
Application of the probabilistic RBF neural network

in the reinforcement learning of a mobile robot

Marcin Pluciński

Faculty of Computer Science and Information Technology,
Szczecin University of Technology, Żołnierska 49, 71-210 Szczecin, Poland,

mplucinski@wi.ps.pl

Abstract: The paper presents the application of the reinforcement learning for the autonomous

mobile robot moving learning in an unknown, stationary environment. The robot movement policy

was represented by a probabilistic RBF neural network. The network proved to be very attractive

tool, which enabled efficient, simple and fast approximation of the state value function.

Keywords: reinforcement learning, probabilistic RBF neural network, mobile robot

1. Introduction

One of the most interesting machine learning methods is a reinforcement learning. The

learning is based on gaining a procedural knowledge (skill) during intermediate interactions

with an environment in which this skill will be used to perform a given task. A learning

system/agent doesn’t need any a priori knowledge about an environment and it even doesn’t

need to know explicitly a task that it learns to perform. During interactions with an

environment an agent receives only a scalar “reward” or “reinforcement” feedback signal

indicating how good or bad its action was and on that base it tries to adapt its future action

policy to receive better rewards [12].

The reinforcement learning is a very universal approach but it is often very hard in a

practical realisation. It is the reason why other learning methods, like supervised learning for

example, are much more popular. One of the main difficulties is a delay (sometimes very

large) of an environment reward. Another problem is frequent stochastic and nonstationary

character of an environment.

The reinforcement learning (RL) is very close to human learning, because a man obtains

a lot of his skills by a trial and error method, so RL is potentially one of the best approaches

to creating really intelligent systems. The RL was successfully used for many practical

applications from a strategy learning in board games [12,13] to learning given behaviours of

mobile robots [1,4,5,6,7].

The paper presents the application of the RL to the autonomous mobile robot moving

learning in an unknown, stationary environment.

2. Reinforcement learning

Generally, we can say that during the RL we want to find an optimal action policy in an

unknown environment to solve a given task. A learner can observe a state of an environment

and on the base of its value it chooses its action according to its current policy. At the

beginning, a policy is taken arbitrarily, so it is very typical for a learning process that learner

makes a lot of wrong actions. The learner makes errors and receives a reinforcement/reward

feedback signal from the environment. On the base of this information it tries to improve its

policy.

A policy depends only on an environment state, so during learning a learner is to find an

optimal mapping from perceived states to action to be taken when in those states:

,: AX →π

where: π – a policy,

 X – a set of environment states,

 A – a set of possible learner actions [3,12].

A schematic diagram of the RL is presented in Fig. 1.

LEARNER

ENVIRONMENT

action
at = π(xt)

state
xt+1

reward
rt

Fig. 1. A schematic diagram and the basic algorithm of the RL [3].

 For a current learner policy π, we can define a value function that is a mapping from

states to the total amount of reward an agent can expect to accumulate over the future, starting

from that state:

 () ⎥
⎦

⎤
⎢
⎣

⎡
=⋅= ∑

∞

=0
0

t
t

t xxrExV γπ
π , (1)

where: Eπ – expected (for the policy π) sum of future rewards rt,

(]10,∈γ – discount rate, which determines that rewards received in the future are less

worth for the state value.

for all learning steps t
 observe an environment state xt
 choose an action at to be taken in a state xt
 (according to current policy)
 perform an action at

 observe a reinforcement rt

 observe a next state xt+1
 on the base of an experience < xt, at, rt, xt+1>
 improve a policy
end

 During the RL a learner looks for an optimal policy π* – the policy for which it will

always receive the best rewards from an environment. For such a policy, the value function

Vπ*(x) is always biggest or equal to the value function Vπ(x) for any policy π.

 If the optimal value function Vπ*(x) is known, we can easily find an optimal action

policy π* as a greedy policy to Vπ*(x). A greedy policy to V(x) always chooses its action to

maximize an immediate reward and a discounted next state value of a value function V(x).

