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Abstract

In this paper, we compare the performance of singular
value decomposition for the recognition of human irises af-
ter image preprocessing by quaternion transformation and
colour levelling based on contour detection. The results are
also compared with our previous approach based on classic
iris unfolding.
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1 Introduction

Methods of human identification using biometric fea-
tures like fingerprint, hand geometry, face, voice and iris
are widely studied.

A human eye iris has its unique structure given by pig-
mentation spots, furrows and other tiny features which are
stable throughout life. It is possible to scan an iris without
physical contact in spite of wearing contact lenses or eye-
glasses. The iris is hard to forge which makes the iris a suit-
able object for the identification of people. Iris recognition
seems to be more reliable than other biometric techniques
like face recognition [5]. Iris biometrics systems for both
private and public use have been designed and deployed
commercially by NCR, Oki, IriScan, BT, US Sandia Labs,
and others.

In this paper, we use the Petland’s approach to image re-
trieval: image vectors of complete images of the size width
x height of the image [17] build the feature vectors.

Singular value decomposition (SVD) was already suc-
cessfully used for automatic feature extraction. In case of
face collection, the base vectors can be interpreted as im-
ages, describing some common characteristics of several
faces. These base vectors are often called eigenfaces. For
a detailed description of eigenfaces, see [17]. Based on

the same convention, we will call the base vectors obtained
from irises eigenirises.

In this paper we will concentrate on preprocessing the
irises before the calculation of SVD which should help us
to obtain a better iris identification and compare it with our
previous results [11, 12].

The rest of this paper is organized as follows. The second
section explains unfolding, the third describes used prepro-
cessing methods. In the fourth section mentions dimension
reduction by singular value decomposition, in next section
we briefly describe qualitative measures used for evaluation
of our tests. The rest of the paper contains a description of
the collection, results of tests and conclusions with ideas for
future research.

2 IRIS Unfolding

Following section describes a process of IRIS unfolding.
The whole process is divided into several parts which can
be differently implemented with respect to selected hard-
ware and software. OpenGL API was used to get better
results in our case. It allows us to process whole IRIS col-
lection in a shorter time with respect to variable precision of
image unfolding. Next, this solution is prepared for further
implementation on GPUs (Graphic Processor Units) which
becomes standard in the area of image processing.

e First, inner and outer boundaries of the iris must be de-
tected. This can be done manually but some of image
processing methods (i.e. histograms) can be used as
well to process this step automatically.

e Since the boundaries have been detected, the iris ring
is divided into several segments (see the Figure 1).
Lower precision of resulting image is caused by small
number of segments. Therefore, the number of seg-
ments should be set with respect to input image reso-
lution. The upper limit is represented by the number of
points of the outer iris boundary. Should the number of



segments be greater then the upper limit, then redun-
dant points appear in resulting image. The illustration
example has eight segments (see the Figure 2).

e The corners of all segments represents texture coordi-
nates. The segments are mapped on rectangular areas
by the usage of OpenGL (see the Figure 3). The figure
also illustrates the lost precision at the top boundary
which is given by texture mapping and image dilata-
tion. This is prevented by higher number of segments
as it was mentioned in the previous point.

Figure 1. The first phase of IRIS unfolding

Figure 3. Segment mapping

3 Preprocessing methods
3.1 Quaternions

According to [4], quaternions were invented by Sir
William Rowan Hamilton in 1843. His aim was to gen-
eralize complex numbers to three dimensions, i. e. num-
bers in the form a + ib 4+ jc, where a,b,c € R and

i? = j2 = —1. Hamilton has never succeeded in making
this generalization, and it was later proven that the set of
three-dimensional numbers is not closed under multiplica-
tion. One of Hamilton’s motivations was to find a descrip-
tion of rotation in space corresponding to the complex num-
bers, where a multiplication corresponds to a rotation and a
scaling in the plane. Later Hamilton realized that four num-
bers are needed to describe a rotation followed by a scaling.
One number describes the size of the scaling, second the
number of degrees to be rotated, and the last two numbers
give the plane, in which the vector should be rotated. Af-
ter this insight, Hamilton found a closed multiplication for
four-dimensional complex numbers of the form iz +iy+iz,
where i> = j2 = k? = ijk = —1. Hamilton dubbed his
four-dimensional complex numbers quaternions. The par-
allel to ordinary complex numbers stems from the imagi-
nary parts. A quaternion is a collection of four real param-
eters, of which the first is considered as a scalar and the
other three as a vector in three-dimensional space. In ad-
dition, quaternion represents an algebra. We refer to [8]
for all definitions related to quaternions. A quaternion is
simply a fourtuple of real numbers, and can be written as
Q = [w,z,y,z]. Next, quaternion has its norm such that
Q] = Vu? + 22 + 42 + 22

Quaternions are suitable to represent rotations. Every
rotation can be thought of as a right handed rotation of
—27 < 0 < 27 radians about some axis. Let us represent
the axis of rotation with a unit norm three element coordi-
nate vector a We will associate with this rotation the unit

quaternion
R (4
O [ cos( 29))]

a sin(3

For completeness, we mention here that the associated rota-
tion matrix of a unit quaternion [w, z,y, z|* is

1—2y%—222 22y — 2wz 2xz + 2wy
2ry + 2wz 1 —2z2 — 222 2yz — 2wz
2wz — 2wy 2yz + 2wxr 1 —2x% —2y?

