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Abstract: The paper presents the application of the reinforcement learning for the autonomous
mobile robot moving learning in an unknown, stationary environment. The robot movement policy
was represented by a probabilistic RBF neural network. The network proved to be very attractive
tool, which enabled efficient, simple and fast approximation of the state value function.
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1. Introduction

One of the most interesting machine learning methods is a reinforcement learning. The
learning is based on gaining a procedural knowledge (skill) during intermediate interactions
with an environment in which this skill will be used to perform a given task. A learning
system/agent doesn’t need any a priori knowledge about an environment and it even doesn’t
need to know explicitly a task that it learns to perform. During interactions with an
environment an agent receives only a scalar “reward” or “reinforcement” feedback signal
indicating how good or bad its action was and on that base it tries to adapt its future action
policy to receive better rewards [12].

The reinforcement learning is a very universal approach but it is often very hard in a
practical realisation. It is the reason why other learning methods, like supervised learning for
example, are much more popular. One of the main difficulties is a delay (sometimes very
large) of an environment reward. Another problem is frequent stochastic and nonstationary
character of an environment.

The reinforcement learning (RL) is very close to human learning, because a man obtains
a lot of his skills by a trial and error method, so RL is potentially one of the best approaches
to creating really intelligent systems. The RL was successfully used for many practical
applications from a strategy learning in board games [12,13] to learning given behaviours of
mobile robots [1,4,5,6,7].

The paper presents the application of the RL to the autonomous mobile robot moving

learning in an unknown, stationary environment.



2. Reinforcement learning
Generally, we can say that during the RL we want to find an optimal action policy in an
unknown environment to solve a given task. A learner can observe a state of an environment
and on the base of its value it chooses its action according to its current policy. At the
beginning, a policy is taken arbitrarily, so it is very typical for a learning process that learner
makes a lot of wrong actions. The learner makes errors and receives a reinforcement/reward
feedback signal from the environment. On the base of this information it tries to improve its
policy.

A policy depends only on an environment state, so during learning a learner is to find an

optimal mapping from perceived states to action to be taken when in those states:
7. X —>A,
where: 7— a policy,
X — a set of environment states,
A — a set of possible learner actions [3,12].

A schematic diagram of the RL is presented in Fig. 1.

for all learning steps t
observe an environment state X;
choose an action a; to be taken in a state X;
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A A observe a reinforcement r;
observe a next state X
on the base of an experience < X, a, I, X+1>
X1 Nt improve a policy
end
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Fig. 1. A schematic diagram and the basic algorithm of the RL [3].

For a current learner policy 7, we can define a value function that is a mapping from
states to the total amount of reward an agent can expect to accumulate over the future, starting

from that state:
V”(x)=E{Zw-n|x0=x}, (1)
t=0

where: E . — expected (for the policy ) sum of future rewards Iy,
7 €(0,]] - discount rate, which determines that rewards received in the future are less

worth for the state value.



During the RL a learner looks for an optimal policy 7 — the policy for which it will
always receive the best rewards from an environment. For such a policy, the value function
V7 (x) is always biggest or equal to the value function V*(X) for any policy 7.

If the optimal value function V7 (X) is known, we can easily find an optimal action
policy 7 as a greedy policy to V7 (X). A greedy policy to V(X) always chooses its action to

maximize an immediate reward and a discounted next state value of a value function V(X).

2.1. TD algorithm

One of the most important RL methods is a temporal difference (TD) algorithm. In this
algorithm we’ll try to find the optimal value function V™ (X). At the beginning, the V(X)
function is initiated arbitrarily (often in a random way). During succeeding learning steps, the
function is modified on the base of observed experiences < X, ai, I't, Xt+1>. The modification

rule can be written as:

Ve (X) =V, (x)+7-A, @)
where: 17 — step-size parameter, which influences the rate of learning, and:
A =147V (%)= Ve (x,). 3)

V, (Xt) — is the value of the current value function and r, + -V, (Xt +1) —is a sum of a reward

received in a step t and a discounted value of the next state — it is probably better evaluation
of real value of a V*(x) (for a current policy 7) than Vi(x;) [11,13].

If actions will always be chosen such that a value of the next value function is maximal,

then our policy will be greedy to the function V(X). Equations (2) and (3) can be written as:
Ve (0) = (1=7)-V, (x)+7- (rt +7- mgx Ve (X )j : 4)

An operator max, means choosing the greedy policy. Iterative improving of the value
function while applying the greedy policy leads to a convergence to the optimal value
function V* (x), for which the optimal policy can be easily found as greedy to it.

Described method of finding the optimal policy works well for a finite number of states
and actions. In the case of a continuous set of states and actions, the learning becomes more
complicated. We must use continuous mapping z: X — A, and in practice it is easiest to
model continuous value function V(X) and to choose actions according to the policy that is
greedy to V(X).

For modelling of a policy by the value function V(X) we can use any modelling method,

but it must have:



— apossibility of an iterative improving (a possibility of learning in an incremental mode),
— apossibility of learning on the base of an infinite number of data,
— asmall amount of calculations needed for a function actualisation [3].
Neural networks are often preferred method of a modelling and in the paper there is

applied the probabilistic RBF neural network (PRBF NN).

