Some improvementsin thereinfor cement lear ning of a mobile robot

Marcin Pluchski

Faculty of Computer Science and Information Tecbgy)
Westpomeranian University of Technolo@ptnierska 49, 71-210 Szczecin, Poland,
mplucinski@wi.zut.edu.pl

Abstract: The paper presents the application of the reiefoent learning for the autonomous

mobile robot moving learning in an unknown, stasignenvironment. The robot movement policy

was represented by a probabilistic RBF neural ne&twas the learning process was very slow or
even impossible for complicated environments, theme presented some improvements, which
occurred very effective in most cases.

Keywords: reinforcement learning, probabilistic RBF neuralvmork, mobile robot

1. Introduction
One of the most interesting machine learning methisda reinforcement learning. The
learning is based on gaining a procedural knowlgdg#@l) during intermediate interactions
with an environment in which this skill will be ubdo perform a given task. A learning
system/agent doesn’t need any a priori knowledgeitahn environment and it even doesn’t
need to know explicitly a task that it learns torfpen. During interactions with an
environment an agent receives only a scalar “reivard‘reinforcement” feedback signal
indicating how good or bad its action was and at thase it tries to adapt its future action
policy to receive better rewards [11,13].

The reinforcement learning (RL) is very close tonam learning, because a man obtains
a lot of his skills by a trial and error method,Rb is potentially one of the best approaches
to creating really intelligent systems. The RL wasccessfully used for many practical
applications from a strategy learning in board gaui8,14] to learning given behaviours of
mobile robots [1,4,5,6,7]. The paper presents fhdi@ation of the RL to the autonomous

mobile robot moving learning in an unknown, staéignenvironment.

2. Reinforcement learning

Generally, we can say that during the RL we warftrid an optimal action policy in an un-
known environment to solve a given task. A leag@T observe a state of an environment and
on the base of its value it chooses its actionrateg to its current policy. At the beginning, a

policy is taken arbitrarily, so it is very typic@r a learning process that learner makes a lot of

wrong actions. The learner makes errors and res@veinforcement/reward feedback signal
from an environment. On the base of this infornrattdries to improve its policy [11].
A policy depends only on an environment state,lstng learning a learner is to find an
optimal mapping from perceived states to actiobgdaken when in those states:
n: X - A

where: 71— a policy,X — a set of environment states,— a set of possible learner actions
[3,13]. For a current learner policy we can define a value function that is a mapom
states to the total amount of reward an agent xpact to accumulate over the future, starting
from the statex

V7 (x)= E{g v | % = x] (1)
where: E, — expected (for the policyy sum of future rewards, yD(O;L] — discount rate,

which determines that rewards received in the &aue less worth for the state value.

During the RL a learner looks for an optimal pplic — the policy for which it will
always receive the best rewards from an environntemt such a policy, the value function
V7 (x) is always biggest or equal to the value functitx) for any policy 7z If the optimal
value functionV™(x) is known, we can easily find an optimal actiori@o 77 as a greedy
policy to V™ (x). A greedy policy td/(x) always chooses its action to maximize an immediat
reward and a discounted next state value of a fahusionV(x) [13].

One of the most important RL methods is a tempdifédrence (TD) algorithm. In this
algorithm we’ll try to find the optimal value furioh V™ (x). At the beginning, the/(x)
function is initiated arbitrarily (often in a rangloway). During succeeding learning steps, the
function is modified on the base of observed exgmees <x, a;, ri, X+1>. The modification

rule can be written as:

Vt+1(xt):Vt(Xt)+,7m’ (2
where:) — step-size parameter, which influences the rilieaoning, and:
A=ty V(%) - Vi (%) 3)

V,(x,) — is the value of the current value function apet y ¥, (x..,) — is a sum of a reward
received in a stepand a discounted value of the next state — itabgbly better evaluation
of real value of &’{x) (for a current policyd thanVi(x,) [11,12,13].

If actions will always be chosen such that a vaithe next value function is maximal,

then our policy will be greedy to the functidix). Equations (2) and (3) can be written as:

Vt+l(xt) = (1_’7) V; (Xt) +1 [ﬁrt + ylmaxV, (Xt+1)j - (4)

An operator maxmeans choosing the greedy policy. lterative imprgwf the value
function while applying the greedy policy leads doconvergence to the optimal value
functionV” (x), for which the optimal policy can be easily fouasligreedy to it.

