavioral rules (“He is contradictory: in the past
he defended this cause, while now he attacks it”).

Therefore, a common property can be found in our definitions: an entity can
be said to be contradictory if faced with the same circumstances, it does
not exhibit the same behavior. In other words, the ordinary use of the term
contradictory refers to a change in behavior of the same entity.

So it is reasonable to call an entity contradictory, if it happens that, at dif-
ferent times, it reacts differently to the same state of its own body and of
the environment where it lives – that is, the same action is considered to pro-
duce different results (cf. [45]). At the end of this section we shall propose a
mathematical formalization of this definition.

Fig. 5. A simple example of contradiction: the observer O perceives two contrasting
behaviors of E without seeing any relevant difference in E and his environment,
causing the behavioral change.

Some possible objections to our approach to contradiction should

be considered. The first objection concerns the classical use of the term
“contradiction” in mathematical logic. We know that (roughly speaking) a
theory is contradictory if in such a theory it is possible to prove both a state-
ment α and its negation ¬α. At first glance our approach to contradiction
seems to ignore this classical use. It could seem that there is no relation be-
tween the meaning we are speaking about and the one studied by logicians
and mathematicians. This is not the case in our context, since the concept
of contradictory theory we use in logic can be seen as a particular case with
respect to our definition. This point can be clarified by an example. Let us
assume that a theory S endowed with a finite set A of axioms is contradictory,
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in the sense we have previously described, i.e. in S it is possible to prove both
a statement α and its negation ¬α. Now we can imagine a Turing machine T

accepting the set A and the formula α as input data and producing all possi-
ble valid proofs of length l, with l progressively increasing. In other words, T

will produce all possible valid proofs of length 1, then all possible valid proofs
of length 2, and so on. If T finds a proof of α, it writes down TRUE in a
precise location of its infinite tape. Similarly, if T finds a proof of ¬α, it writes
down FALSE at the same location. The statement written at that location
represents the answer given by T to the question “Is α true or false in S?”.
Obviously, in both the cases examined the previous contents of the cell are
erased, while the absence of any symbol at the considered location must be
interpreted as the fact that T cannot prove either α or ¬α (and hence answer
the question) until the present computational step.

Since S is assumed to be contradictory, there will be two times (or steps) in
the functioning of T at which the answers will be different, corresponding to
the times at which T will discover a proof of α and ¬α, respectively. Hence the
reaction of the Turing machine will appear to be contradictory (in the sense
we specified) to an observer, under the hypothesis we implicitly made, that
time is not considered input data for T . Here we are only assuming that the
observer asked to judge contradiction recognizes T as a valid prover for S and
maintains this opinion about the identity of T during all its functioning. This
example shows that our approach to the concept of contradiction includes the
classical notion of logical contradiction as a particular case.

We are aware that our viewpoint can be criticized by asserting that contra-
diction is an absolute concept in mathematical logic, independently of the
opinion of the particular observer. Even if we respect this position, we cannot
avoid doubting that it is completely acceptable from a scientific point of view.
Excluding on principle any reference to an observer when affirming (in a for-
mal sense) that “Theory X is contradictory” means to maintain an idealistic
approach that might be harmful for further progress in artificial intelligence.
Although many mathematicians support an idealistic vision of mathematics
and mathematical logic, none of them would probably accept a statement
without checking the corresponding proof, so implicitly requiring that an ob-
server expresses his/her opinion about the statement considered. In fact, we
can probably assert that mathematicians are not only interested in the exis-
tence of proofs, but, above all, in the discovery of proofs. Moreover, the history
of mathematics is full of wrong statements that have been corrected when some
expert (observer) has changed his/her point of view and found some mistake.
Expunging the role of the observer and his/her judgment means separating
mathematics (and hence mathematical logic) from the research by which it is
produced, and putting knowledge into a limbo where truth is both untouch-
able (since we want it to be stable in time) and potentially transient (since
progress and research can change it). In some sense, we could say that the
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price of certainty, from an idealistic point of view, is to give up the study of
reality.