2.1. TD algorithm

One of the most important RL methods is a temporal difference (TD) algorithm. In this

algorithm we’ll try to find the optimal value function Vπ*(x). At the beginning, the V(x)

function is initiated arbitrarily (often in a random way). During succeeding learning steps, the

function is modified on the base of observed experiences < xt, at, rt, xt+1>. The modification

rule can be written as:

 () () Δ⋅+=+ ηxVxV tt 1 , (2)

where: η – step-size parameter, which influences the rate of learning, and:

 () ()ttttt xVxVr −⋅+=Δ +1γ . (3)

()tt xV – is the value of the current value function and ()1+⋅+ ttt xVr γ – is a sum of a reward

received in a step t and a discounted value of the next state – it is probably better evaluation

of real value of a Vπ(x) (for a current policy π) than Vt(xt) [11,13].

 If actions will always be chosen such that a value of the next value function is maximal,

then our policy will be greedy to the function V(x). Equations (2) and (3) can be written as:

 () () () ()⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅+⋅−= ++ 11 max1 tt

a
ttt xVrxVxV γηη . (4)

 An operator maxa means choosing the greedy policy. Iterative improving of the value

function while applying the greedy policy leads to a convergence to the optimal value

function Vπ*(x), for which the optimal policy can be easily found as greedy to it.

 Described method of finding the optimal policy works well for a finite number of states

and actions. In the case of a continuous set of states and actions, the learning becomes more

complicated. We must use continuous mapping ,: AX →π and in practice it is easiest to

model continuous value function V(x) and to choose actions according to the policy that is

greedy to V(x).

 For modelling of a policy by the value function V(x) we can use any modelling method,

but it must have:

− a possibility of an iterative improving (a possibility of learning in an incremental mode),

− a possibility of learning on the base of an infinite number of data,

− a small amount of calculations needed for a function actualisation [3].

Neural networks are often preferred method of a modelling and in the paper there is

applied the probabilistic RBF neural network (PRBF NN).

2.2. Probabilistic RBF neural network

The PRBF NN can be successfully applied for classification and approximation tasks. It can

be classified to memory-based function approximation methods, but it has some parameters

that can be tuned too, so it is possible to easy control an approximation quality [8,9].

The PRBF NN works with a data set in which each sample consists on a pair <Xp, yp>,

where: Xp – a neural network input vector and yp – a given network output, p = 1 ... L. The

number of RBF neurons in the network is equal to the number of samples from the data set

and a centre of each neuron “lies” in the input vector Xp. A parameter that can be tuned in the

PRBF NN is a width (σp) of neurons [9]. It can be the same or different for each neuron.

Another parameter can be the yp value.

 A PRBF NN output is calculated from the formula:

 ()
()

()∑ ∑

∑ ∑

= =

= =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−⋅

=
L

p

n

j
pjjp

L

p

n

j
pjjpp

xxw

xxwy

y

1 1

2

1 1

2

exp

exp

X , (5)

where: n – a network inputs number,

 wp – a weight which defines a RBF neuron width: ()221 pp /w σ= .

 In the paper the PRBF NN was applied for the modelling of the value function V(x). The

network has the constant number of neurons and the constant weight wp. yp values will be

parameters that will adapt during learning process.

 The main advantages of the PRBF NN are easiness of learning and interpretation of its

parameters values (both: wp and yp) – differently from perceptron multilayer NN. The network

enables modelling of any complex continuous mapping. It can be used in an incremental

learning mode and its adaptation process is fast and not complicated. The main disadvantage

of the PRBF NN can be possible slow work in the case of a large amount of samples/RBF

neurons.

3. Reinforcement learning of the mobile robot movement policy

A RL task will be the learning of a policy of a mobile robot moving in an unknown, stationary

environment with a given, constant (and known to the learner) target point.

x1

x2

ψ

(x1, x2)

target point

RBF neuron centres

Fig. 2. The state and action of the robot and exemplary locations of RBF neurons.

 A robot state is defined by its location in a stationary coordinate system X=(x1,x2)

(simplified notation x will be used later) and its action is defined by chosen given movement

direction ψ, Fig. 2. Both the state and the action are continuous signals. The value function

V(x) is modelled by the PRBF NN. Centres of neurons are placed uniformly in the entire envi-

ronment and are constant, Fig. 2. One additional neuron is placed in the robot target point.