Described method of finding the optimal policy wW®mell for a finite number of states
and actions. In the case of a continuous set tédsstand actions, the learning becomes more

complicated. We must use continuous mappmgX — A andg in practice it is easiest to

model continuous value functio(x) and to choose actions according to the policy tha
greedy tov(x). For modelling of a policy by the value functigfx) we can use any modelling
method, but it must have: a possibility of an it improving (a possibility of learning in
an incremental mode), a possibility of learningtba base of an infinite number of data, a
small amount of calculations needed for a functmtualisation [3]. Neural networks are
often preferred method of a modelling and in expernits there was applied the probabilistic
RBF neural network (PRBF NN). The network had tliastant number of neurons with
constant width. Only weights of an output layer evparameters that were adapted during
learning process.

The main advantages of the PRBF NN are easineleaofing and interpretation of its
parameters values — differently from a perceptromtitayer NN. The network enables
modelling of any complex continuous mapping. It c@used in an incremental learning
mode and its adaptation process is fast and noplkoeted. The main disadvantage of the

PRBF NN can be possible slow work in the caselafge amount of RBF neurons [8,9,11].

3. Reinforcement learning of the mobile robot movement policy
A RL task will be the learning of a policy of a migrobot moving in an unknown, stationary

environment with a given, constant (and known ®l#arner) target point.

A x RBF neuron centres
.’ L[] ‘.
target point
@

[

(x0, Xz)/,,,,,/ .
e\
« o |

. . . .
. [. [_ ///// Xl

Fig. 1. The state and action of the robot and exemplargtions of RBF neurons [11].

A robot state is defined by its location in a ist@ry coordinate systerK=(x;,Xo)
(simplified notationx will be used later) and its action is defined p®en given movement
direction ¢, Fig. 1. Both the state and the action are contisusignals. The value function
V(X) is modelled by the PRBF NN. Centres of neuroespéaiced uniformly in the entire envi-
ronment and are constant, Fig. 1. One additionafareis placed in the robot target point.
During learning, only output layer weights (conmekttvith each neuron) will be changed.

The learning process is very sensitive to a valaetion V(X) initialisation method. As
it was said beforey(x) can be initiated arbitrarily. For example it darandom or equal for
the entire environment, but by proper initialisatiof V(x) we can introduce to the learning
system same a priori knowledge. A good solutioio isause that function maximum is in the
target point and thanks to that, choosing the pdhat is greedy t&(x) will always produce
the effect of robot moving towards that point. Begng robot location is chosen randomly
but of course it can’t be placed inside obstaclds. [

In each steptd the robot reads its sensor values and checkeigtis any obstacle on
its movement way. If the robot detects anythingtalps, next it turns randomly left or right by
135 and it moves straight for a given steps number.

In each learning stefp(taken every tenth steapin experiments), if there is no obstacle,
the robot chooses new action (direction of its nmoeet) and theé/(x) function is adapted
(learned). The learning process is described gxbetbw [11].

1. In each learning step the robot tests values of
V(x+1) in a radius defining possible robot
positions in a next learning step, Fig. 2. The
radius can be easy counted when we know the

robot speed. After testing, we know the state

for which theV(x.1) takes the maximum value Fig 5 searching for a new greedy
and in that way we know the new movement action [11].
direction (according to the greedy policy).

2. The robot checks the environment. After reachirggtéirget point (with a given accuracy)
it receives a large positive reinforcemenrt a reward.

3. A value of the value function in a previous leagnstepV(x.1) is modified on the base of

the received rewand.; (0 orr) and the current vall(x,) taken earlier in a greedy way:

Vi (%y) = (@0=7) W, (x4) +17 [ért—l + mewaXVt (%,)) :)

Formula (5) describes the way\#fx) adaptation according to a TD algorithm. It cobéd
difficult to apply in practice but we can use appnoate formula in which the weiglyt of
the RBF neuron is changed instead of the e¥édt value. Finally, the learning process

can be described as:
y*p,t+1 (X:—1) = (1_’7) Ey*p,t (X:—1)+’7 [ﬁrt—l + mewath (Xt)j , (6)

where variables with “star” mean stateand weighty, connected with the RBF neuron
which is closest to real state,.
4. The robot saves the current state and takes theaaogown/direction found in point 1.

After realisation of points 1-4 in each learnirigps the robot continues moving in the
taken direction. After reaching the target poinfjeav start point is taken randomly and the
learning process is continued. The entire stagearhing (from start point to end point) can
be called a learning epoch or an episode.

The learning process is very sensitive to paramaetd&ken by a system designer. Wrong
parameter values can even make that the learniogeps becomes impossible. The most
important learning parameters are: the way of véluetionV(x) initialisation, reinforcement

valuer, RBF neurons width, step-size parametediscount rate/ learning step.

