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Abstract 

The paper presents a method how to construct a non-regular fuzzy model based on 4 points of 

expert knowledge. Non-regular fuzzy models considerably differ from regular ones, which are 

based on the regular, rectangular partition of the input space. They allow for considerable 

decreasing the rule number and thus for constructing sparse models and for overcoming the 

phenomenon called “curse of dimensionality”. Non-regular fuzzy modeling is rather not 

possible without a new coordinate system, which was called contextual, non-parallel 

coordinate system that also is described in the paper. The non-regular modeling method was 

illustrated by an example. 
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Introduction 

Methods of fuzzy modeling were described in many books, e.g. in [3,4,5,6,7,10]. Present 

methods are based on regular, rectangular partition of the system input space, Fig.1. Such 

partition is used by people in their mental modeling of dependences y=f(x1,…, xn) observed in 

the surrounding world. The regular, rectangular partition facilitates understanding and 

keeping in mind recognized dependences. 



 

Fig.1. Regular, rectangular partition of the input space in the case of 3D-dependence 

y=f(x1,x2). 

Regular models have a large number of nodes. Each node has to be defined by one rule Ri,j 

that represents at this node the dependence under modeling. Mostly the Mamdani type (1) of 

rules is used. 

 Ri,j: IF(x1 close to x1,i) AND (x2 close to x2,j) THEN (y close to yi,j)  (1) 

 

Linguistic quantifiers as e.g. “close to x1,i” are defined by membership functions. Regular 

fuzzy models (shortly RF-models) apart from their good points also have weak points. Below 

3 of them are given. 

1. Together with increasing number of quantifiers defining particular variables x1, x2, ..., 

xn, y and of the number n of input variables the number of rules, which are required in 

a RF-model, is increasing in the avalanche way. This phenomenon was called “curse 

of dimensionality” [2]. It hinders modeling of high-dimensional problems or even 

makes it impossible. 

2. At tuning the RF-model, e.g. in form of a neurofuzzy network, change in position of 

one, single quantifier as “close to x1,i” influences not one but simultaneously many 

rules which contain this quantifier in their premises. In the consequence, the RF-model 

improves its accuracy in one region but makes it worse in other regions of the input 

space. It considerably hinders modeling [5,6,7,10]. 

3. The input space X1*X 2*…*X n of real systems usually are not rectangular but are of 

other non-regular shapes, e.g. of elliptic one. Therefore the rectangular partition 

frequently is not the optimal one [9]. 



To overcome or at least to diminish the “curse of dimensionality” scientists proposed certain 

means, e.g. the non-grid input space partition [2]. Fig.2 presents 2 such partitions together 

with the non-regular partition proposed by the authors. 

 

Fig.2. Two examples of the non-grid input space partitions: a)rectangular, non-grid partition, 

b) square non-grid partition, and c) example of a non-regular, non-grid partition proposed in 

the paper. 

The rectangular and square non-grid partition does not fully solve the problem of the “curse 

of dimensionality” and certain weak points of RF-models are not removed. Instead, the non-

regular partition (Fig. 2c) gives possibility to fully overcome this phenomenon or to 

considerably decrease the number of model rules and to construct sparse fuzzy models. In the 

sequence the idea of the non-regular fuzzy modeling will be presented. The author of it is 

Andrzej Piegat. The computer experiment shown in the paper was realized by Marcin 

Olchowy. 

 

Contextual, non-regular, non-parallel coordinate system (CNRNP-coordinate system) 

The non-regular fuzzy model (NRF-model) can in the general case consists of many type of 

sectors, e.g. of triangle sectors, of tetragonal sectors, of pentagonal sectors, of hexagonal 

sectors, etc. In this paper, because of its volume limitation only a NRF-model of the 

tetragonal sector will be shown. However, this model is very important because it is the basis 

for models of higher-order sectors.. Calculations in the NRF-model can be realized 

independently in each sector, Fig.2c. Particular model sectors have to adjoin at their borders. 

