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Abstract. This work proposes a new approach to discretization in multidimensional
space of conditional attributes in the classification process. The introduced
method divides feature space into irregular sectors using nonorthogonal cuttings
and produces decision rules of higher predictive accuracy than the orthogonal
discretization. The comparison with the traditional approach revealed that the
introduced method can be especially useful when decision classes are not
monotonically distributed in domains of particular conditional attributes.
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1. Introduction

Many of classification tasks cannot be solved by analytical methods. In such cases
there are often performed methods of decision rules discovery, mostly in the
following form [4]:

IF < statement > THEN < conclusion >,

where statement is a set of terms:
(conditional attribute < arithmetical operator > value)
united by logical operators.

The decision attribute is usually expressed in nominal or ordinal scale (divided into
so-called decision classes). If conditional attributes are real values, it is often required
to perform discretization — transfer all the objects (defined by a feature vector X (1)
and a decision class they belong to) from a continuous to an ordinal feature space [1].

X=X X2 ... Xn] 1)
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Usually, discretization consists in dividing domain of each conditional attribute

into intervals (each defines one class of the current attribute) using a set of ‘cuttings’:

Cii=Aj, 2
where i — an index of the attribute X;, j — an index of a cutting for the attribute X; and,
assuming that the domain has been normalized — Ajje [0,1]. To obtain n classes for an
attribute X; we need to perform n-1 cuttings.

The resulted system of independent cuttings, which discretizes the feature space
orthogonally, can be an appropriate and efficient solution when both: the conditional
attributes are strongly correlated with decision and decision classes are monotonically
distributed within attributes’ domains. In some cases, it is difficult to discretize each
attribute’s domain separately. Of course, it can be done arbitrarily [1] (for example 5
intervals, each 0.2 long) but the cuttings based on the data distribution are used more
often although may cause some problems (fig. 1). Sometimes it is suggested to
increase the number of the cuttings, but unfortunately, it can result in overfitting.
Therefore, if one attempts to discover high-confidence and strong classification rules
in multidimensional feature space, it is crucial to analyze spatial distribution of the
data while performing discretization [5].

In adaptive classification systems (when dataset is successively supplied by new
samples, and rules are modified accordingly), system of orthogonal cuttings can have
insufficient number of degrees of freedom to adapt to the mutable dataset.
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Fig. 1. An example of discretization problem in continuous domain of conditional attribute X;

2. Nonorthogonal vs. orthogonal discretization

Author proposes a new method of discretization that takes into consideration all
dimensions of feature space and produces irregularly shaped cells, fitting to the spatial
distribution of the data (fig. 2). For further consideration we assume that feature space
is normalized.

The idea is to split the feature space by nonorthogonal cuttings Cj;, each defined by
a set of values Aj:

Cii= { Aijs, Aijzs -+ > Aijks -+ Ain (3)

where i — an index of attribute X;, j — an index of a cutting for the attribute x;, n>2 —
dimensionality of the feature space. Taking all Ajy values (k=1...n), we can calculate
coefficients of a plane (or a hyperplane) equation for the cutting Cj; by solving:
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and X;...X, — variables associated with conditional attributes.

It seems to be much simpler to use plane (hyperplane) equation coefficients for
cuttings definition instead of Ajy values, but in practice the coefficients do not provide
direct information about plane’s orientation and position. Additionally, manipulating
Ajjc values prevents planes’ ‘escape’ from feature space, because of their accessible
domain: [0,1]. Thus, it is easier to operate the cuttings — one does not have to check
many border conditions for each of the coefficients.
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Fig. 2. An example of the cuttings in 2-dimensional feature space, a) orthogonal discretization
b) nonorthogonal discretization

Nonorthogonal feature space partitioning can be more efficient way of
discretization — especially when the dataset is successively expanding and rule set has
to adapt to varying conditions by slight changes in cuttings system:

— more degrees of freedom gives wider range of cuttings manipulation,
— irregularly shaped cells are easier to adjust to spatial distribution of the data (fig.3),



— in many cases we can reduce the number of nonorthogonal cuttings, comparing to
orthogonal discretization in the same classification task (fig. 2b).
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Fig. 3. An example of nonorthogonal discretization in 3-dimensional feature space

3. Classification rules discovery

Each irregularly shaped cell (further called sector) after performing the
nonorthogonal cuttings can produce one decision rule. So, it is essential to calculate
spatial position of the sample s in reference to all the cutting planes (hyperplanes).
Therefore, in nonorthogonally discretized feature space, each decision rule can be
defined as follows:

IF(saCy))and (soCy,) and ... THEN (s € p) (6)

where s — classified sample, 0 — arithmetical operator (< or >), p — predicted decision
class.