4. Improvements of the reinforcement learning

There were made a lot of experiments of learninthefrobot in environments with different
difficulty degree. Parameters described in previsestions were set as follow:= 10, /7 =
0.1, y=0.9. Results of experiments are described iaildan [11].

As it was mentioned above, reinforcement learngngarformed with a trials and errors
method. In the case of a searching of the robatypah the given environment, it consists in
many repeated trials of moving from the randomlgsen start point to the given (known to
the robot) target point.

In very simple environments such trials usuallypstdath a success, after which there
are reinforced correct directions of a movemerth®target point. But in more complicated
environments, the single episode of moving to Hrgdt point can take very long time or it
can never finish with a success. A complicated remvhent can also require repeating of
greater number of episodes. So, all this together cause that learning time can become
unacceptable long even for simulation experimehtsthe case of experiments with real
robots, usually there is no possibility of perfongnigreat amount of trials, which can last very

long and not always must finish with a success.

For these reasons, the basic RL algorithm needoiements.

4.1. Negative reinfor cement
The first solution that was tested was applyingatieg reinforcements in cases when the
robot approached an obstacle. While it is recommeenfl3,14] to give the learner a
reinforcement different from O only in the end bétepisode (it should guarantee a learning
algorithm convergence to the really optimal poliey)it is intuitively obvious that small
negative reinforcements generated by obstaclescaase, that the value function in their
neighbourhood will be smaller. Thanks to that, tbleot will not even try to approach them
and in that way there will be diminished a numbkepassible actions from which the robot
must choose the correct one leading to a taskisolut

In very simple environments, such idea works well. 3 shows example results of an
experiment in which small negative reinforcementswequal 0.0001 and a positive
reinforcement (equal 10) was assigned only onatenend (finished with a success) of the
whole episode.

a) b) c)

Fig. 3. Successive learning phases with a negative re@afent application.

Fig. 3 presents robot movement trajectories ifekht learning phases. In the Fig. 3a
we can see a chaotic movement of the robot whiels {with a trail and error method) to
reach the target point through the obstacle (Emsode of learning). In that phase the robot
learns the obstacle position. Fig. 3b presentsétend learning phase (after 10 episodes) in
which the robot “knows” the obstacle position araksh’t try to move close to it. Fig. 3c
presents the trajectory of the robot movement aéi@ming (50 episodes). Learning without
negative reinforcements lasted about 500 episddesres longer).

For more complicated environments, applying negateiforcements fails. It is caused
by creating of value functiol(x) local maxima. As the robot realises a greedycyolsuch

local maxima always attract it and cause that #anling process gets stuck and the robot

starts to move around the local maximum. Such effee can observe especially for

environments in which there are bounded rooms.illustrated in Fig. 4.

a)

target point

Fig. 4. Trajectory of the robot movement (a) and the serfafV(x) function (b).

Fig. 4b presents a part of théx) function surface — it can be seen that local manin
the “entrance” cause leaving the room completelyassible.

We can easy prevent such effects by testing thet rolsation every some given time
(500 learning steps in experiments). If the st&i@nge is lower than a given threshold it can
mean that the robot has got stuck and moves ard@ganaximum. Then a greedy policy can
be changed for a random movement direction for stime and the robot can go away from
the maximum point. After some time the robot resuta the previous learning mode. Such
solution, however, is effective only for a momemidaf the robot finds itself in a local
maximum neighbourhood it will get stuck again.

As a conclusion, it can be said that negative ceagments are good solution only in
very simple environments (small amount of smalltaties), but in most cases they make the

learning process worse — completely blocking it.

4.2. Heuristic behaviour
An another approach may be attempt of promptingrélet any heuristic behaviour during
solution searching. A very good effect were obtdibg stopping the learning in a moment of
approaching an obstacle and starting moving aratuimda randomly chosen direction. After
finishing bypassing phase, the robot went backé¢odescribed earlier learning mode.

One of the problems occurred here was time durdtiowhich the robot should switch
into a bypassing mode. As the robot has no infaonaabout size, shape and location of
obstacles in the environment and the range ofeits@'s is rather limited, it can't determine

whether the obstacle is bypassed yet or not. Weltaose one of two solutions here:

— time of bypassing is chosen randomly,

— time of bypassing is set in advance by supervidothe learning as an additional
information about the environment (for small obkadime should be shorter and for
bigger ones — longer).

Exemplary results of experiments are presentedgns-

a) b)

Fig. 5. Trajectories of the robot movement in the firstrléng episode (a) and after learning (b).