While we do not insist on this subject, we refer to the discussion in [12] about
the difficulties inherent in an idealistic approach to mathematics.

Another possible objection concerns the meaning of the expression “equivalent
conditions”. If the conditions are really equivalent one might think that two
different behaviors are not possible in a deterministic setting, and hence that
no contradiction could appear. Once again, we stress that in our model the
only judge of equivalence can be the chosen observer. As happens in reality,
there is no point in asserting that two conditions are different if we cannot
perceive any difference between them. The contrary position may be interest-
ing in philosophy but (perhaps) much less in computer science. The assertion
that there is no room for contradiction in the presence of complete and uni-
versal knowledge is perhaps valid, but not very useful in practice, and it may
imply the non-existence of equivalent conditions, thus destroying the concept
of science as we usually interpret it. As an example of what we are saying,
let us imagine that a proof of a contradiction (in the mathematical sense) is
discovered for a given, relevant and useful theory. Assume that the proof is
checked and verified by all the qualified experts in the world, and imagine that
we can make the same verification of correctness. How plausible would it be
to argue that the given theory is nonetheless free from contradictions and that
the so-called “proof” of a contradiction in it must contain one or more invisi-
ble flaws? It is highly implausible, and we would probably rely on the opinion
of experts and on our own verification, without considering the existence of
invisible data and errors that could potentially modify our position.

Analogously, when we speak about “equivalent conditions” for an observer,
we should not think of an incompetent judgment due to lack of information
or the presence of errors, since, in doing so, we would simply superimpose our
own personal judgment on the opinion of the chosen observer. This act would
be equivalent to a change of observer.

We can thus introduce and propose the following definition.

Definition 11 (Contradictory entity.) Let us assume that an entity E =
(psent(st), psent(st+1), . . . , psent(st+q)) with respect to the observer 2 is given.
If natural numbers a, b (a, b ≤ q) exist such that psent(st+a) = psent(st+b)
and psENV (st+a) = psENV (st+b) (i.e. 2(st+a) = 2(st+b)), but psent(st+a+1) 6=
psent(st+b+1), then we shall say that such an entity is contradictory.

In other words, our definition means that, while the observer perceives equiv-
alent states for the entity and the environment at times t + a and t + b, it is
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Fig. 6. The subjective nature of contradiction. Ludwig Wittgenstein is generally
considered to have changed his thinking considerably over his philosophical career,
since he denied his own Tractatus Logico-Philosophicus. While an expert in Wittgen-
stein’s thought might be able to explain his change in opinion on the basis of the
knowledge of his philosophical research and experience, a common observer might
judge his behavior to be an example of contradiction.

assumed that the entity reacts differently to these states.

Remark 12 (“Is a flipping coin a contradictory entity?”). A simple question
may arise immediately after giving our definition of contradiction. Should we
consider a flipping coin, giving many different results, an example of contra-
dictory entity? This kind of question is important to make our position clear.
Once again, the point is the choice of the model and the observer. If we decide
to choose a “human observer” we cannot rule out his/her usual distinguishing
features. A human observer knows that the coin is a disk made of inert metal
and that it can be easily stopped and destroyed. Obviously, the model we are
interested in must be large and complex enough to represent the evolution of
the observer’s brain, where the information is stored and the “physical” coin is
substituted with its mental representation (cf. Remark 9). This representation
can be checked by the observer’s mind. The fact that in this model the coin
does not oppose its destruction reveals that the coin has no intelligence and
hence, by definition, no contradictory behavior (no contradiction is possible
if q = 0, according to Definition 11). Obviously, since any kind of observer
can be chosen in the model, we could also choose a different and non-human
observer, having no memory and no pre-existent opinion about the coin, and
unable to check the reaction of the coin to hypothetical situations. However, it
should not be surprising that the choice of this unusual observer would lead to
an unusual evaluation of intelligence and contradiction.

