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Abstract 

This paper deals with the problem of selecting heuristic algorithms for solving NP-hard 

problems using a causal approach. The first works pursued finding an algorithm which was 

the best for solving some problem. Subsequent works showed the superiority of an algorithm 

applied only to some instances subset. However, those works have been very limited in 

explaining why an algorithm outperforms another. In this paper a causal approach is proposed 

for providing explanations. It was applied to two variants of the Threshold Accepting 

algorithm and two variants of the Tabu Search algorithm, in solving the Bin Packing problem. 

As a result, a causal model was generated for each algorithm, whose interpretation showed 

quantitatively the factors that contributed the most to the superiority for each algorithm. 

Finally, we claim that this approach can be useful for the selection and redesign of algorithms. 
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Introduction 

A good alternative for solving very large instances of combinatorial optimization problems 

are heuristic algorithms1. Unfortunately, in real life situations, there is usually no algorithm 

that outperforms all the other algorithms for all instances2, and therefore, the problem of 

selecting the best algorithm arises. Several related works (Table 1) have experimentally 

analyzed algorithm behavior in order to find the best algorithm. Columns 2 and 3 indicate 

whether the algorithm analysis includes information from the parameter description (IPD) or 

from a sample of the solution space (IPS) of a problem instance. Columns 4, 5 and 6 indicate 

if the algorithm behavior (IAB), search trajectory (IST) and algorithm structure (IAS) are 

considered in the analysis. Column 7 indicates if the works present formal explanations. A 

survey of the specialized literature revealed the inexistence of a formal model that explains 

the association between indicators of problem instances and indicators of an algorithm that 

                                                 
1 Garey M. R.: Computers and Intractability, a Guide to the Theory of NP-completeness, W. H. Freeman and Company, 1979. 
2 Wolpert D. H., Macready W.G.: No Free Lunch Theorems for Optimization, IEEE Transactions on Evolutionary Computation, vol. 1, pp 
67-82, 1997. 



 
 

solves the instances successfully. Therefore, the problem of explaining why an algorithm 

dominates in an instance region is approached in this paper. The solution to this problem is 

important, since it may provide a solid foundation for the selection and redesign of algorithms 

for solving given instances of NP-hard problems. In this sense, the solution approach 

presented permits systematically finding relations between influencing indicators (columns 3-

6) of dominance of an algorithm and the inner workings of algorithms (column 7), in order to 

provide formal explanations through causal analysis. 
Table 1. Related works 

Problem Instances Indicators Algorithm IndicatorsWork 
IPD IPS IAB IST 

IAS Formal 
Explanation 

Soares3       
Pérez4       
Hoos5       
Lemeire6      
Pérez7      
This paper     

 

Problem Description 

The problem of explaining formally why an algorithm outperforms others in solving an 

instances subset can be described formally as follows: 

Let: 
I = {i1, i2, ..., im} a set of instances of problem P, 

R = {R1, R2, ..., Rn} a partition of I, 

A = {a1, a2, ..., an} a set of algorithms, 

 fp(aq, i) a function that evaluates the performance of an algorithm aq ∈ A when solving an 

instance i ∈ I, then, 

            B = {(aq ∈ A,  Rq ∈ R) |   fp(aq, i) > fp(α, i)  ∀ α ∈ (A – aq), ∀ i ∈ Rq }         (1)
 

i.e., B is a set of ordered pairs (aq, Rq), where each dominant algorithm aq ∈ A is associated to 

one element Rq of partition R. In the following sections each ordered pair (aq, Rq) will be used 

to mean the domination (superiority) region Rq of algorithm aq, and set B will stand for the 

domination regions of the algorithms. 

The problem can be stated as follows: is it possible to find relations between indicators that 

characterize instances I, and indicators that characterize the behavior of an algorithm aq 

                                                 
3 Soares C.: Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results, Journal of Machine Learning vol. 
50, No 3, pp 251-277, 2003. 
4 Pérez O., Pazos, R.: A Statistical Approach for Algorithm Selection, Lecture Notes in Computer Science, vol. 3059, pp 417-431, 2004. 
5 Hoos H., Smyth K.: Search Space Features Underlying the Performance of Stochastic Local Search Algorithms for MAX-SAT, 2004. 
6 Lemeire J., Dirkx E.: Causal Models for Parallel Performance Analysis, 2004. 
7 Pérez J.: Explaining Performance of the Threshold Accepting Algorithm for the Bin Packing Problem: A Causal Approach, 14th 
International Multi-conference, Advanced Computer Systems, Polish Journal of Environmental Studies, 2007. 