Fig. 5a presents the robot trajectory in a firgriéng step. After approaching the
obstacle it is bypassed. Fig. 5b shows the trajgetfier 40 learning episodes.

4.3. Gradually learning

A man learns to solve problems gradually, slowlgréasing a level of difficulty. First, he

tries to solve simple tasks and slowly moves toevard more complicated. A trial of a hard
problem solving by an unlearned person probably fail and what is more important an

effort spent to overcome the task will usually obange into improving learner skills in next
learning steps.

It is similar with robots. If the robot has to mouwe a complicated and unknown
environment it probably will not be able to readte ttarget point moving randomly in
acceptable long time. So, it seems reasonableadugte the difficulty level. Such solution
was applied for example by G. Tesauro [14] for lgachkmon policy learning. In the
beginning, only the policy of the end phase ofdhene was learned, next the game started in
the medium phase and in the end the learning psanekided the entire game.

Similar approach can be applied in a learning @blagot movement policy. We can
assume, that it is easier to reach the target pant start points, which lies close to it. Each
episode finished with a success will reinforce eoripaths to the target.

So, in the beginning of a learning process staitpshould be chosen randomly in a
close neighbourhood of the target point. A radiighe neighbourhood should gradually

increase with each next episode. Effects of sughogeh are illustrated in Fig. 6.

a) b)

Fig. 6. Trajectories of the robot movement after gradul@érning.

Fig. 6 presents exemplary trajectories of the rabovement after finishing the learning
process (about 500 episodes). An experiment withpptying gradually learning in the same
environments completely failed. If start points ethosen far from the target, the robot
wasn't even able to finish single episode.

5. Conclusions

There exist a lot of environment learning (mappirg)d path planning (in known
environment) methods. The connection of RL and PRIBF described in the paper, enables
solving of both mentioned tasks at the same timbe-robot can simultaneously learn the
environment and look for the optimal trajectory.

Learned movement policies are characterised by gsafe and smooth movement
trajectories, which are located in a large distafioen obstacles. Trajectories presented in
Figs. 5 or 6 are very close to optimal ones anit #epes are similar to trajectories found by
a potential field’s method [2,10].

Negative reinforcements didn’t fulfil expectationghe local maxima problem makes
this modification rather unuseful. But, an introtiac of heuristic behaviours and gradually
learning works very well. It accelerates the entearning process many times and in

complicated environments it makes this processyrpaksible.

References

1.

10.

11.

12.

13.

14.

BEKEY G.E., Autonomous robots (from biological inspiration to implementation and
control), The MIT Press2005.

CHOSET H. at allPrinciples of robot motion (theory, algorithms and implementation),
The MIT Press2005.

CICHOSZ P., Learning systems, Wyd. Naukowo-Techniczne, Warszawa)00 [in
Polish].

CONNELL J., MAHADEVAN S.,Rapid task learning for real robots, In Robot Learning,
Kluwer Academic Publisherd993.

KAELBLING L.P., LITTMAN M.L., MOORE A.W., Reinforcement learning: A survey,
Journal of Artificial Intelligence Research, vol.pp. 237-2851996.

LONG-JI LIN, Hierarchical learning of robot skills by reinforcement, Proceedings of the
International Conference on Neural Network393.

MILLAN J.R., Rapid, safe, and incremental learning of navigation strategies, IEEE
Transactions on Systems, Man, and Cyberne2&s8), 1996.

MOORE A.W., ATKESON C.G., An investigation of memory-based function
approximators for learning control, Technical report, MIT Artificial Intelligence
Laboratory, Cambridge, MAL,992.

PLUCINSKI M., Application of the probabilistic RBF neural network in multidimensional
classification problems, In Advanced Computer Systems, Kluwer AcademicliBoérs,
pp. 49-57 2002.

PLUCINSKI M., KORZEN M., Application of the Peano curve for the robot trajectory
generating, Proceedings of the 13International Multi-Conference on “Advanced
Computer Systems”, Mdzyzdroje, Poland, pp. 43-52006.

PLUCINSKI M., Application of the probabilisic RBF neural network in the
reinforcement learning of a mobile robot, Polish Journal of Environmental Studies, vol.
16, no. 5B, pp. 32-32007.

SUTTON R.S.,Learning to predict by the methods of temporal differences, Machine
Learning, vol. 3, pp. 9-44,992.

SUTTON R.S., BARTO A.G.Reinforcement learning: An introduction, The MIT Press,
1998.

TESAURO G.,Practical issues in temporal differences learning, Machine Learning,
vol. 8, pp. 257-2771992.

