

Abstract— In this paper, a model of self-organizing spiking

neural networks is introduced and applied to mobile robot
environment representation and path planning problem. A network of
spike-response-model neurons with a recurrent architecture is used to
create robot’s internal representation from surrounding environment.
The overall activity of network simulates a self-organizing system
with unsupervised learning. A modified A* algorithm is used to find
the best path using this internal representation between starting and
goal points. This method can be used with good performance for both
known and unknown environments.

Keywords—Mobile Robot, Path Planning, Self-organization,
Spiking Neural Networks.

I. INTRODUCTION
ECENTLY, there is a great effort by many researchers to
create models of human brain with computational

capabilities to solve some real world problems. Since neurons
in central nervous system (CNS) communicate using short
duration electrical impulses called spikes most of these models
at neuronal levels use biologically more realistic neuron
models called spiking neuron models. We will call these types
of models spiking neural networks (SNNs) [1]. Several results
show that feed-forward SNNs have at least the same
computational power of multi-layer neural networks with
sigmoidal neurons [2]. There are a few applications of SNNs
to real world problems, and this is because of lack of powerful
and efficient learning algorithms.

In this paper, a self-organizing SNN with especial
configuration and learning algorithm is introduced and used to
build a mobile robot’s internal environment representation
(also known as internal map) from surrounding world. There
are strong evidences showing that dynamic behavior and
information processing in many parts of the brain is self-
organized [4]. Also there exist some SNN models showing
self-organized behavior, see [4] and references there.

Environment representation and navigating is a cognitive
task solved in a self-organized manner in humans and animals.
Also these tasks play very important role in mobile robot
navigation; especially in situations that environment is not
fully understood or known. Here we address these problems
using a brain-like computational system together with a

Manuscript received May 20, 2005. This work was supported by Research
Administration of Sahand University of Technology, Tabriz, Iran.

Amir R. Saffari A. A. was with Electrical Eng. Dept. of Sahand University
of Technology, Tabriz, Iran. He is now with the Institute for Theoretical
Computer Science, Graz University of Technology, Austria (e-mail:
amir@ymer.org).

modified version of A* algorithm (pronounced and known
also as A-star) [3] for path planning. This model is intended to
solve these problems in a totally unsupervised manner for
unknown environments.

II. SELF-ORGANIZING SPIKING NEURAL NETWORK

A. Network Structure and Model
The general structure of self-organizing SNN is shown in

Fig.1. Neurons are organized in two layers: the first is sensory
stage with only feedforward connections, and the second stage
is processing layer with lateral or feedback connections. The
sensory stage converts each external analog stimulations, jx ,
into exact spike times based on first-spike-time encoding
approach [1] using:

NjxTt jjj ,...,2,1, =−= α (1)

which jt is the associated spike time, T is the reference time,

and jα is a scaling factor. This scaling factor can be used to

convert any physical quantity into a suitable value in time.
All neurons in the processing stage of the network are

Spike Response Model (SRM) neurons [1], arranged in a 2D
lattice, which equations describing the behavior for ith neuron
are given by:

∑∑
=

+

=

−+−−+−=
M

k
kfik

N

j
ijjsii ttwdttttu

1

1

1

)()()(εεη (2)

ttthenuif iii =>)(θ (3)

which (2) is describing membrane potential, iu , due to
internal state and external stimulations while (3) stands for
spike generation rule when membrane potential exceeds
threshold value, iθ . In (2), first term shows refractoriness

effect of recent generated spike it which)(sη represents
refractory kernel. Second term is describing post-synaptic
potentials (PSPs) generated by incoming sensory spikes with

)(ssε used for response kernel. jt is input spike time from

jth sensory neuron, and ijd represents synaptic transmission

delay between pre-synaptic neuron j and post-synaptic neuron
i. The last term is PSPs associated with lateral feedback
connections where ikw represents synaptic weight for

Unknown Environment Representation for
Mobile Robot Using Spiking Neural Networks

Amir Reza Saffari Azar Alamdari

R

World Academy of Science, Engineering and Technology 6 2005

49

Fig.1 Network architecture

connection from k to i, kt is feedback spike time from kth

neuron, and)(sfε is again response kernel. Kernel

equations are described by:

