
 

 

  
Abstract— In this paper, a model of self-organizing spiking 

neural networks is introduced and applied to mobile robot 
environment representation and path planning problem. A network of 
spike-response-model neurons with a recurrent architecture is used to 
create robot’s internal representation from surrounding environment. 
The overall activity of network simulates a self-organizing system 
with unsupervised learning. A modified A* algorithm is used to find 
the best path using this internal representation between starting and 
goal points. This method can be used with good performance for both 
known and unknown environments. 
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I. INTRODUCTION 
ECENTLY, there is a great effort by many researchers to 
create models of human brain with computational 

capabilities to solve some real world problems. Since neurons 
in central nervous system (CNS) communicate using short 
duration electrical impulses called spikes most of these models 
at neuronal levels use biologically more realistic neuron 
models called spiking neuron models. We will call these types 
of models spiking neural networks (SNNs) [1]. Several results 
show that feed-forward SNNs have at least the same 
computational power of multi-layer neural networks with 
sigmoidal neurons [2]. There are a few applications of SNNs 
to real world problems, and this is because of lack of powerful 
and efficient learning algorithms. 

In this paper, a self-organizing SNN with especial 
configuration and learning algorithm is introduced and used to 
build a mobile robot’s internal environment representation 
(also known as internal map) from surrounding world. There 
are strong evidences showing that dynamic behavior and 
information processing in many parts of the brain is self-
organized [4]. Also there exist some SNN models showing 
self-organized behavior, see [4] and references there. 

Environment representation and navigating is a cognitive 
task solved in a self-organized manner in humans and animals. 
Also these tasks play very important role in mobile robot 
navigation; especially in situations that environment is not 
fully understood or known. Here we address these problems 
using a brain-like computational system together with a 
 

Manuscript received May 20, 2005. This work was supported by Research 
Administration of Sahand University of Technology, Tabriz, Iran. 

Amir R. Saffari A. A. was with Electrical Eng. Dept. of Sahand University 
of Technology, Tabriz, Iran. He is now with the Institute for Theoretical 
Computer Science, Graz University of Technology, Austria (e-mail: 
amir@ymer.org). 

modified version of A* algorithm (pronounced and known 
also as A-star) [3] for path planning. This model is intended to 
solve these problems in a totally unsupervised manner for 
unknown environments. 

II. SELF-ORGANIZING SPIKING NEURAL NETWORK 

A. Network Structure and Model 
The general structure of self-organizing SNN is shown in 

Fig.1. Neurons are organized in two layers: the first is sensory 
stage with only feedforward connections, and the second stage 
is processing layer with lateral or feedback connections. The 
sensory stage converts each external analog stimulations, jx , 
into exact spike times based on first-spike-time encoding 
approach [1] using: 

NjxTt jjj ,...,2,1, =−= α  (1) 

which jt  is the associated spike time, T  is the reference time, 

and jα  is a scaling factor. This scaling factor can be used to 

convert any physical quantity into a suitable value in time. 
All neurons in the processing stage of the network are 

Spike Response Model (SRM) neurons [1], arranged in a 2D 
lattice, which equations describing the behavior for ith neuron 
are given by: 
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which (2) is describing membrane potential, iu , due to 
internal state and external stimulations while (3) stands for 
spike generation rule when membrane potential exceeds 
threshold value, iθ . In (2), first term shows refractoriness 

effect of recent generated spike it  which )(sη  represents 
refractory kernel. Second term is describing post-synaptic 
potentials (PSPs) generated by incoming sensory spikes with 

)(ssε  used for response kernel. jt  is input spike time from 

jth sensory neuron, and ijd  represents synaptic transmission 

delay between pre-synaptic neuron j and post-synaptic neuron 
i.  The last term is PSPs associated with lateral feedback 
connections   where ikw    represents    synaptic weight   for  
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Fig.1 Network architecture 

 

connection from k to i, kt  is feedback spike time from kth 

neuron, and )(sfε  is again response kernel. Kernel 

equations are described by: 
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which mτ  and sτ  are membrane and PSP current time 

constants, respectively, )(sΘ  is a step function, and 0η  is a 
constant indicating strength of refractory effect on membrane 
potential. Note that the total number of input channels are N 
and total number of processing neurons are M. Also there 
exists a reference input channel which spikes exactly at time 
T. This reference spike will be used for normalization 
purposes, discussed later. 
 Before proceeding into dynamic analysis of network, initial 
values of delays and lateral weights should be specified. In 
this work delays values are drawn randomly from a uniform 
distribution in a specified range, except the delay value for the 
reference spike which is assumed to be zero. The initial values 
of lateral weights are chosen to be dependent on spatial 
distance between neurons and are given by: 
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which ijz  is the spatial distance between two neurons and can 

be calculated using several metrics. The 1σ  and 2σ  are 
constants specifying shape of weight distribution. Note that 
neurons do not have any self-feedback. Using this initial 
weight function neurons with low spatial distances would 
have excitatory lateral connections and those with high 
distances would receive feedback through inhibitory synapses. 
Also note that for simplicity it has been assumed that 
individual neurons can have both excitatory and inhibitory 
connections with each other. For more biologically realistic 
model, one can use columns of inhibitory neurons instead of 
negative weights. 