Another useful concept is that of the deterministic environment, formalized
by the following definition.
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Definition 13 (Deterministic environment.) Let us assume that an environ-
ment (psENV (st), psENV (st+1), . . . , psENV (st+q)) with respect to the observer 2

is given. If for any pair of natural numbers (a, b) verifying a, b ≤ q, psent(st+a) =
psent(st+b) and psENV (st+a) = psENV (st+b) (i.e. 2(st+a) = 2(st+b)) the equal-
ity psENV (st+a+1) = psENV (st+b+1) holds, then we say that the considered
environment is deterministic.

According to the previous definition, if the environment is deterministic its
future state depends on the present state of the entity and the environment
(i.e., all that the observer knows about the examined “world”). In any case,
this dependence is not required to be explicit and computable, and the observer
may not be able to anticipate the future environmental state.

Some environments appear to be deterministic, while others do not. Even far
away from quantum mechanics, it may happen that the environment evolves
in an unpredictable way, according to the observer’s judgment. For example,
the weather evolution may be predictable or unpredictable, depending on the
computational capabilities of the observer looking at it and on the information
that is available to him, expressed by the states he can perceive.

From a formal point of view it may be interesting to observe that, follow-
ing our definitions, an environment is deterministic if and only if it is non-
contradictory as an entity, with respect to the dual observer that exchanges
the roles of psent and psENV (provided we add the required special symbol 0
to PENV ).

5 The key result in our model

In the model we have established the following result can be proved, as a trivial
consequence of the pigeonhole principle. This result shows that determinacy is
forced to break down when the observer examines an intelligent enough entity.

Proposition 14 Assume E is an entity having a finite lifetime and a deter-
ministic environment with respect to an observer 2 for the cellular automaton
C. Let k be the product of the cardinalities of the sets Pent and PENV . Then,
if the intelligence of E is strictly greater than k, the entity E must be contra-
dictory.

PROOF. Let L = {t, t + 1, . . . , t + q} be the lifetime of E . From q > k =
|Pent|·|PENV | it follows that in L two time steps t+a and t+b (a < b) must exist
such that psent(st+a) = psent(st+b) and psENV (st+a) = psENV (st+b). Suppose
E is not contradictory. Then for each time step τ ∈ L, the values psent(sτ )
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and psENV (sτ ) would determine both psent(sτ+1) (since by assumption E is
non-contradictory) and psENV (sτ+1) (since by assumption the environment
of E is deterministic). Therefore, the equalities psent(sτ ) = psent(sτ+b−a) 6= 0,
psENV (sτ ) = psENV (sτ+b−a) would hold for every τ ≥ t+a. Thus, psent(sτ ) and
psENV (sτ ) would be periodic functions in τ for τ ≥ t+ a and the lifetime of E
would be infinite, contradicting our hypothesis. Hence our thesis is proved. 2

The previous result can be reformulated in the following way: if an entity
is intelligent enough with respect to a given observer, then either the en-
tity appears to be contradictory (and hence its behavior is unpredictable) or
the environment is not deterministic (and hence no prediction can be made).
This statement requires that the entity has a finite lifetime and the observer
has bounded capabilities, and suggests that in the real world the previously
described limitation about determinacy should be expected in intelligent sys-
tems.

Remark 15 Some comments should be made about the stipulation that the
lifetime of entity E is finite. From a technical point of view, this stipulation is
made in order to exclude the possibility of an observer judging a structure that
endlessly repeats the same configurations to be alive. In the real world and in
realistic models this type of endless repetition cannot occur, since mechanisms
break down and living beings die sooner or later (some remains are usually
left but the observer does not recognize them as being alive, as in the case of
biological death). In this fashion, our stipulation characterizes the structures
that are most interesting for our proposals.

Suitable limitations to our choice of model would allow us to exclude entities
with an infinite lifetime, but we preferred to accept all models and simply point
out the ones we think are most significant.

Remark 16 From the observer’s viewpoint, the contradictory behavior of the
studied entity implies that its actions are unpredictable. In fact, the observer
cannot foresee the next state of a contradictory entity as a consequence of its
present state and the state of the environment. Thus, the statement we have
proved implies the following assertion, valid for a deterministic environment:

Any sufficiently intelligent entity is unpredictable.