)()exp()(

)()exp()exp(
1

1)()(

0 sss

sssss

m

smms
ss

Θ−=

Θ⎥
⎦

⎤
⎢
⎣

⎡
−−−

−
==

τ
ηη

ττττ
εε

 (4)

which mτ and sτ are membrane and PSP current time

constants, respectively,)(sΘ is a step function, and 0η is a
constant indicating strength of refractory effect on membrane
potential. Note that the total number of input channels are N
and total number of processing neurons are M. Also there
exists a reference input channel which spikes exactly at time
T. This reference spike will be used for normalization
purposes, discussed later.
 Before proceeding into dynamic analysis of network, initial
values of delays and lateral weights should be specified. In
this work delays values are drawn randomly from a uniform
distribution in a specified range, except the delay value for the
reference spike which is assumed to be zero. The initial values
of lateral weights are chosen to be dependent on spatial
distance between neurons and are given by:

⎪
⎩

⎪
⎨

⎧

=

≠−−−
=

ji

ji
zz

w
ijij

ij

0

)
2

exp()
2

exp(2 2
2

2

2
1

2

σσ (5)

which ijz is the spatial distance between two neurons and can

be calculated using several metrics. The 1σ and 2σ are
constants specifying shape of weight distribution. Note that
neurons do not have any self-feedback. Using this initial
weight function neurons with low spatial distances would
have excitatory lateral connections and those with high
distances would receive feedback through inhibitory synapses.
Also note that for simplicity it has been assumed that
individual neurons can have both excitatory and inhibitory
connections with each other. For more biologically realistic
model, one can use columns of inhibitory neurons instead of
negative weights.

B. Network Behavior
Activity of the neurons (i.e. spike firing times) can be

described in this model in terms of synchronization of
incoming spikes: the more input spikes are synchronized the
more higher membrane potential can reach which means
higher possibility to generate output spike. In other words, if
the input spikes are close enough to each other, their response
kernels are more aligned and this gives to higher values of
activity in (2). There exist some evidences from biological
research about synchronous spiking patterns in brain [5].

Since the model is input driven, synchrony between
incoming spikes are achieved and controlled using sensory
delay channels. Arrival time of input spike from jth sensory
channel to ith neuron is, according to second right hand term
in (2):

ijjjijjij dxTdta +−=+= α . (6)

We can rewrite this equation in vector format for all sensory
channels of ith neuron as:

)(XDTA ii

rrrr
−+= (7)

which iA
r

 is the vector of input spike arrival time, T
r

 is the

vector of reference time, iD
r

 is the vector of delays, and X
r

is
the scaled input vector. One interpretation of this equation is
an Euclidian type of metric for comparison between scaled
input vector with delay vectors of individual neurons in terms
of synchrony of incoming spikes. So those neurons with less
distance has more aligned input spikes and as a result are more
likely to generate output spike. This gives the idea of winner
neuron for a competitive learning mechanism: the first neuron
which fires has less distance between its delay vector and
scaled input vector.

To implement this idea we also need to take account one
other problem: neurons with equally spaced distance (but not
close to zero) between their delay vector and scaled input
vector would also receive synchronous input spikes. This is
the same normalization problem when we want to compute the
winner in traditional competitive ANNs only by computing
dot multiplication of their weights and input vectors. To solve
this problem we introduce a reference spike that spikes at time
T, so those neurons with distance close enough to zero will
have chance to fire. From biological modeling approach, this
reference spike can be related to brain wave oscillations in
gamma band and coherent activities in the brain [6].

To complete behavior analysis, we have to mention the
value of threshold chosen for this model. Threshold value is
chosen according to:

0,0,))(),(max(>>+= δδεεθ sssN fs (8)

which δ is a positive constant. This means that at least N+1
synchronized or partially synchronized input spikes at time T
are needed to excite efficiently a processing neuron to produce
an output spike. Note that N is the number of sensory input
channels.