B. Network Behavior  
Activity of the neurons (i.e. spike firing times) can be 

described in this model in terms of synchronization of 
incoming spikes: the more input spikes are synchronized the 
more higher membrane potential can reach which means 
higher possibility to generate output spike. In other words, if 
the input spikes are close enough to each other, their response 
kernels are more aligned and this gives to higher values of 
activity in (2). There exist some evidences from biological 
research about synchronous spiking patterns in brain [5]. 

Since the model is input driven, synchrony between 
incoming spikes are achieved and controlled using sensory 
delay channels. Arrival time of input spike from jth sensory 
channel to ith neuron is, according to second right hand term 
in (2): 

ijjjijjij dxTdta +−=+= α . (6) 

We can rewrite this equation in vector format for all sensory 
channels of ith neuron as: 
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which iA
r

 is the vector of input spike arrival time, T
r

 is the 

vector of reference time, iD
r

 is the vector of delays, and X
r

is 
the scaled input vector. One interpretation of this equation is 
an Euclidian type of metric for comparison between scaled 
input vector with delay vectors of individual neurons in terms 
of synchrony of incoming spikes. So those neurons with less 
distance has more aligned input spikes and as a result are more 
likely to generate output spike. This gives the idea of winner 
neuron for a competitive learning mechanism: the first neuron 
which fires has less distance between its delay vector and 
scaled input vector. 

To implement this idea we also need to take account one 
other problem: neurons with equally spaced distance (but not 
close to zero) between their delay vector and scaled input 
vector would also receive synchronous input spikes. This is 
the same normalization problem when we want to compute the 
winner in traditional competitive ANNs only by computing 
dot multiplication of their weights and input vectors. To solve 
this problem we introduce a reference spike that spikes at time 
T, so those neurons with distance close enough to zero will 
have chance to fire. From biological modeling approach, this 
reference spike can be related to brain wave oscillations in 
gamma band and coherent activities in the brain [6]. 

To complete behavior analysis, we have to mention the 
value of threshold chosen for this model. Threshold value is 
chosen according to: 

0,0,))(),(max( >>+= δδεεθ sssN fs  (8) 

which δ  is a positive constant. This means that at least N+1 
synchronized or partially synchronized input spikes at time T 
are needed to excite efficiently a processing neuron to produce 
an output spike. Note that N is the number of sensory input 
channels. 

C.  Synaptic Plasticity 
There are two adjustable parameters in this network model: 

input transmission delays and lateral weights. Some recent 
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findings show that transmission delays in biological neural 
networks can be adaptable [7]. A delay shift mechanism is 
used as adaptation rule for transmission delays in this work 
which is a Hebbian adaptation system in nature. For lateral 
synaptic connections, also a Hebbian mechanism is used to 
adjust the weights, as described below. 

In the adaptation process, both weights and delays of those 
neurons which were able to produce an output spike are 
adjusted using (9), which is a special type of spike time 
dependent plasticity (STDP). Note that in (9) it is assumed 
that the neuron i is the winner (fired first spike), j is the index 
of input sensory neuron, m and n are the indexes of the other 
spiking neurons in the processing layer with mt  and nt  as 

output spike times, respectively, mnw  is the synaptic weight 

connecting neuron n to m, and mnz  is the spatial distance 
between two neurons m and n. 
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Note that there is a general neighborhood function, ),( nmh  
which limits the adjustments applied to the neurons with high 
distances, using parameterσ . In lateral weight adaptation 
mechanism there exists a limiting factor, )1( mnwm , which 

saturates the weight on 1±  values when weight tends to grow 
unbounded. Note that when pre-synaptic neuron fires before 
post-synaptic neuron, there is an increase in weight value with 
a time constant of 1τ , and synaptic weight decreases when 
post-synaptic neuron fires before pre-synaptic neuron with a 
time constant of 2τ . Learning steps can be controlled through 

dη  and wη . 
Using these adaptation mechanisms, this network exhibits 

an especial dynamic behavior, like what is seen in self-
organizing maps (SOMs). In Fig.2 an example of applying 
this network over a random distribution of two dimensional 
input data is shown. After several epochs of simulation, delay 
vectors of network would be organized to represent input 
space cluster distributions. Lateral weights adaptation helps to 
improve the clustering process and faster movement of delay 
vector to desired locations in input space. 