The first preprocessing method based on quaternions
tries to convert input (unfolded) image into the form of a
set of rotation matrices. Some quaternion filtering methods
can be found in [16, 1, 7, 3]. In our case, more simple con-
version has been used. The process of preprocessing runs
in following steps:

1. Read an original image of IRIS.
2. Unfold the image.

3. Regard the RGB pixel values as a coordinates in 3D
space.

4. Construct quaternions from RGB values.



5. Normalize quaternion.
6. Convert quaternions to the rotation matrices.

7. Save output image, so that pixels are replaced by rota-
tion matrices.

3.2 Contour levels

Following paragraph briefly describes second prepro-
cessing method based on color leveling. More precisely,
this represent an extended method of contour detection
based on marching-squares algorithm. This is a com-
puter graphics algorithm that generates contour lines for
a two-dimensional scalar field. It is similar to the three-
dimensional marching cubes algorithm. In case of march-
ing squares, a new virtual grid is built over input image (see
the Figure 4 - blue grid). Every cell of such grid has four
corners with values (c;;, where i=row, j=column) corre-
sponding to the image pixels. In our case, the input image is
grayscaled, which means that cell values are represented by
numbers from interval < 0, 255 >. After selecting a thresh-
old value ¢, e.g. t = 100, all corners are marked as inside
or outside, according to the comparison of their values with
the threshold; e.g. if (¢;; < t) = inside, otherwise out-
side. The Figure 5 shows all possible cases of evaluation of
corners and appropriate isolines (contour), which represents
a partial result of marching square algorithm. There is no
place to describe marching square algorithm in more detail,
that is way we refer to [10, 9, 14, 13] for more information
on this method.

e

Figure 4. Image, marching squares grid and
contours

The process of preprocessing runs in following steps:
1. Read an original image of IRIS.
2. Unfold the image.

3. Convert image into grayscale (8-bit per pixel).
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Figure 5. Marching squares - 16 cases

4. Find minimum and maximum value and normalize the
image according to this interval.

5. Select the threshold for contour detection and get the
set of levels

6. Run marching squares algorithm for every level, trace
contours and fill regions with appropriate level color.

7. Save output image.

4 Singular Value Decomposition
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Figure 6. rank-k SVD

SVD [2] is an algebraic extension of classical vector
model. It is similar to the PCA method, which has been
the first method used for the generation of eigenfaces. In-
formally, SVD discovers significant properties and repre-
sents the images as linear combinations of the base vectors.
Moreover, the base vectors are ordered according to their
significance for the reconstructed image, which allows us
to consider only the first k base vectors as important (the
remaining ones are interpreted as “noise” and discarded).
Furthermore, SVD is often referred to as more successful in
recall when compared to querying whole image vectors [2].

Formally, we decompose the matrix of images A by sin-
gular value decomposition (SVD), calculating singular val-
ues and singular vectors of A.



We have matrix A, which is an n X m rank-r matrix and
values o1, ...,0, are calculated from eigenvalues of ma-
trix AAT as o; = +/\;. Based on them, we can calculate
column-orthonormal matrices U = (uy,...,u,) and V =
(v1,...,v.), where UTU = I,, aVTV = I,,,, and a diag-
onal matrix ¥ = diag(o1,...,0.), where o; > 0,0; >
Oi+1-

The decomposition

A=UxvVT

is called singular decomposition of matrix A and the
numbers o1, ...,0, are singular values of the matrix A.
Columns of U (or V') are called left (or right) singular vec-
tors of matrix A.

Now we have a decomposition of the original matrix of
images A. We get r nonzero singular numbers, where r is
the rank of the original matrix A. Because the singular val-
ues usually fall quickly, we can take only k greatest singular
values with the corresponding singular vector coordinates
and create a k-reduced singular decomposition of A.

Let us have k (0 < k < r) and singular value decompo-
sition of A

. T _ Xk 0 v
weusvr - wn (30) (1

We call Ay, = UpYy VkT a k-reduced singular value decom-
position (rank-k SVD) (Up, X, and Vj represent matrices
filled with zeros).

Instead of the A; matrix, a matrix of image vectors in
reduced space Dy, = ¥, V;! is used in SVD as the represen-
tation of image collection. The image vectors (columns in
D) are now represented as points in k-dimensional space
(the feature-space). For an illustration of rank-k SVD see
Figure 6.