C. Synaptic Plasticity
There are two adjustable parameters in this network model:

input transmission delays and lateral weights. Some recent

Lateral
Synapses

Self-Organizing
Neurons

Input
Neurons

Delayed
Synapses

External Analog Stimulations

…

…

World Academy of Science, Engineering and Technology 6 2005

50

findings show that transmission delays in biological neural
networks can be adaptable [7]. A delay shift mechanism is
used as adaptation rule for transmission delays in this work
which is a Hebbian adaptation system in nature. For lateral
synaptic connections, also a Hebbian mechanism is used to
adjust the weights, as described below.

In the adaptation process, both weights and delays of those
neurons which were able to produce an output spike are
adjusted using (9), which is a special type of spike time
dependent plasticity (STDP). Note that in (9) it is assumed
that the neuron i is the winner (fired first spike), j is the index
of input sensory neuron, m and n are the indexes of the other
spiking neurons in the processing layer with mt and nt as

output spike times, respectively, mnw is the synaptic weight

connecting neuron n to m, and mnz is the spatial distance
between two neurons m and n.

)2exp(),(

),exp()1)(,(
),exp()1)(,(

))(,(

22

2

1

σ

τη
τη

η

mn

nmmnmnw

nmnmmnw
mn

mjjdmj

znmh

ttttwnmh
ttttwnmh

w

dximhd

−=
⎩
⎨
⎧

<−+−
≥−−+

=∆

−=∆

(9)

Note that there is a general neighborhood function,),(nmh
which limits the adjustments applied to the neurons with high
distances, using parameterσ . In lateral weight adaptation
mechanism there exists a limiting factor,)1(mnwm , which

saturates the weight on 1± values when weight tends to grow
unbounded. Note that when pre-synaptic neuron fires before
post-synaptic neuron, there is an increase in weight value with
a time constant of 1τ , and synaptic weight decreases when
post-synaptic neuron fires before pre-synaptic neuron with a
time constant of 2τ . Learning steps can be controlled through

dη and wη .
Using these adaptation mechanisms, this network exhibits

an especial dynamic behavior, like what is seen in self-
organizing maps (SOMs). In Fig.2 an example of applying
this network over a random distribution of two dimensional
input data is shown. After several epochs of simulation, delay
vectors of network would be organized to represent input
space cluster distributions. Lateral weights adaptation helps to
improve the clustering process and faster movement of delay
vector to desired locations in input space.

III. APPLICATION TO MOBILE ROBOT ENVIRONMENT
REPRESENTATION AND PATH PLANNING

A. Environment Representation
In previous sections it was shown that after several training

epochs the presented self-organizing spiking neural network
can adapt its delay vectors to input space distribution. In a
path planning problem for a given map, all free non-obstacle
places can be viewed as input clusters and the network task as

Fig.2 Different steps of self-organizing behavior of network over
random inputs to the network (black dots). Up: nodes configuration
after several steps of training. Bottom: nodes structure after finishing
training phase

internal representation builder is to detect and classify these
areas as walk-able locations of map. In this way, any delay
vector is named as a node in the map, and has two variables
related to coordinates of input location (x,y). This definition
can be extended to 3-dimensional spaces easily. It is supposed
that mobile robot is equipped with location recording systems
like GPS or odometer. Also it is assumed that robot has
elementary obstacle detection and anti-collusion devices.

To specify links or tracks for robot movement, nodes of six
neighbor processing neurons are connected to form a topology
of neurons representing internal map. For a given start and
goal positions, robot has to plan a path to navigate through
obstacles to the goal point (path planning algorithm is
discussed in next section). In each movement step, the
coordinates of robot’s position are used as input values to the
network to run a simulation and adaptation process. Fig.3 is an
example of a movement and its associated effect on node
positions. The overall effect is the movement of network
nodes to the locations which robot were there, i.e. free
locations. For known maps, the internal representation
formation can be done in offline manner, without forcing
robot to move to every free location. For unknown maps, a
search and exploration phase can be applied to robot with
manually or randomly chosen starting and goal points. In this
case closer start and finish points are desirable. Fig.3 shows an
example of an unknown environment for robot and the effect
of movement in this space on internal representation.