This point of view is supported by various research. In particular, the project
Copycat ([25,26]) suggests that nondeterminism is very important for intel-
ligence. The detailed description of some cognitive processes points out the
necessity of nondeterministic behavior in order to allow the discovery and ef-
ficient manipulation of analogies. For an introduction to this project and its
implications we also refer to [24].
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Many examples stressing the importance of the link between intelligence and
unpredictable behavior might be done, showing how unforeseeable actions can be
useful for survival. As an example of this kind, we could refer to the techniques
that many animals adopt for escaping predators (think of a rabbit avoiding a
pursuing fox by making unpredictable zigzag bounds across a field).

6 Computational experiments

In our model a proposition about the link between intelligence and contradic-
tion has been proved. The next question is to what extent our approach can be
connected to the real world. Some research proving the existence of this link is
available in literature. For example, the result of the experiments described in
[37] might be interpreted as evidence of the relationship between intelligence
and contradiction. However, in order to get further data that maintain the
statement expressed in our framework, we have carried out some tests. In this
section we shall give the results of three computational experiments. Each of
these is an idealization of a real phenomenon involving intelligence and con-
tradiction. In each case the results support the thesis that there is an upper
bound beyond which only contradictory entities “survive” (we wish to stress
that, in our context, “to survive” simply means to get the best performance
in the game undertaken). The experiments to be described are very austere,
and deliberately so, in order to make them simple and comprehensible, but
more complex and realistic examples could easily be obtained by introducing
more parameters.

Experiment 1. (Up and Down.) We begin with an experiment showing the
computation of a threshold analogous to the one we spoke about in Section 5,
in a concrete case. We consider a simple solitaire game, called Up and Down.
We have a deck of n cards having different values. Before playing, each player
chooses a strategy – that is, a sequence of n − 1 words in the set {up,down}:
w1, . . . , wn−1. Then the cards in the deck are placed on the table one after
the other, and we get a sequence of cards c1, . . . , cn. The player wins if and
only if wi = up when ci < ci+1 and wi = down when ci > ci+1 for every i.
In other words, a player “overcomes the difficulty of the game” when he/she
always guesses correctly the rises and falls in the sequence of cards on the
table. The rise-and-fall structure of the deck can be thought of as a simple
environment E with respect to which the player tries to survive by guessing
the behavior suitable for E. In this simulation, the player’s states that are
supposed to be perceived by the observer are the player’s wait for a new game
and his/her choice of a strategy (if he/she is still “in the game”). Note that a
single strategy may work for many different orderings of the deck of cards.
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Since a normal observer knows no relation connecting the present ordering
of the pack to any future ordering of the pack, in this experiment all envi-
ronmental states may be considered equivalent (as not influential on future
events).

Therefore, according to our observer-oriented framework, it is clear that every
change of strategy constitutes contradictory behavior, since the observer never
perceives differences between the games.

In our experiment we considered all the possible strategies in the game by
taking n = 10, 11, 12. Then we computed all possible shufflings of decks of
sizes 10, 11 and 12. For each player we obtained the corresponding number of
victories. We assumed that the players are not contradictory, i.e. they do not
change their strategies during the set of games.

We found that the maximum number m of victories for a single player is
50521 out of 3628800, 353792 out of 39916800, 2702765 out of 479001600 for
n = 10, 11, 12 respectively.

Therefore, any player winning a strictly greater number of games (with differ-
ent orderings of the cards) is forced to be contradictory, i.e. to change his/her
strategy during the set of games. In fact, it is easy to see that there are con-
tradictory players who are able to win m + 1 times: it is sufficient to consider
a player who has already won m games using the same strategy, and who then
changes strategy in order to win further games.

Obviously, the maximum m is the logical equivalent of the upper bound k we
mentioned in the proposition we gave in Section 5.

It is relevant to point out that an analogous computation could easily be
performed for strategies depending on the values of the cards already placed
on the table. In this case we would also get bounds on the number of victories,
beyond which contradictory behavior is unavoidable if we require different
orderings for the cards.