During learning, only yp values (connected with each neuron) will be changed. Neurons with

positive value of yp have their width two times bigger than neurons with negative yp value.

 The learning process is very sensitive to a value function V(x) initialisation method. As

it was said before, V(x) can be initiated arbitrarily. For example it can be random or equal for

the entire environment, but by proper initialisation of V(x) we can introduce to the learning

system same a priori knowledge. In our case, to initialise V(x) we must set a certain beginning

value yp for all RBF neurons. It can be calculated as:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
⋅= 2

2

2
exp

R

Tp
p By

σ

XX
, (6)

where: XT – coordinates of the target point,

 σR – a Gauss function width (dependent on the environment size),

 B – a constant, taken empirically.

 Such method of V(x) initialisation cause that function maximum is in the target point

and choosing the policy that is greedy to V(x) will always produce the effect of robot moving

towards that point. Beginning robot location is chosen randomly (but of course it can’t be

placed inside obstacles) and next the robot starts to move according to a greedy policy.

 In each step (ts) the robot reads its sensor values and checks if there is any obstacle on

its movement way. If the robot detects anything it stops, next it turns randomly left or right by

135° and it moves straight for a given steps number.

 In each learning step t (taken every tenth step ts in experiments), if there is no obstacle,

the robot chooses new action (direction of its movement) and the V(x) function is adapted

(learned). The learning process is described exactly below.

1. In each learning step the robot tests values of V(xt+1) in a radius defining possible robot

positions in a next learning step, Fig. 3. The radius can be easy counted when we know

the robot speed. After testing, we know the state xt+1 for which the V(xt+1) takes the

maximum value and in that way we know the new movement direction (according to the

greedy policy).

V(xt+1) = ?

V(xt)

Fig. 3. Searching for a new greedy action.

2. The robot checks the environment. If it finds any obstacle in its neighbourhood it receives

a small negative reinforcement (r1) and after reaching the target point (with a given

accuracy) it receives a large positive reinforcement (r2) – a reward.

3. A value of the value function in a previous learning step V(xt-1) is modified on the base of

the received reward (r1 or r2) and the current value V(xt) taken earlier in a greedy way:

 () () () ()⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅+⋅−= −−−+ ttttttt xVrxVxV

ψ
γηη max1 1111 . (7)

Formula (7) describes the way of V(x) adaptation according to a TD algorithm. It could be

difficult to apply in practice but we can use approximate formula in which the yp value of

the RBF neuron is changed instead of the exact V(x) value. Finally, the learning process

can be described as:

 () () () ()⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅+⋅−= −−−+ ttt

*
t

*
t,p

*
t

*
t,p xVrxyxy

ψ
γηη max1 1111 , (7)

where variables with “star” mean state x and value yp connected with the RBF neuron

which is closest to real state xt-1.

4. The robot saves the current state and takes the new action/direction found in point 1.

 After realisation of points 1-4 in each learning step, the robot continues moving in the

taken direction. After reaching the target point, a new start point is taken randomly and the

learning process is continued. The entire stage of learning (from start point to end point) can

be called a learning epoch.

 During learning the robot can get stuck in a local value function maximum. We can

easy prevent it by testing the robot location every some given time (500 learning steps in

experiments). If the state change is lower than a given threshold it can mean that the robot

gets stuck and moves around V(x) maximum. Then a greedy policy can be changed for a

random movement direction for some time and the robot can go away from the maximum

point. After some time the robot returns to the previous learning mode.

 The learning process is very sensitive to parameters taken by a system designer. Wrong

parameter values can even make that the learning process becomes impossible. The most

important learning parameters are:

− the way of value function V(x) initialisation,

− reinforcement values r1 and r2,

− RBF neurons weights wp (widths σp),

− step-size parameter η,

− discount rate γ,

− learning step.

4. Experiments

There were made a lot of experiments of learning of the robot in environments with different

difficulty degree. Parameters described in previous sections were set as follow: B = 10,

r1 = –0.1, r2 = 2.5, η = 0.1, γ = 0.9.