World Academy of Science, Engineering and Technology 6 2005

51

B. Path Planning
One of the famous and efficient path planning algorithms is

the A* [3]. An A* path finding system is an optimization
algorithm with modified best-first-search (BFS) strategy
which uses a heuristic travel cost estimation. For an A*
algorithm, environment is represented with cells or grids
where robot can or can not move on. Algorithm begins
searching with neighbor cells of start point and calculates cost
of movement to each next cell (excluding blocked cells and
previous moved ones) associated with general heuristic cost
approximation to travel from next point to goal. The algorithm
continues with selecting best next cell with lower cost and
then doing the same steps again for this new one. A cost
estimation correction phase is also implemented in this level
for shared neighbors of new and previous cell. For more
details on this powerful method refer to [3].

 The modification applied to the original A* algorithm are
the redefinitions of cells and links which are necessary to
make it compatible with network internal map representation.
The first modification is to replace the concept of cells with
delay nodes. For a given start node, the algorithm is the same
except that any neighbor node which has a blocked link or
itself is on obstacle is discarded from search algorithm
temporarily. The discarded node may be entered in search list
again in next steps, in contrast to original A* which the
blocked cells are completely removed from the search list. In
this way, only the previously traveled links are added to
closed list in addition with the links which end node is on the
obstacle location. There is another issue to be noted about
start and finish locations. Because this algorithm uses nodes
instead of cells positions, it is possible to define start or finish
point not on the internal map nodes. In this situation, a new
representative node will be added to the network on this point
with linking and altering the original map to a new one with a
node on start or stop point.

IV. DISCUSSION
It is obvious from example presented in Fig.3 that this

method has a good performance even for complex maze type
obstacle configurations. Also the modified A* algorithm is
much faster than the original one, especially when the robot
size is much smaller than the length and width of map. The
main reason is that this new algorithm only needs to search a
smaller number of nodes and links compared to original A*,
making it very efficient for large maps. Another benefit of this
algorithm is that it can be applied for unknown environments
without any supervision, since robot gradually makes its own
representation from interaction with environment (i.e.
exploration).

The main drawback is that in some area of the map with
very narrow passages, this algorithm may not be able to find a
path comparing to A* which is guaranteed to find at least a
path if any exists. This situation is compensated by adding
additional random nodes to the complex areas. Also, adding
turning angle penalty to overall cost results in smoother path
planning between nodes.

From modeling view, this system is based purely on a
biological computation basis, with a successful application of
a brain-like processing model to a real world problem.
Neuronal synchronization and coherency formation are one of
the challenging problems in modeling brain activities. This
model is also based on synchronization of different neurons in
processing layer with a coherent oscillation, named reference
spike. Also a biological plausible adaptation mechanism,
which is a Hebbian-like learning system, is used to adjust
network parameters to proper values in a self-organizing
manner.

Fig.3 The effect of learning environment, circles represent initial
internal map nodes, before learning environment, X represent current
node positions. Up: changes in internal representation due to
movement from start to goal points, the path is shown by dots.
Bottom: internal representation after several movements in area

REFERENCES
[1] W. Gerstner, W. M. Kistler, Spiking Neuron Model: Single Neuron,

Populations, and Plasticity. Cambridge University Press 2002.
[2] W. Maass, “Lower Bounds for the Computational Power of Spiking

Neurons” Neural Computation, vol. 8, pp 1-40, 1996.
[3] A. J. Patel “Game Programming: Path Planning”, [Online], http://www-

cs-students.stanford.edu/~amitp/gameprog.html#Paths.
[4] Y. Choe, “Perceptual Grouping in a Self-Organizing Map of Spiking

Neurons” Ph.D. dissertation, University of Texas at Austin, 2001.
[5] R. Eckhorn, M. Arndt, P. Dike, “Feature Linking via Synchronization

Among Distributed Assemblies: Simulation Results from Cat Visual
Cortex” Neural Computation, vol. 2, pp 293-307, 1990.

[6] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, H. J.
Reitboeck, “Coherent Oscillations: A Mechanism of Feature Linking in
the Visual Cortex?” Biological Cybernetics, vol. 60, pp 121-130, 1988.

[7] C. W. Eurich, K. Pawelzik, U. Ernst, A. Theil, J. D. Cowan, J. G. Milton
“Delay Adaptation in the Nervous System” Neurocomputing, vol. 32-33,
pp 741-748, 2000.

World Academy of Science, Engineering and Technology 6 2005

52