The location of the sample s in reference to the cutting Cjj can be calculated using
determinant of the matrix M;; (5) for feature vector [X3 X5 ... Xn] (1):

(M;j| <0) = (x=<Cy)
(|Mij| > 0) = (X > Cij)

)

In order to simplify the formula (6) and to make the sectors manipulation more
effective, each cell is labeled by a series of binary values. They define cell position in
reference to all the cuttings — if the sector is located below the plane (hyperplane) Cjj,
the proper bit is set to ‘0°, otherwise ‘1°. Transferring the binary values to a decimal



numbers we obtain shorter, unique label for each of the sectors. Now we can simplify
notation of the formula (6):

IF (s eS,) THEN (s € p) (C))

where S| — decimally labeled sector. Predicted decision class p for sector S is
determined as the dominant decision class within the sector.

Rule acceptance takes place after performing 2 tests:

1. confidence test — the dominant decision class representatives - to - all samples in
the cell ratio must exceed the confidence threshold,

2. strength test — the dominant decision class in the cell must be of a higher
percentage of all the class representatives than the strength threshold.

An additional mechanism that supports rule acceptance consists in uniting adjacent
cells if they produce the same conclusion (dominant decision class). Although it
seems to be difficult to find all the neighbors of an irregularly shaped sector S, in n-
dimensional space, but using the introduced labeling system we can reduce it to
search of all the sectors with label that differ with L in 1 bit. Uniting cells before
strength test can help to accept single rules, that are not strong enough.

Because more than one sector can produce the same conclusion, finally, the
decision rule can be defined as follows:

IF (s e SLl) OR (s e SLZ) OR ... THEN (s € p) (9)

where L1, L2 — decimal labels of the sectors.
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Fig. 4. An example of rule discovery in 2-dimentional feature space discretized
nonorthogonally.



4. Experiment

The research aims to compare prediction accuracy of the rule sets
discovered through orthogonal and nonorthogonal discretization of the feature
space. In order to estimate and rate the rule set quality there were introduced:

1. efficiency E<[0,1]
E_ ( TP(p) TN(p)
P

j (10)
TP(p)+FN(p) TN(p)+FP(p)

2. predictive accuracy Ae[0,1]
A=>"TP(p) (11
p

where:

p — the index of decision class (predicted class)

TP(p) — true positives — the number of cases that belong to p and are covered by

the rule predicting class p;

— FP(p) — false positives — the number of cases covered by the rule predicting class p
but belonging to different class;

— FN(p) — false negatives — the number of cases that belong to p but are not covered
by the rule predicting p;

— TN(p) — true negatives — the number of cases that are not covered by the rule
predicting p and that do not belong to class p [4].

In order to test the new approach to discretization there has been performed
classification process for 3 datasets [3] that differ in both number of instances,
attributes and decision classes (main characteristics are summarized in table 1). For
further research, all attributes in datasets were normalized.

dataset 4 #continuous #decision multiple correlation
cases : ! L
name attributes classes with decision
Wines 178 13 3 0.9487
Wisconsin 683 9 2 0.9183
breast cancer
Iris 150 4 3 0.9646

Table 1. Datasets used in the experiment (from repository [3])

Searching for the cuttings system that produces the most efficient and accurate
rules for current feature space (in case of both orthogonal and nonorthogonal
discretization) was performed randomly, supported by roulette wheel selection.
Accessible domain of each Ajx was divided into 20 equal bins (0.05 long). After
random selection of the cuttings, the discovered rule set was rated. Next, the
probability of drawing the same bin for A;j was increased in proportion to E.



These steps have been repeated 10000 times for the training set. Then using the
winning system of cuttings C;; (with the highest efficiency), predictive accuracy of the
rules for testing set was calculated. The procedure has been repeated 15 times. The
population was randomly split anew into training (50%) and testing (50%) set after
each iteration.

The simulation has been performed for 3 datasets, with the same simulation
parameters, such as confidence threshold = 0.75, strength threshold = 0.2 and with
varying number of cuttings — 1 or 2 cuttings for each attribute X;, and the third option
— 1 cutting for each of selected features (with the highest correlation with decision).