 Fig. 4 presents robot movement trajectories in different movement phases. In the Fig. 4a

we can see a chaotic robot movement which tries (with a trail and error method) to reach the

target point through the obstacle. In that phase the robot learns the obstacle position. Figs. 4b

and 4c present the second learning phase (after 10 and 20 epochs) in which the robot “knows”

the obstacle position and doesn’t try to move close to it. Fig. 4d presents the trajectory of the

robot movement after learning (50 epochs).

Fig. 4. Successive learning phases in the environment no 1.

 Fig. 5 presents trajectories of the robot movement in the environment with a bigger

number of obstacles (after 100 learning epochs). In the Fig. 6 we can see a much more

complicated environment and exemplary trajectories of movement after 500 learning epochs.

 Learned movement policies are characterised by very safe and smooth movement

trajectories, which are located in a large distance from obstacles. Trajectories presented in

Figs. 4-6 are very close to optimal ones and their shapes are similar to trajectories found by a

potential fields method [2,10]. Fig. 7 presents the surface of the value function before (a) and

after (b) learning in the environment no 3.

5. Conclusions

The PRBF NN turned out to be an efficient way of the value function V(x) approximation.

The network learns fast and its parameters can be easily interpreted.

a)

c) d)

b)

Fig. 5. Trajectories of the robot movement in the environment no 2.

 The network can work with problems for large environments where large number of

RBF neurons is needed to ensure good mapping quality. In such cases, the network can work

slowly and it can’t be used in controlling the robot movement in real time. So, the next

research direction will be connected with the reduction of the RBF neurons number. Some

neurons can be removed from the network without a (sensible for controlling) loss of quality

of the approximation.

 Mentioned PRBF NN disadvantage doesn’t reduce its usability. The PRBF NN is a very

attractive tool which enables efficient, simple and fast approximation of value function and in

that way it can represent an information about the optimal policy which the robot can learn

with the RL application.

a)

c) d)

b)

Fig. 6. Trajectories of the robot movement in the environment no 3.

Fig. 7. The surface of the value function before (a) and after (b) learning in the environment no 3.

a)

c) d)

b)

a) b)

References

1. BEKEY G.E., Autonomous robots (from biological inspiration to implementation and

control), The MIT Press, 2005.

2. CHOSET H. at all, Principles of robot motion (theory, algorithms and implementation),

The MIT Press, 2005.

3. CICHOSZ P., Learning systems, Wydawnictwa Naukowo-Techniczne, Warszawa, 2000

(in polish).

4. CONNELL J., MAHADEVAN S., Rapid task learning for real robots, In Robot Learning,

Kluwer Academic Publishers, 1993.

5. KAELBLING L.P., LITTMAN M.L., MOORE A.W., Reinforcement learning: A survey,

Journal of Artificial Intelligence Research, vol. 4, pp. 237-285, 1996.

6. LONG-JI LIN, Hierarchical learning of robot skills by reinforcement, Proceedings of the

International Conference on Neural Networks, 1993.

7. MILLAN J.R., Rapid, safe, and incremental learning of navigation strategies, IEEE

Transactions on Systems, Man, and Cybernetics, 26(3), 1996.

8. MOORE A.W., ATKESON C.G., An investigation of memory-based function

approximators for learning control, Technical report, MIT Artificial Intelligence

Laboratory, Cambridge, MA, 1992.

9. PLUCIŃSKI M., Application of the probabilistic RBF neural network in multidimensional

classification problems, In Advanced Computer Systems, Kluwer Academic Publishers,

pp. 49-57, 2002.

10. PLUCIŃSKI M., KORZEŃ M., Application of the Peano curve for the robot trajectory

generating, Proceedings of the 13th International Multi-Conference on “Advanced

Computer Systems”, Międzyzdroje, Poland, pp. 43-52, 2006.

11. SUTTON R.S., Learning to predict by the methods of temporal differences, Machine

Learning, vol. 3, pp. 9-44, 1992.

12. SUTTON R.S., BARTO A.G., Reinforcement learning: An introduction, The MIT Press,

1998.

13. TESAURO G., Practical issues in temporal differences learning, Machine Learning,

vol. 8, pp. 257-277, 1992.