Experiment 2. (Co-operative/non-co-operative behavior.) We simulated an
interaction between individuals from the point of view of co-operative/non-co-
operative behavior. We assumed that when two individuals meet, each of them
can act either co-operatively or non-co-operatively. In the case of co-operation,
each of them gets a positive pay off gcc = 2, while when both of them act
non-co-operatively the pay off is zero for both (gnn = 0). If their behavior is
different, the co-operative individual receives a negative pay off −1 (gcn = −1)
while the non-co-operative individual gets a positive pay off 1 (gnc = 1). In
other words, we have assumed that reciprocal co-operative behavior produces
the maximum pay off, while every non-co-operative individual is supposedly
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trying to steal resources from co-operative individuals.

In our simulation we randomly assign a co-operative/non-co-operative stance
to each of a set E of m people. Analogously, we randomly assign a co-
operative/non-co-operative attitude to each one in a set I of n individuals.
Then we assume that each individual x in I enters the environment repre-
sented by the set E and meets each person in this set, thus obtaining a total
pay off dictated by the set of strategies.

We took m = 20 and n = 1000.

In this experiment we assume that the observer of the game can perceive
the psychological status of player x ∈ I, but not that of the people in E

whom player x is going to meet. Therefore the observer’s knowledge of the
environment and the entity are limited to the state of the game and the player’s
stance, in this case.

Before any of the m meetings any individual x can change his/her stance,
and the probability of this change is set at p. Obviously, according to our
framework, if x changes his/her behavior (by moving from a co-operative to
a non-co-operative stance or vice versa) he/she becomes contradictory, since
the observer never perceives differences between the meetings he/she observes,
except for their results.

Finally, in the set I, the individual x who has achieved the maximum gain
(i.e. the winner of the game) is determined. In every simulation two outcomes
are possible: the winner x of the game is either contradictory or is not. By
repeating our simulation 100 times, we calculated the percentage of winners
that were contradictory.

We point out that we chose probability p so that non-contradictory individuals
were as likely as contradictory ones (p ≈ 0.034). Furthermore, we chose our
pay off matrix in such a way that the expected value for the gain from each
meeting was the same both for co-operative and non-co-operative individuals
(i.e., 0.5).

In this experiment we found that the percentage of contradictory winners was
100%. In other words, all winners were contradictory, showing that contradic-
tory individuals are much more likely to be winners in this type of situation.

Incidentally, we point out that a large bibliography exists for the co-operative/non-
co-operative behavior tested in this experiment, examined from various points
of view. A very interesting treatment from a biological point of view can be
found in [15].
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Experiment 3. (Stockholders and share prices.) We simulated the behavior
of a set of stockholders during a week. Each stockholder can buy or sell one
kind of share and owns 10000 units of cash assets and 10 shareholdings, at the
beginning. The price of each share is an integer in the set {900, 1000, 1100},
varying daily. We assume that the price on day t + 1 is determined by the
price on day t. This dependence is chosen randomly and is assumed to be
unknown to the stockholders at the beginning of the week. The initial price of
the shares is chosen randomly as well. On any day each stockholder can buy or
sell an arbitrary number of shares at the price for that day, with the obvious
constraint that he/she can neither spend an amount greater than his/her cash
assets at that time, nor sell more shares than he/she owns.

Our experiment consists of 50 tests. In each test we have two groups of stock-
holders. Group A contains 100 non-contradictory stockholders. On each day
of the week the number of shares to be sold or bought is chosen randomly,
but we require that if, in the presence of a price p, the stockholder sells or
buys a number x of shares, he/she makes the same choice every day the price
takes the same value p. Group B contains 100 stockholders who are allowed
to be contradictory. Therefore, in this case the number of shares to be sold or
bought is chosen randomly on each day of the week, without any constraint
on behavior in the presence of the same market price.