5. Results and conclusions

The results of the experiment show that the method of the heuristic search — the
roulette wheel selection appears to be effective in such classification tasks. The
proposed amount of drawings (10000) in most cases was more than enough to find an
efficient system of cuttings for rule discovery (table 2).

mean E mean A [%] mean A [%]
#cuttings (training set) (training set) (testing set)
orth. |nonorth.| orth. |nonorth.| orth. |nonorth.
26 2 for each x; 0.1714 | 0.7908 56.20 93.98 34.19 87.31
Wines 13 1 for each x; 0.8478 | 0.7973 95.00 94.44 78.60 87.22
6 | X1 Xg X7 Xg X11 X312 | 0.9079 | 0.8660 97.32 96.30 83.33 88.54
Wisc. 18 2 for each x; 0.5227 | 0.9150 77.53 96.78 39.93 91.30
breast 9 1 for each x; 0.9448 | 0.9516 98.37 98.46 93.21 95.06
cancer 3 X2 X3 Xg 0.8832 | 0.9469 96.49 98.32 95.28 96.51
8 2 for each x; 0.9730 | 0.9894 99.37 99.76 91.85 92.59
Iris 4 1 for each X; 0.9060 | 0.9802 97.67 99.52 90.78 94.67
2 X3 X4 0.8514 | 0.9030 96.51 97.78 92.41 95.37

dataset
name

Table 2. Experiment results — efficiency and predictive accuracy for 3 datasets

In the table 2 we can observe that for nonorthogonal discretization, the obtained
mean E value is more stable in each dataset (for different cutting sets) and in most
cases higher than for orthogonal approach. Moreover, the nonorthogonal
discretization gives better predictive accuracy in general, especially for testing set.
Also it is noticeable that predictive accuracy is the highest, while taking least
numerous cuttings sets (fig. 5). We can explain it with:

— better generalization — the less cuttings, the less risk of overfitting,

— stronger rules — the less cuttings, the less sectors (in general),

— more space covered by rules — the less cuttings, the more probably the sectors
would be more capacious.

Additionally, the roulette wheel selection, used in the experiment, has to optimize
less variables Aj; when there is less cuttings considered. And also, we can assume that
the orthogonal cutting sets were found closer to the optimal through 10000 drawings
than the nonorthogonal cuttings (n-1 variables Ajx more for each single cutting).



Therefore, there is a high probability that using more convergent methods we could
prove the greater advantage of the nonorthogonal over the orthogonal discretization.

It is also noticeable that the decrease of the predictive accuracy (training set to
testing set) seems to be proportional to the number of cuttings. We can observe
similar, but even more significant effect in results of the orthogonal discretization. At
the same time they are visibly worse (fig. 5) — particularly, the obtained predictive
accuracy was especially poor for the orthogonal discretization, when there were taken
2 cuttings for each feature. The reason seems to be a significant number of rejected
rules that were not strong enough. Hence, one should consider the fact, that when
each conditional attribute is normally discretized (separately), there is used usually
more than one cutting (if there are more than 2 decision classes). The research results
seem to undermine the advisability of this approach for some datasets (Wines,
Wisconsin).
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Fig. 5. Experiment results — predictive accuracy for testing set and mean decrease of accuracy —
training set to testing set, for 3 datasets



It is worth to consider the fact that if one takes less number of cuttings than
features for orthogonal discretization (there are no cuttings for a part of attributes), it
automatically means reduction of space dimensionality. Nonorthogonal cuttings are
still able to use information from ‘unconsidered’ features, because they still operate
on full attribute space.

6. Summary

On the basis of the very promising experiment results, the introduced method of
nonorthogonal discretization in multidimensional feature space provides higher
prediction accuracy and generalization of discovered rules than traditional orthogonal
cuttings. In the greater part of analyzed cases the mentioned quality measures were
significantly higher for the nonorthogonal cuttings. Moreover, increased number of
degrees of freedom for each cutting (n instead of 1) gives wider range of possible
cuttings manipulation and better ability to fit spatial distribution of the data (due to
irregular cells). Therefore, it can be especially efficient in systems of adaptive
classification, when rule set has to adapt in response to changes in dataset.

The research revealed that nonorthogonal discretization is especially useful when
decision classes are not monotonically distributed in domains of particular conditional
attributes (dataset Wines). Additionally, there can be used less number of cuttings
than features, what does not mean dimensionality reduction (unlike in case of
orthogonal discretization).

Of course, for some classification tasks, data distribution can indicate that
traditional cutting system would be more efficient. However, orthogonal
discretization can be considered as a special case of nonorthogonal discretization — in
such situation we can observe that:

Aile AijZE W = Aijn (12)

Summing up, the proposed approach appears to be an effective solution for feature
space discretization and rule discovery.
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