 
 

through a formal model M? Will model M provide solid foundations to explain why algorithm 

aq is the best for solving instances in subset Rq and not instances in subset (Rq)c? 

Causal Models 

Definition. A causal model can be defined as a causal Bayesian network8 M = (V, G, F),  

- V = {v1, v2, …, vn} is a set of observed discrete variables. 

- G is a directed acyclic graph with nodes corresponding to the elements of V that represents a 

causal structure C = (V, E); i.e., 

E = {E1, E2,…, En}, where each Ei ∈ E, Ei ={(vi, y1), (vi, y2), …, (vi, yn)} is a set of ordered 

pairs, where (vi, yk) is in Ei if and only if yk is a direct cause of vi relative to V, and there is a 

directed edge from yk to vi in G, where vi ∈ V and vi ≠ yk. Also, Pa(vi) = {y1, y2, …, yn} is a set 

of direct causes of vi. 

- F = P(vi∈rvi | y1∈ry1, y2∈ry2, ..., yn∈ryn) is a function of conditional probability of variable vi 

in the value range rvi given the direct causes (parents) of vi in the value ranges ry1, ry2, ..., ryn; 

where vi has u ranges of values, and each direct cause yk ∈ Pa(vi) has at least w ranges. 

The edges in graph G are interpreted causally if the causal model M guarantees the causal 

Markov, minimality and faithfulness conditions. P(vi | Pa(vi)) represents a stochastic process 

by which the values of vi are chosen in response to the values of Pa(vi). This process must 

stay invariant under interventions in processes governing other variables. The joint probability 

distribution of the domain variables must be factorized as expression (2)8. 

( )( )∏=
i

ii vPavPVP |)(  (2)

 
Construction of Causal Models.  
The process of generating causal models is a NP-hard problem9. Causal modeling generally 

has four stages10. First (specification): the variables that are causes and effects are determined; 

to this end, a structure learning algorithm is used to discover a graph G that represents a 

causal structure C = (V, E). Second (estimation): a parameter learning algorithm applies F and 

calculates the intensity of the causal relations found. Third (interpretation): the most 

important relations with the highest magnitude are analyzed, and the final explanations are 

given by the researcher in the context of previous knowledge of the problem domain. Fourth 

(evaluation): the model is tested to assess its prediction accuracy.  

Analyzing the Performance of the Threshold Accepting and Tabu Search Algorithms 

The general solution approach proposed, shown in Fig. 1, is described and validated through 
                                                 
8 Spirtes P., Glymour C.: Causation, Prediction, and Search. MIT Press, 2nd Edition, 2001. 
9 Chickering D.: A Transformational Characterization of Equivalent Bayesian Network Structures, 1995. 
10 Cohen P.: Empirical Methods for Artificial Intelligence, The MIT Press Cambridge, 1995. 



 
 

two study cases. The first involves two variants (a1, a2) of the Threshold Accepting algorithm 

(TA)4, and the second two variants (b1, b2) of the Tabu Search algorithm (TS)4 (in this case, 

only the results are mentioned). Both algorithms are applied to the solution of 324 instances 

of the Bin Packing problem, which were selected randomly from OR library11,12. 

1. Description and space of the problem. Indicator oac represents the problem description 

(IPD) and characterizes the parameters of each problem instance; it consists of the proportion 

of the total size of the objects that can be assigned to one container4. A sample of the 

solutions space (IPS) of each problem instance is obtained prior to the algorithms 

experimentation. It is built by generating 100 random solutions, where each solution x is 

evaluated by the fitness function f(x)13. The variability psv of these values is calculated. 

 

 
 
 
 
 
 
 
 
 

 

Fig 1 A general solution approach. 

2. Internal structure of algorithms. The internal structure of two variants is distinguished by 

the method for generating neighbor solutions. Variant a1 uses only one method: swap (1, 0)14. 

Variant a2 uses several alternative methods (swap (1, 0), swap (1, 1), swap (1, 2), swap (2, 2), 

swap (0, 1), and swap (2, 1)); it tries initially the first method, if it can not generate a neighbor 

solution; then it tries the second one, and so on. 

3. Internal behavior and search trajectory of algorithms. Algorithms a1 and a2 were 

executed 15 times (in the pilot study we observed a very small variance of these runs) for 

each problem instance. The information of variants a1 and a2 was characterized. The number 

of solutions accepted by the algorithm and the number of generated temperatures are recorded 

by indicators asn and gtn (IAB). The trajectory traced (IST) is characterized in two ways: 1) 

two known indicators were used, coefficient ac and the length al of autocorrelation5; 2) three 

indicators were proposed, number of inflexion points pn, number and size of valleys vn, vs. 
                                                 
11 Beasley J.: OR-Library. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html. 
12 Scholl A., Klein R.: http://www.wiwi.uni-jena.de/Entscheidung/binpp/. 
13 Falkenauer E.: A Genetic Algorithm for Bin Packing and Line Balancing, IEEE Computer Society Press, pp 1186-1192, 1992. 
14 Fleszar K., Hindi K. S.: New Heuristics for One-dimensional Bin Packing. Computers and Operations Research, 2002. 