At the end of the week we compute the final capital of each stockholder in
both groups, given by adding the stockholder’s final cash assets to the value
of the shares owned according to the final market price. The greatest final
capitals c(A) and c(B) are found, by running through all the stockholders
in each of the two groups. If c(A) > c(B), then in A a non-contradictory
stockholder exists whose final capital is greater than the final capitals of all
the stockholders in B. If c(A) < c(B), then in B a possibly contradictory
stockholder exists, whose final capital is greater than all the final capitals of
all the non-contradictory stockholders in A. We carried this experiment out
50 times, and we found that the former case never arose, while the latter
arose 29 times (more than half the total number), thus demonstrating that
contradictory behavior is often required to obtain the maximum total profit.

In our experiment it is quite natural to interpret the share price as the per-
ceived environment, while the selling-buying action of the stockholder and
his/her wait for a new price can be seen as the information available to the
observer about the entity. The dependence of the share price on the price as-
signed on the previous day corresponds to the stipulation that the environment
is deterministic.

Remark 17 As well as the experiments we have carried out, there is a wealth
of further evidence supporting the relationship between intelligence and contra-
diction. The development of Genetic Programming and Genetic Algorithms,
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for example, is based on the concept that increasing the capability of problem-
solving requires changes in behavioral rules without the observer realizing the
exact procedure of these changes. However, we cannot enter into this wide area
of study in the present paper.

7 Some controversial points: our answers

During the drawing-up of this paper, many useful comments were made by
anonymous referees and by other readers. Since this constructive criticism has
contributed considerably to this research we decided to collect together the
main objections and questions about the concepts we are discussing, in order
to highlight both these remarks and problems and the answers we gave in the
paper. Obviously, this list must be perceived only as a concise résumé of the
approach we developed in the previous sections.

• Objection a: “The definition of intelligence seems to be arbitrary and not
well justified. Many different definitions are possible, but intelligence is cer-
tainly not as simple as a number denoting a lifetime.”

Answer: We see two possible mutually exclusive reasons on which to base
this objection: 1) It is hopeless to try to make a mathematical definition
of such a complex and elusive concept as intelligence; 2) The idea of a
mathematical definition is acceptable, but the one proposed seems to be
inadequate.

Objection 1) is tantamount to rejecting the idea that intelligence can
be scientifically studied. Science is widely understood as the proposal and
working-out of precise models of limited aspects of reality, and the checking
of how well these match reality itself. Our model, focusing on success in
adaptation, allows a quantitative approach to the concept of intelligence
and a predictive result about contradiction.

As for 2), the intelligence we perceive in playing chess, proving theorems,
deciding purchases and sales in a market, solving puzzles (and so on) can
be seen as the ability to survive in an environment where the threats are
represented, respectively, by chess opponents, logical errors, financial crises
and the puzzles themselves. However, we are not suggesting that intelligence
is accurately modelled by the length of an entity’s survival in an arbitrarily
chosen mathematical situation. Such a lifetime must be considered within a
suitable model, which often involves the observer’s “brain” and its predictive
ability. We discussed, in Remark 8, the example of the sequoia and the man,
showing that if we take the proper model then the length of life is larger for
the latter, contrary to näıve expectations. Another example (the oscillating
pendulum) was given in Remark 9. Therefore, in view of the motivations and
the examples given in Section 4.3, a convincing criticism of our approach
should be based on counterexamples showing some kind of intelligence that
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cannot be reduced (in the sense specified in the paper) to survival capability.
• Objection b: “What is the practical usefulness of measuring intelligence

by a single number?”
Answer: Obviously, saying that the intelligence of the glider in Figure 2

is 14 is not very interesting. On the other hand, saying that the intelligence
of a commercial software agent is x (since it can “survive” x time cycles
in a given standard test market Y ) could be much more interesting for a
possible purchaser. In fact, the need for quantification of and comparison
between various software agents’ performances is without doubt going to be
ever more relevant in software engineering, according to many experts.

• Objection c: “The definition of contradiction involves criteria that are
far less stringent than would be required to conform with common usage in
logic.”

Answer: We showed that the concept of contradiction is not only a mat-
ter of mathematical logic. Additionally, we pointed out that the meaning of
“contradiction” used in mathematical logic is subsumed under our definition
(see Section 4.4), if we accept the key-role of the observer.