Rank-k SVD is the best rank-k approximation of the
original matrix A. This means that any other decomposition
will increase the approximation error, calculated as a sum
of squares (Frobenius norm) of error matrix B = A — Ay.
However, it does not implicate that we could not obtain bet-
ter precision and recall values with a different approxima-
tion.

To execute a query Q in the reduced space, we create
a reduced query vector g = Ul'q (another approach is to
use a matrix D, = V;!" instead of Dy, and ¢}, = X, 'Ul'g).
Instead of A against g, the matrix Dy, against g (or ¢},) is
evaluated.

Once computed, SVD reflects only the decomposition
of original matrix of images. If several hundreds of im-
ages have to be added to existing decomposition (folding-
in), the decomposition may become inaccurate. Because
the recalculation of SVD is expensive, so it is impossible to
recalculate SVD every time images are inserted. The SVD-
Updating [2] is a partial solution, but since the error slightly

increases with inserted images. If the updates happen fre-
quently, the recalculation of SVD may be needed soon or
later.

5 Quality evaluation

Since we need an universal evaluation of any retrieval
method, we use some measures to determine quality of such
method. In case of Information Retrieval we usually use
two such measures - precision and recall.

In this case, however, we need to identify the correct per-
son directly. In other words, we would prefer both the pre-
cision and recall to be as close to 1 as possible. Because
of this, instead of calculating the precision at first match
(which will be in this case identical with the precision at
100% recall), we have decided to adopt the binary approach
(the person was/was not identified correctly). In the exper-
imental section, we will present the percentage of people
successfully identified by their irises for different methods.

6 IRIS collection

For testing of the different methods, we used a subset of
a iris collection consisting of 384 irises. The iris were
scanned by TOPCON optical device connected to the CCD
Sony camera. The acquired digitized image is RGB of size
576 x 768 pixels. Some methods required us to represent
each pixel by a single number. In such cases, only the red
(R) component (near-infrared wavelengths) of the RGB im-
age has been used in our experiments — it is known to be
more reliable than recognition green or blue components or
converting the irises to grayscale first [6].

The testing collection consisted of 128 irises of 64 peo-
ple picked at random from the original collection. We also
had an independent set of 10 query images.

An example of original (cropped) iris from the collection
is shown in Figure 7.We did not isolate the central part and
eyelids in this case to provide comparable results with [15].

Figure 7. Original iris

The first modification was to normalize the collection in
following way:

e Remove the parts outside of the iris from the image



e Convert the coordinate system from polar (clockwise)
to Cartesian coordinates, independently on image dila-
tion to create unfolded irises.

Figure 8. Unfolded iris

With this approach, we have obtained iris imaged of
fixed size 1500 x 200 pixels.

Figure 9. Iris after contour detection and
color leveling

The use of quaternions and colour levels have been al-
ready described in section 3. Example of colour leveling
result is shown in Figure 9. On the other hand, the quater-
nion matrix of given image could not be visualised this way.

7 Experimental Results

In this section, we will describe the results obtained on
our collection.

7.1 Generated “Eigenirises” and Recon-
structed Images

Many of tested methods were able to generate a set of
base images, which could be considered to be “eigenirises”
as is the case of PCA, SVD and several other methods. We
are going to provide examples of both factors (base vectors)
— “eigenirises” and reconstructed images which can be ob-
tained from regenerated Ay (for original collection) where
available.

We calculated results for all collection modifications in
several dimensions, for the demonstration images we will
use k = 32.

Because of SVD, we obtain factors with different gener-
ality, the most general being among the first. The first few
are shown in Figure 10. The eigenirises with higher index
bring more details to reconstructed images.

7.2 Query Evaluation

We have discarded the first coordinate of singular vectors
from SVD, because it is tightly connected with the overall

Figure 10. First 32 eigenirises for SVD
method on original collection

Figure 11. First 32 eigenirises for SVD
method on unfolded collection

Figure 12. First 32 eigenirises for SVD
method on colour-levelled collection

Figure 13. Irises used for querying (unfolded
case)

brightness of the image. Both methods improved the results
of the LSI, however the improvement on our collection is
quite small (see Table 1).



Table 1. Query results after SVD - percentage
of succesful identifications

k | Original Unfolded Quaternions Contours
4 40% 50% 70% 30%

8 60% 90% 100% 90%
16 60% 90% 90% 100%
32 70% 90% 90% 100%
64 70% 100% 100% 100%

8 Conclusion

In this paper we presented a modified approach to con-

tour

and quaternion based IRIS preprocessing. This ap-

proach slightly improved the retrieval results with a small
overhead for preprocessing which was done on GPU.

In future, we plan to use the Non-negative matrix factor-
ization and other non-linear scaling functions to improve the
results in lower-rank decompositions. Also, we are planing
to test our approach on Casia iris collection, which contains
irises captured in less suitable conditions and overall with
lower resolution.
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