To facilitate the sector merging and to secure the unique calculation of the model output-value 

by neighbor sectors the linear interpolation at sector borders was assumed. However, inside of 

sectors the so called safe interpolation [8] is realized that generally is nonlinear one. The 



feature of the safe interpolation is possibly small model surface over the sector. In the NRF-

model, in general case, calculations differ from those made in the RF-model.  

To find a way of the NRF-model construction creation of a new coordinate system was 

necessary. It was called CNRNP-coordinate system. The idea of this system will be explained 

below. Let us assume, we have 4 points A,B,C,D of expert knowledge (2) about a dependence 

y=f(x1,x2) existing in a system under consideration. 

 

A: IF [(x1,x2) similar to (1, 9)] THEN (y similar to 5) 

B: IF [(x1,x2) similar to (1, 4)] THEN (y similar to 1)  (2) 

C: IF [(x1, x2) similar to (6, 3)] THEN (y similar to 4) 

D: IF [(x1, x2) similar to (13, 7)] THEN (y similar to 0) 

 

Distribution of the expert knowledge points A,B,C,D is presented in Fig.3. 

 

Fig.3. Non-regular distribution of the expert knowledge points A,B,C,D about a dependence 

y=f(x1, x2) that create a context sector. 

 

Fig.4 presents projections Ax, Bx, Cx, Dx of the knowledge points on the input space X1*X 2 

and also few values of the context coordinates α and β. 



 

Fig.4. System of context coordinates α and β that corresponds to the points Ax, Bx, Cx, Dx of 

the expert knowledge. 

It should be noted that values of the context coordinates are normalized to interval [0,1]. The 

main feature of the context coordinate system is proportionality of partition of sector borders. 

And thus the value α=0.5 lies in the middle of the border (Ax, Dx) and of (Bx, Cx). The value 

α=1/4 lies at the ¼ part of borders (Ax, Dx) and of (Bx, Cx) etc. Value α=0.75 can be 

interpreted as the contextual dissimilarity of point P lying inside the sector to the border      

(Ax, Bx) or more precisely, to the nearest point lying on this border. Value (1-α)=0.25 means 

the contextual similarity of the point P to the border (Ax, Bx). Appropriate meaning has the 

value of the coordinate β in relation to borders (Ax, Dx) and (Bx, Cx). Meaning of particular 

points of the context A, B, C, D is as follows: points B, C, D are negations (similarity equal to 

zero) of the point A, points A, C, D are negations of the point B, etc. 

Task of any fuzzy model is delivering answers to questions as : 

 

 What is the value of y if [(x1, x2) is similar to (4, 3)] ?  (3) 

 

Because the question is formulated in the input space X1*X 2 of the model it should be 

transformed in the space of α*β of the context variables. This transformation is based on 

notations presented in Fig.5. 



 

Fig.5. Notation assumed for transformation of Cartesian coordinates (x1,x2) in context 

coordinates (α, β). 

Coordinates α of points F,P and E are equal, similarly coordinates β of points G,P,H (3). 

 

 

 

 

 

The following new notations will be used: 

a1 = x1B – x1A, a2 = x2B – x2A,  a3= x1C – x1D, a4= x2C – x2D, a5= x1D – x1A, 

a6= x2D – x2A, a7=x1C – x1B, a8=x2C – x2B, a9= x1A – x1, a10= x2A – x2,  (4) 

 

It should be noted that coefficients a9 and a10 are functions of x1 and x2. For points E,F,G,H 

from Fig.6 dependences (5) can be written. 

 

x1E = x1A + a5α x1F = x1B + a7α 

x2E = x2A + a6α x2F = x2B + a8α 

  (5) 

x1G = x1A + a1β x1H = x1D + a3β 

x2G = x2A + a2β x2H = x2D + a4β 

 



For any point P(x1, x2) lying inside the context equations (6) can be written. 

x1 = x1G + α (x1H – x1G) x2 = x2G + α (x2H – x2G) (6) 

 

After appropriate transformation of equations (5) and (6) equations (7) are achieved that 

determine coordinates (α, β) corresponding to Cartesian coordinates (x1, x2). 