• Objection d: “To describe an agent’s behavior as inconsistent merely on
the grounds that the agent adopts a different strategy when dealing with the
same particular facet of its environment on different occasions seems to be
an implausibly weak criterion of contradictory behavior. To modify one’s
strategies in the light of changing external conditions is not inconsistent.
Intelligence is applying different strategies to different circumstances.”

Answer: Again, if we accept the key role of the observer, this observation
is misleading. The expressions “particular facet of its environment”, “chang-
ing external conditions” and “different circumstances” may not make sense.
If we agree that complete knowledge of the universe that we are studying
is not possible and if we decide to rely on the judgment of an observer with
bounded capabilities, we cannot consider any data that are not accessible to
the observer. In a deterministic universe, the phenomenon of contradiction
appears to be strictly connected to the existence of bounds of knowledge.
For example, let us consider the most classical case of contradiction – that is,
an individual asserting two incompatible statements. When we are involved
as observers in this event, we usually guess that there must be differences
between the situations producing the different answers (e.g., psychological
differences). The point is that if we do not perceive these differences (since
we cannot access them as observers), it is almost useless to claim their
existence, at least from a practical point of view.

• Objection e: “What you call contradiction should be more properly called
adaptation for survival.”

Answer: These concepts are quite different. First of all, there are contra-
dictory behaviors that are harmful for survival (changing one’s own behav-
ioral rules without any change in the environment is often dangerous, as can
easily be verified by the example of a driver who decides to assign a personal
meaning to the colors of traffic lights). More interestingly, “adaptation for
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survival” is not necessarily a contradiction, since the observer can find such
an adaptation quite reasonable. Adaptation for survival may, however, be
perceived as contradictory when the observer is not able to understand the
reason for such a change. From this point of view, the claim made in this
paper is not that intelligence implies adaptation, but that intelligence nec-
essarily implies a kind of adaptation that is perceived as unreasonable by
the observer.

• Objection f: “Why do you use the concept of cellular automata in your
approach?”

Answer: As we state in the paper, cellular automata can emulate a uni-
versal Turing machine and are very simple at a local level. Moreover, they
naturally adapt to describing evolution in time and space. Although we
could express the same ideas in another context, the concept of cellular
automata makes it particularly straightforward and easy. Another reason
motivating our choice is the possibility of easily including the observer in
cellular automata, allowing interaction between an entity and the corre-
sponding observer. This line of research has not been explored in this work,
but we plan to do so in a forthcoming paper.

• Objection g: “The notion of intelligence cannot be illustrated by something
as trivial as the game of Life.”

Answer: In principle, the game of Life can emulate any Turing ma-
chine and hence all algorithms we can implement on a computer can also
be implemented in Life (cf. Section 4.1). Saying that intelligence cannot
be represented in the functioning of a cellular automaton implies, from a
theoretical point of view, the assertion that computers cannot emulate in-
telligence. This might well be the case, but if so, the proof is lacking, as far
as the author knows.

• Objection h: “Intelligence and contradiction are not concepts depending
on the existence of an observer. The validity of a mathematical proof does
not depend on the existence of a reader of such a proof.”

Answer: We will certainly not try to attack an idealistic approach to
knowledge. However, independently of own epistemological attitude, reality
and science (and A.I. in particular) are full of contradictions and controver-
sial judgments. On the other hand, the history of mathematics is rife with
examples of statements and proofs that were revealed to be erroneous many
years after their first appearance, while the search for a concept of absolute
truth seems näıve after Gödel and Turing, at least according to scientific
methodology. To assert that when sufficient data and computational ability
are available neither controversial statements nor mistakes will ever appear
implies a vision of science that totally leaves out the process of research and
discovery. Rejecting concepts such as contradiction and incomprehensibility
might (perhaps) be acceptable in some philosophical thought experiment,
but it would seem foolhardy in the attempt to study the real processes of
intelligence. Studying intelligence after eliminating all references to inconsis-
tency, madness, misunderstanding (and so on) would be similar to studying
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biology after eliminating any references to death.
• Objection i: “What is the point of this paper? What is the point of proving

the link between intelligence and contradiction?”
Answer: The point of this paper is, in the first place, to construct a