 
 

4. Identification of domination regions. Once the solution process ends, the solution quality 

and execution time are calculated for each algorithm. The first (quality) is the ratio of the best 

solution found by the algorithm to the theoretical solution; this solution is the summation of 

the object sizes divided by the containers capacity. The second (time) is the number of 

evaluations of the fitness function for feasible and infeasible solutions. A function fp(aq, i) is 

used to evaluate the performance of each variant aq for each problem instance i in terms of 

quality and time. Expression (3) defines this function. The dominance region Rq of variant aq 

is the set of all instances i ∈ I, where algorithm aq was the best for solving them (4). The 

domination success sRq of algorithm aq is the percentage of instances that lie in region Rq. For 

algorithms a1 and a2 we had: sR1=54.6% and sR2=45.4%. Therefore, in this study case we 

analyze variant a2 to explain why it is superior with respect to a1. 
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5. Selection of problem and algorithm indicators. Discretization was carried out to 

established several levels for the indicators. These were analyzed to identify those that had 

some effect on the algorithm performance (quality). We performed graphic and statistical 

analyses. An example of these analyses can be found in our previous work7. The problem and 

algorithm indicators that turned out to be relevant were oac, psv, and asn, gtn, pn, vs, ac, al. 

6. Causal Analysis. 

Specification of causal order. The two kinds of indicators about the trajectory traced (IST) by 

the algorithm (ac, al and pn, vs) yield the same information. Therefore, we generated two 

different causal models: the first utilized oac, psv, asn, gtn, ac and al; the second used oac, 

psv, asn, gtn, pn and vs. The construction of causal models was carried out using the causal 

inference software TETRAD (www.phil.cmu.edu/projects/tetrad_download/) and the 

structure learning algorithm PC8 with a confidence level of 95%. The PC algorithm starts by 

constructing a complete undirected graph, then thins that graph by removing edges with zero 

order conditional independence relations, thins again with first order, and so on. Afterwards, 

it orients the edges with the evidence found. The remaining undirected edges are oriented 

making sure that no directed cycles occur. Finally, a graph G is discovered which represents a 

causal structure C = (V, E). The models generated were confirmed using the causal inference 

software HUGIN (Hugin Expert www.hugin.com). Figures 2 and 3 show the first and second 

( ) ( ) ( ){ }qqq aAbibfpiafpIiR −∈∀>∈=     ,,| (4) 

( )=iafp q ,

1 if algorithm aq has the best quality among all the 
algorithms for instance i 

1 if algorithm aq has the smallest time among all the 
algorithms (when they have the same quality) 

0 otherwise



 
 

causal models. It can be observed in Figure 2 that the first causal model did not provide 

relevant information about direct causes of the algorithm performance (Pa(fp)), in terms of 

the algorithm search trajectory (ac, al). In contrast, the second causal model (Figure 3) shows 

that indicators oac, gtn, pn and vs are direct causes (Pa(fp)) of superiority (fp=1) or inferiority 

(fp=0) of variant a2. Therefore, this model is considered for the next analyses.  

 

 
 
 
 
 
 
 
 
 
 
         Fig 2 First causal model                         Fig 3 Second causal model 
 
Model Estimation. Tables of conditional probability (CPT) of the indicators were calculated 

using the parameter-learning algorithm Counting15, which applies function F to all the causal 

relations in the model. We focus on the most important magnitudes of the direct causes of 

node fp. These and their experience (Exp) are shown in Table 2. 
Table 2. Causal relations 

 Causal Relations % Probability Exp 
1 P(region=1 |oac=2,gtn=3, pn=3, vs=2) 100 32 
2 P(region=1 |oac=2, gtn =2, pn=2, vs=2) 75.47 53 
3 P(region=0 |oac=1, gtn =1, pn=1, vs=1) 86.66 45 

 
Model Interpretation. Algorithm a2 wins for problems where the overall sum of object sizes is 

much larger than the containers capacity, so there is a large variety of possible distributions of 

objects into the containers. This algorithm is superior in solution quality. Its structure permits 

to intensify the search space (larger number of temperatures) and the trajectory traced by the 

algorithm (many inflexion points and large valley sizes) is better suited to the problem space 

(Relations 1 and 2). The algorithm loses (timewise) with respect to variant a1 for problems 

where the overall sum of object sizes is close to the containers capacity, so there exists little 

variety of possible distributions of objects (few inflexion points and small valley sizes), and 

there is no need to intensify the search (small number of temperatures). However, its 

exhaustive attempts to generate neighbor solutions incur additional processing time. 