 

αβ (a3 – a1) + a5α + a1β + a9 = 0 αβ (a4 – a2) + a6α + a2β + a10 = 0 (7) 

 

Solution of equations (7) delivers formula for calculation of value of β. 

 

 K1β
2+ K2β+K3=0 (8) 

where:  

 

K1= a2a3 - a1a4 

K2= a2a5 - a1a6 + a10(a3 - a1) – a9(a4 - a2) 

K3= a5a10 – a6a9 

 

After the value of β for the point (x1, x2) is known then the α-value can be calculated from 

formula (9). 

   (9) 

 

In certain cases, for certain distribution of the points A, B, C, D one or even two from the 

three coefficients K1, K2, K3 can be equal to zero. Then solving equation (8) will be easier. 

 

Example of a 1-sector, non-regular fuzzy model based on 4 knowledge points 

There are given 4 points of expert knowledge (10). 

A(1, 9, 5), B(1, 4, 1), C(6, 3, 4), D(13, 7, 0) (10) 

 

The points and their projections Ax, Bx, Cx, Dx on the input space X1*X 2 are shown in Fig.6. 



 

Fig.6. Points of expert knowledge about the dependence y=f(x1, x2) in the space 3D. 

 

The task is to construct a NRF-model capable of safe interpolation between the knowledge 

points and on its basis to calculate the output y-value for the question point P(5.25, 5.75). 

Rules (11) of the model directly result from the knowledge points A, B, C, D. 

RA) IF [(x1, x2) similar to (1, 9)] THEN (yA similar to 5) 

RB) IF [(x1, x2) similar to (1, 4)] THEN (yB similar to 1) 

RC) IF [(x1, x2) similar to (6, 3)] THEN (yC similar to 4)  (11) 

RC) IF [(x1, x2) similar to (13, 7)] THEN (yD similar to 0) 

 

Functions as “similar to (x1,i, x2,j)” are defined by equations (12). The notation as µAx(α,β) 

means the membership function of fuzzy set “similar to Ax), Fig.6. Formula (13) gives 

similarity functions of particular knowledge points. 

 

µAx= (1-α)(1-β),  µBx= (1- α)β, µCx= αβ, µDx= α(1-β)  (13) 

 

In the case of the question point P(5.25, 5.75), which is also the gravity center of the 4 points 

A, B, C, D calculations with formulas (8) and (9) give results: α=0.5 and β=0.5. Calculations 

with formula (13) give results:  µAx= µBx=µCx=µDx=0.25. 

 

Basing on conclusions of rules from the rule base (11), with use of Mamdani-implication and 

of defuzzification with the center of gravity of singletons as optimal operations from the point 

of view of the safe interpolation [8] the y-value from formula (14) can be calculated. 



Y(5.25, 5.75) = 0.25 · 5 + 0.25 · 1 + 0.25 · 4 + 0.25 · 0 = 2.5  (14) 

 

Full surface of the NRF-model is shown in Fig.7. 

 

 

 a) b) 

 

Fig.7. Surface of the 1-sector fuzzy model based on 4 knowledge points A, B, C, D. Figure a) 

smooth surface, figure b) the surface shown with use of cuts for constant values of α and β. It 

should be noted that borders of the model surface from Fig.7 are, according to the earlier 

assumption, linear.  

 

Fig.7b is particularly informative one. It shows that the nonlinear model surface consists (is 

constructed) of linear segments. Thus the surface is the maximally stretched one and it 

belongs to the smallest interpolation surfaces based of 4 given knowledge points and on linear 

borders. Thus it satisfies conditions of the safe interpolation explained in [8]. 

 

Conclusions 

The paper presents a new method that enables creating non-regular fuzzy models based on 4 

points of knowledge. Non-regular modeling is considerably more difficult than the regular 

one, however it opens new possibilities of construction and application of sparse fuzzy 

models with small number of rules at satisfactory precision of the models. Non-regular fuzzy 

models can consists of any sector type, as of triangular-, tetragonal-, pentagonal-, hexagonal-

sectors, etc. However, the tetragonal sector is the most important for non-regular modeling 

because it is basis for construction of higher-order sector models. Methods for construction of 

such models will be presented in next publications of the authors. 
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