2.2. Probabilistic RBF neural network

The PRBF NN can be successfully applied for classification and approximation tasks. It can
be classified to memory-based function approximation methods, but it has some parameters
that can be tuned too, so it is possible to easy control an approximation quality [8,9].

The PRBF NN works with a data set in which each sample consists on a pair <X, yp>,
where: X, — a neural network input vector and Yy, — a given network output, p =1 ... L. The
number of RBF neurons in the network is equal to the number of samples from the data set
and a centre of each neuron “lies” in the input vector Xp. A parameter that can be tuned in the
PRBF NN is a width (op) of neurons [9]. It can be the same or different for each neuron.
Another parameter can be the Yy, value.

A PRBF NN output is calculated from the formula:

b efuton]

y(X) == _— : (5)
ZGXP{‘W;)Z(XJ' ~ Xpj )2]

where: n — a network inputs number,

Wp — a weight which defines a RBF neuron width: w, = 1/(20'?, )

In the paper the PRBF NN was applied for the modelling of the value function V(x). The
network has the constant number of neurons and the constant weight wp. Yy, values will be
parameters that will adapt during learning process.

The main advantages of the PRBF NN are easiness of learning and interpretation of its
parameters values (both: wy and yp) — differently from perceptron multilayer NN. The network
enables modelling of any complex continuous mapping. It can be used in an incremental
learning mode and its adaptation process is fast and not complicated. The main disadvantage
of the PRBF NN can be possible slow work in the case of a large amount of samples/RBF

neurons.



3. Reinforcement learning of the mobile robot movement policy
A RL task will be the learning of a policy of a mobile robot moving in an unknown, stationary

environment with a given, constant (and known to the learner) target point.
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Fig. 2. The state and action of the robot and exemplary locations of RBF neurons.

A robot state is defined by its location in a stationary coordinate system X=(X;,Xz)
(simplified notation x will be used later) and its action is defined by chosen given movement
direction y, Fig. 2. Both the state and the action are continuous signals. The value function
V(X) is modelled by the PRBF NN. Centres of neurons are placed uniformly in the entire envi-
ronment and are constant, Fig. 2. One additional neuron is placed in the robot target point.
During learning, only Y, values (connected with each neuron) will be changed. Neurons with
positive value of y, have their width two times bigger than neurons with negative Yy, value.

The learning process is very sensitive to a value function V(X) initialisation method. As
it was said before, V(X) can be initiated arbitrarily. For example it can be random or equal for
the entire environment, but by proper initialisation of V(X) we can introduce to the learning
system same a priori knowledge. In our case, to initialise V(X) we must set a certain beginning
value Y, for all RBF neurons. It can be calculated as:

X, -]
Yp =B-exp| ——————|, (6)
20x
where: Xt — coordinates of the target point,
or — a Gauss function width (dependent on the environment size),
B — a constant, taken empirically.
Such method of V(X) initialisation cause that function maximum is in the target point

and choosing the policy that is greedy to V(x) will always produce the effect of robot moving



towards that point. Beginning robot location is chosen randomly (but of course it can’t be

placed inside obstacles) and next the robot starts to move according to a greedy policy.

In each step (ts) the robot reads its sensor values and checks if there is any obstacle on

its movement way. If the robot detects anything it stops, next it turns randomly left or right by

135° and it moves straight for a given steps number.

In each learning step t (taken every tenth step ts in experiments), if there is no obstacle,

the robot chooses new action (direction of its movement) and the V(X) function is adapted

(learned). The learning process is described exactly below.

1.

In each learning step the robot tests values of V(Xt1) in a radius defining possible robot
positions in a next learning step, Fig. 3. The radius can be easy counted when we know
the robot speed. After testing, we know the state Xi+; for which the V(Xi ;) takes the
maximum value and in that way we know the new movement direction (according to the

greedy policy).

Fig. 3. Searching for a new greedy action.

The robot checks the environment. If it finds any obstacle in its neighbourhood it receives
a small negative reinforcement (r;) and after reaching the target point (with a given
accuracy) it receives a large positive reinforcement (r,) — a reward.

A value of the value function in a previous learning step V(X.;) is modified on the base of

the received reward (r; or ;) and the current value V(X;) taken earlier in a greedy way:
Ve (X1 ) = (=7)- Ve (x )+ 7+ (rm +7- m;tXVt (%, )) . (7

Formula (7) describes the way of V(X) adaptation according to a TD algorithm. It could be
difficult to apply in practice but we can use approximate formula in which the y, value of
the RBF neuron is changed instead of the exact V(X) value. Finally, the learning process

can be described as:

y’; 4 (X:—l ): (l - 77)' y:),t (X:—l )+ n: (rtl +7- myf‘XVt (Xt )j ) (7



where variables with “star” mean state X and value Yy, connected with the RBF neuron
which is closest to real state Xt.i.
4. The robot saves the current state and takes the new action/direction found in point 1.