7a. Prediction. We used the NETICA software (Norsys Corporation, www.norsys.com) to 

                                                 
15 Korb Kevin, Ann E. Nicholson.: Bayesian Artificial Intelligence, Chapman and Hall, London, UK, 2004. 

Problem Indicators 
IPD, IPS 

Algorithm 
Indicators 
IAB, IST 

Indicator IDR Indicators 

oac. Proportion of objects that 
        can be assigned to one 
        container. 
psv. Variability of the problem
        space solutions  
asn. Number of accepted  
        solutions. 
gtn. Number of temperatures 
        generated 
pn. Number of inflexion  
        points 
vs. Average size of valleys 
al. Autocorrelation length 
ac. Autocorrelation coefficient

 
 



 
 

test the model generated on some instances, for which we ignored whether variant a2 would 

be superior or not. We obtained a prediction percentage of 79.01%, which surpasses the value 

obtained by the Naïve Bayes classifier (77.46%). This result could justify the use of an 

algorithm to solve an instances subset and contribute to the algorithm selection problem. 

7b. Algorithm Structure Redesign 

The Threshold Accepting algorithm is described hereupon. Variant a2 uses several methods 

for generating neighboring solutions (lines 6-7). The conclusions of the previous section 

allow us to redesign a2 (ra2) for improving its performance (lines 8-11 instead of lines 6-7). 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Begin 
 T=initial temperature; µ=0.85(freezing factor);S =100(neighborhood size); x=x*(random initial solution)
  Repeat 
    Repeat 
       For i = 1 to S 
         Build neighbor solution y of x using  swap (1, 0) or swap (1, 1) 
                    or swap (1, 2) or swap (2, 2) or swap (0, 1) or swap (2,1) 
         Calculate oac from parameters of problem instance 
         If (oac=1) Then Build neighbor solution y of x using  swap (1, 0) or swap (1, 1) 
                                    or swap (1, 2) or swap (2, 2) or swap (0, 1) or swap (2,1) 
                           Else Build neighbor solution y of x using swap (1, 0) 
         If (f(y) – f(x)) < T then  x = y 
         Else the solution y is rejected 
    Until thermal equilibrium is reached  
     T = µT 
  Until freezing is reached 
End                                       

 

Preliminary experimental results show that the new variant ra2 yields a performance 

improvement with respect to variants a1 and a2. The domination success of variant ra2 is 

sR3=68.82% (223 out of 324) when contending against variant a1 and sR3=59.88% (194 out of 

324) when contending against variant a2. The new redesign proposal ra2 yields a performance 

improvement of 38% and 20% with respect to variants a1 and a2. 

Other results. The proposed approach was also applied to two variants (b1, b2) of the Tabu 

Search algorithm, which are distinguished by the method for generating neighbor solutions 

(similar to the variants of the TA algorithm). We analyzed variant b2, generated a causal 

model and proposed a new redesign rb2. We obtained a prediction percentage 78.04%, which 

surpasses the value 75.92% (Naïve Bayes). The proposed redesign yields a performance 

improvement of 77% and 18% with respect to variants b1 and b2. These remarkable results 

show the viability of applying the proposed approach for at least two different heuristic 

algorithms, so as to justify their use on an instance subset, which constitutes an important 

contribution to the algorithm selection problem. 

Conclusions 

This work presents a new approach for solving the problem of explaining why an algorithm 

a2 

ra2



 
 

outperforms another on a set of instances using causal analysis, which yielded encouraging 

results. One of the main contributions of this work is the development of indicators that 

characterize problem instances and indicators of the behavior and performance of the 

algorithm. For validating the proposed approach, a set of experiments were carried out for 

generating a causal model that shows the interrelation of the proposed indicators, permitting 

to obtain formal explanations about the behavior and performance of the Threshold Accepting 

and the Tabu Search algorithms. We obtained prediction percentages of 79.01% and 78.04% 

using the models generated for these algorithms. The formal explanations found permitted to 

devise an improvement to the logic of these algorithms with a 20% and 18% increase in 

domination success. Therefore, the proposed approach permits: a) redesign proposals for the 

internal logic of algorithms for improving their performance, and b) understanding and 

formalizing the general problem of heuristic algorithm selection for NP-hard problems. 
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