III. APPLICATION TO MOBILE ROBOT ENVIRONMENT 
REPRESENTATION AND PATH PLANNING 

A. Environment Representation  
In previous sections it was shown that after several training 

epochs the presented self-organizing spiking neural network 
can adapt its delay vectors to input space distribution. In a 
path planning problem for a given map, all free non-obstacle 
places can be viewed as input clusters and the network task as  

 

 
 

 
Fig.2 Different steps of self-organizing behavior of network over 
random inputs to the network (black dots). Up: nodes configuration 
after several steps of training. Bottom: nodes structure after finishing 
training phase 
 
internal representation builder is to detect and classify these 
areas as walk-able locations of map. In this way, any delay 
vector is named as a node in the map, and has two variables 
related to coordinates of input location (x,y). This definition 
can be extended to 3-dimensional spaces easily. It is supposed 
that mobile robot is equipped with location recording systems 
like GPS or odometer. Also it is assumed that robot has 
elementary obstacle detection and anti-collusion devices. 

To specify links or tracks for robot movement, nodes of six 
neighbor processing neurons are connected to form a topology 
of neurons representing internal map. For a given start and 
goal positions, robot has to plan a path to navigate through 
obstacles to the goal point (path planning algorithm is 
discussed in next section). In each movement step, the 
coordinates of robot’s position are used as input values to the 
network to run a simulation and adaptation process. Fig.3 is an 
example of a movement and its associated effect on node 
positions. The overall effect is the movement of network 
nodes to the locations which robot were there, i.e. free 
locations. For known maps, the internal representation 
formation can be done in offline manner, without forcing 
robot to move to every free location. For unknown maps, a 
search and exploration phase can be applied to robot with 
manually or randomly chosen starting and goal points. In this 
case closer start and finish points are desirable. Fig.3 shows an 
example of an unknown environment for robot and the effect 
of movement in this space on internal representation. 
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B. Path Planning 
One of the famous and efficient path planning algorithms is 

the A* [3]. An A* path finding system is an optimization 
algorithm with modified best-first-search (BFS) strategy 
which uses a heuristic travel cost estimation. For an A* 
algorithm, environment is represented with cells or grids 
where robot can or can not move on. Algorithm begins 
searching with neighbor cells of start point and calculates cost 
of movement to each next cell (excluding blocked cells and 
previous moved ones) associated with general heuristic cost 
approximation to travel from next point to goal. The algorithm 
continues with selecting best next cell with lower cost and 
then doing the same steps again for this new one. A cost 
estimation correction phase is also implemented in this level 
for shared neighbors of new and previous cell. For more 
details on this powerful method refer to [3]. 

 The modification applied to the original A* algorithm are 
the redefinitions of cells and links which are necessary to 
make it compatible with network internal map representation. 
The first modification is to replace the concept of cells with 
delay nodes. For a given start node, the algorithm is the same 
except that any neighbor node which has a blocked link or 
itself is on obstacle is discarded from search algorithm 
temporarily. The discarded node may be entered in search list 
again in next steps, in contrast to original A* which the 
blocked cells are completely removed from the search list. In 
this way, only the previously traveled links are added to 
closed list in addition with the links which end node is on the 
obstacle location. There is another issue to be noted about 
start and finish locations. Because this algorithm uses nodes 
instead of cells positions, it is possible to define start or finish 
point not on the internal map nodes. In this situation, a new 
representative node will be added to the network on this point 
with linking and altering the original map to a new one with a 
node on start or stop point. 

IV. DISCUSSION 
It is obvious from example presented in Fig.3 that this 

method has a good performance even for complex maze type 
obstacle configurations. Also the modified A* algorithm is 
much faster than the original one, especially when the robot 
size is much smaller than the length and width of map. The 
main reason is that this new algorithm only needs to search a 
smaller number of nodes and links compared to original A*, 
making it very efficient for large maps. Another benefit of this 
algorithm is that it can be applied for unknown environments 
without any supervision, since robot gradually makes its own 
representation from interaction with environment (i.e. 
exploration). 

The main drawback is that in some area of the map with 
very narrow passages, this algorithm may not be able to find a 
path comparing to A* which is guaranteed to find at least a 
path if any exists. This situation is compensated by adding 
additional random nodes to the complex areas. Also, adding 
turning angle penalty to overall cost results in smoother path 
planning between nodes. 

From modeling view, this system is based purely on a 
biological computation basis, with a successful application of 
a brain-like processing model to a real world problem. 
Neuronal synchronization and coherency formation are one of 
the challenging problems in modeling brain activities. This 
model is also based on synchronization of different neurons in 
processing layer with a coherent oscillation, named reference 
spike. Also a biological plausible adaptation mechanism, 
which is a Hebbian-like learning system, is used to adjust 
network parameters to proper values in a self-organizing 
manner. 

 

 

 

 

 

 
Fig.3 The effect of learning environment, circles represent initial 
internal map nodes, before learning environment, X represent current 
node positions. Up: changes in internal representation due to 
movement from start to goal points, the path is shown by dots. 
Bottom: internal representation after several movements in area 
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