After realisation of points 1-4 in each learning step, the robot continues moving in the
taken direction. After reaching the target point, a new start point is taken randomly and the
learning process is continued. The entire stage of learning (from start point to end point) can
be called a learning epoch.

During learning the robot can get stuck in a local value function maximum. We can
easy prevent it by testing the robot location every some given time (500 learning steps in
experiments). If the state change is lower than a given threshold it can mean that the robot
gets stuck and moves around V(X) maximum. Then a greedy policy can be changed for a
random movement direction for some time and the robot can go away from the maximum
point. After some time the robot returns to the previous learning mode.

The learning process is very sensitive to parameters taken by a system designer. Wrong
parameter values can even make that the learning process becomes impossible. The most
important learning parameters are:

— the way of value function V(X) initialisation,
— reinforcement values r; and r,

— RBF neurons weights Wy (widths op),

— step-size parameter 7,

— discount rate y,

— learning step.

4. Experiments

There were made a lot of experiments of learning of the robot in environments with different
difficulty degree. Parameters described in previous sections were set as follow: B = 10,
rn=-0.1,r,=2.5,7=0.1, y=0.9.

Fig. 4 presents robot movement trajectories in different movement phases. In the Fig. 4a
we can see a chaotic robot movement which tries (with a trail and error method) to reach the
target point through the obstacle. In that phase the robot learns the obstacle position. Figs. 4b
and 4c¢ present the second learning phase (after 10 and 20 epochs) in which the robot “knows”
the obstacle position and doesn’t try to move close to it. Fig. 4d presents the trajectory of the

robot movement after learning (50 epochs).



Fig. 4. Successive learning phases in the environment no 1.

Fig. 5 presents trajectories of the robot movement in the environment with a bigger
number of obstacles (after 100 learning epochs). In the Fig. 6 we can see a much more
complicated environment and exemplary trajectories of movement after 500 learning epochs.

Learned movement policies are characterised by very safe and smooth movement
trajectories, which are located in a large distance from obstacles. Trajectories presented in
Figs. 4-6 are very close to optimal ones and their shapes are similar to trajectories found by a
potential fields method [2,10]. Fig. 7 presents the surface of the value function before (a) and

after (b) learning in the environment no 3.

5. Conclusions
The PRBF NN turned out to be an efficient way of the value function V(X) approximation.

The network learns fast and its parameters can be easily interpreted.
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Fig. 5. Trajectories of the robot movement in the environment no 2.

The network can work with problems for large environments where large number of
RBF neurons is needed to ensure good mapping quality. In such cases, the network can work
slowly and it can’t be used in controlling the robot movement in real time. So, the next
research direction will be connected with the reduction of the RBF neurons number. Some
neurons can be removed from the network without a (sensible for controlling) loss of quality
of the approximation.

Mentioned PRBF NN disadvantage doesn’t reduce its usability. The PRBF NN is a very
attractive tool which enables efficient, simple and fast approximation of value function and in
that way it can represent an information about the optimal policy which the robot can learn

with the RL application.
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Fig. 6. Trajectories of the robot movement in the environment no 3.

Fig. 7. The surface of the value function before (a) and after (b) learning in the environment no 3.



References

1.

10.

11.

12.

13.

BEKEY G.E., Autonomous robots (from biological inspiration to implementation and
control), The MIT Press, 2005.

CHOSET H. at all, Principles of robot motion (theory, algorithms and implementation),
The MIT Press, 2005.

CICHOSZ P., Learning systems, Wydawnictwa Naukowo-Techniczne, Warszawa, 2000
(in polish).

CONNELL J.,, MAHADEVAN S., Rapid task learning for real robots, In Robot Learning,
Kluwer Academic Publishers, 1993.

KAELBLING L.P., LITTMAN M.L., MOORE A.W., Reinforcement learning: A survey,
Journal of Artificial Intelligence Research, vol. 4, pp. 237-285, 1996.

LONG-JI LIN, Hierarchical learning of robot skills by reinforcement, Proceedings of the
International Conference on Neural Networks, 1993.

MILLAN J.R., Rapid, safe, and incremental learning of navigation strategies, IEEE
Transactions on Systems, Man, and Cybernetics, 26(3), 1996.

MOORE A.W., ATKESON C.G., An investigation of memory-based function
approximators for learning control, Technical report, MIT Artificial Intelligence
Laboratory, Cambridge, MA, 1992.

PLUCINSKI M., Application of the probabilistic RBF neural network in multidimensional
classification problems, In Advanced Computer Systems, Kluwer Academic Publishers,
pp. 49-57, 2002.

PLUCINSKI M., KORZEN M., Application of the Peano curve for the robot trajectory
generating, Proceedings of the 13™ International Multi-Conference on “Advanced
Computer Systems”, Miedzyzdroje, Poland, pp. 43-52, 2006.

SUTTON R.S., Learning to predict by the methods of temporal differences, Machine
Learning, vol. 3, pp. 9-44, 1992.

SUTTON R.S., BARTO A.G., Reinforcement learning: An introduction, The MIT Press,
1998.

TESAURO G., Practical issues in temporal differences learning, Machine Learning,
vol. &, pp. 257-277, 1992.