mathematical framework where the concepts of intelligence and contradic-
tion can be represented and formally treated. In the second place, it is
to suggest a possible link between these two concepts, which emerges as
a straightforward consequence of our definitions. Knowing whether such a
link really exists seems important, both from a theoretical and a practical
point of view. Attempts to avoid contradiction might be dangerous, both
in software engineering and in Artificial Intelligence. A general approach
to the problem appears to be useful. In any case, the main purpose of this
paper is to define an issue and its relevance in scientific terms, not to fully
work out the corresponding answer. The results found herein should be seen
only as the necessary and quite straightforward consequence of a particular
mathematical model.

Conclusions

In this paper we have proposed some formal definitions of the concepts of
observer, entity, intelligence and contradiction. On this basis we have proved
that any sufficiently intelligent entity E must be contradictory for any observer
with bounded capabilities, under the assumptions that the lifetime of E is finite
and that the environment is deterministic.

In practice, we know that the more intelligent a living being is, the more
difficult it is to predict its behavior by means of deterministic rules. This is
another way of expressing the previous statement.

We have also performed some computational experiments showing that our
theoretical conclusions are supported by empirical evidence.

Our attempt to define a mathematical model in which we can study the re-
lations between contradiction and intelligence is obviously only a subjective
proposal. However, a systematic approach to problems involving the active
role of contradiction in intelligent beings seems at this point to be essential to
the study of complex systems.

35



Acknowledgements

This work owes its existence to Massimo Ferri and Francesco Livi, and to
their love of beauty within complexity. The author wishes to thank Claudio
Barbini, Andrea Vaccaro and Joelle Crowle for their helpful suggestions, and
Michele d’Amico for his precious help in performing the experiments. Thanks
also to Guido Moretti and Al Seckel for providing some beautiful pictures, and
to Charles Stewart and Reuben Hersh for their illuminating and constructive
criticism. The author is profoundly grateful to Douglas R. Hofstadter for re-
vising the paper and for his valuable suggestions, which have made this paper
better and clearer. Finally, the author is solely responsible for any errors.

Many readings have indirectly influenced the drawing up of this paper. In
particular the work by Quinzio ([47]), the letters between Magee and Milligan
([35]) and a book by Vaccaro ([59]) have been important in this process.

This work is partially supported by INdAM-GNSAGA and MIUR.

I dedicate it to the memory of Matthew Lukwiya, Malli Gullu and Giorgio
Gentili.

References

[1] A.R. Anderson and N. D. Belnap, Jr., Entailment: The Logic of Relevance and
Necessity, vol. I (Princeton University Press, Princeton, 1975).

[2] M. Arbib, Simple self-reproducing universal automata, Information and
Control , 9 (1966) 177–189.

[3] R. Balzer, Tolerating inconsistency, Proceedings 13th International Conference
on Software Engineering (ICSE-13) (IEEE CS Press, Austin, Texas, 1991) 158–
165.

[4] J. Bar-Ilan, Search Engine Results over Time – A Case Study on Search Engine
Stability, Cybermetrics (2/3) 1 (2000).

[5] G. Bateson, Steps to an Ecology of Mind (Chandler Publishing Company,
Toronto, 1972).

[6] G. Bateson, Mind and Nature. A Necessary Unity , (Dutton, Toronto-
Vancouver, 1979).

[7] I. Brocas and J.D. Carrillo, The value of information when preferences are
dynamically inconsistent. European Economic Review 44 (2000) 1104–1115.

[8] R. Brooks, Intelligence without representation, Artificial Intelligence 47 (1991)
139–159.

36



[9] A.W. Burks (editor), Essays in Cellular Automata (University of Illinois,
Urbana, IL, 1974) 206–218.

[10] E.F. Codd, Cellular Automata (Academic Press, New York, 1968).

[11] N.C.A. da Costa, On the theory of inconsistent formal systems, Notre Dame J.
Formal Logic 15 (1974) 497–510.

[12] P.J. Davis and R. Hersh, The Mathematical Experience (Birkhäuser, Boston,
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