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Abstract. This work proposes a new approach to discretization in multidimensional 
space of conditional attributes in the classification process. The introduced 
method divides feature space into irregular sectors using nonorthogonal cuttings 
and produces decision rules of higher predictive accuracy than the orthogonal 
discretization. The comparison with the traditional approach revealed that the 
introduced method can be especially useful when decision classes are not 
monotonically distributed in domains of particular conditional attributes. 
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1. Introduction 

Many of classification tasks cannot be solved by analytical methods. In such cases 
there are often performed methods of decision rules discovery, mostly in the 
following form [4]: 

IF < statement > THEN < conclusion >, 

where statement is a set of terms:  

(conditional attribute < arithmetical operator > value) 

united by logical operators. 

The decision attribute is usually expressed in nominal or ordinal scale (divided into 
so-called decision classes). If conditional attributes are real values, it is often required 
to perform discretization – transfer all the objects (defined by a feature vector X (1) 
and a decision class they belong to) from a continuous to an ordinal feature space [1]. 

X = [x1 x2 … xn] (1) 
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Usually, discretization consists in dividing domain of each conditional attribute 
into intervals (each defines one class of the current attribute) using a set of ‘cuttings’: 

 Cij=Aij , (2) 

where i – an index of the attribute xi , j – an index of a cutting for the attribute xi and, 
assuming that the domain has been normalized – Aij∈ [0,1]. To obtain n classes for an 
attribute xi we need to perform n-1 cuttings.  

The resulted system of independent cuttings, which discretizes the feature space 
orthogonally, can be an appropriate and efficient solution when both: the conditional 
attributes are strongly correlated with decision and decision classes are monotonically 
distributed within attributes’ domains. In some cases, it is difficult to discretize each 
attribute’s domain separately. Of course, it can be done arbitrarily [1] (for example 5 
intervals, each 0.2 long) but the cuttings based on the data distribution are used more 
often although may cause some problems (fig. 1). Sometimes it is suggested to 
increase the number of the cuttings, but unfortunately, it can result in overfitting. 
Therefore, if one attempts to discover high-confidence and strong classification rules 
in multidimensional feature space, it is crucial to analyze spatial distribution of the 
data while performing discretization [5].  

In adaptive classification systems (when dataset is successively supplied by new 
samples, and rules are modified accordingly), system of orthogonal cuttings can have 
insufficient number of degrees of freedom to adapt to the mutable dataset. 
 

 
Fig. 1. An example of discretization problem in continuous domain of conditional attribute xi

2. Nonorthogonal vs. orthogonal discretization 

Author proposes a new method of discretization that takes into consideration all 
dimensions of feature space and produces irregularly shaped cells, fitting to the spatial 
distribution of the data (fig. 2). For further consideration we assume that feature space 
is normalized. 

The idea is to split the feature space by nonorthogonal cuttings Cij, each defined by 
a set of values Aijk: 

Cij = { Aij1, Aij2, … , Aijk , … , Aijn }, (3) 

where i – an index of attribute xi,  j – an index of a cutting for the attribute xi, n≥2 – 
dimensionality of the feature space. Taking all Aijk values (k=1…n), we can calculate 
coefficients of a plane (or a hyperplane) equation for the cutting Cij by solving: 
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|Mij | = 0        

where: 

(4) 
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and x1…xn – variables associated with conditional attributes. 

It seems to be much simpler to use plane (hyperplane) equation coefficients for 
cuttings definition instead of Aijk values, but in practice the coefficients do not provide 
direct information about plane’s orientation and position. Additionally, manipulating 
Aijk values prevents planes’ ‘escape’ from feature space, because of their accessible 
domain: [0,1]. Thus, it is easier to operate the cuttings – one does not have to check 
many border conditions for each of the coefficients. 

  

  
  

C11 = 0.53             C12 = 0.70 
C21 = 0.62             C22 = 0.78 

C11 = { 0.81, 0.19 }       
C12 = { 0.52, 0.97 } 

Fig. 2. An example of the cuttings in 2-dimensional feature space, a) orthogonal discretization 
b)  nonorthogonal discretization 

Nonorthogonal feature space partitioning can be more efficient way of 
discretization – especially when the dataset is successively expanding and rule set has 
to adapt to varying conditions by slight changes in cuttings system:  

− more degrees of freedom gives wider range of cuttings manipulation, 
− irregularly shaped cells are easier to adjust to spatial distribution of the data (fig.3), 
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− in many cases we can reduce the number of nonorthogonal cuttings, comparing to 
orthogonal discretization in the same classification task (fig. 2b). 
 

 

C11 = { 0.99, 0.56, 0.13 } 
C21 = { 0.80, 0.83, 0.70 } 
C31 = { 0.33, 0.89, 0.29 } 

Fig. 3. An example of nonorthogonal discretization in 3-dimensional feature space 

3. Classification rules discovery 

Each irregularly shaped cell (further called sector) after performing the 
nonorthogonal cuttings can produce one decision rule. So, it is essential to calculate 
spatial position of the sample s in reference to all the cutting planes (hyperplanes). 
Therefore, in nonorthogonally discretized feature space, each decision rule can be 
defined as follows: 

IF (s □ C11) and (s □ C12) and …        THEN (s ∈ p) (6) 

where s – classified sample, □ – arithmetical operator (≤ or >), p – predicted decision 
class.  

The location of the sample s in reference to the cutting Cij can be calculated using 
determinant of the matrix Mij (5) for feature vector [x1 x2 … xn] (1): 

(|Mij| ≤ 0)  ⇒  (x ≤ Cij) 

(|Mij| > 0)  ⇒  (x > Cij) 
(7) 

In order to simplify the formula (6) and to make the sectors manipulation more 
effective, each cell is labeled by a series of binary values. They define cell position in 
reference to all the cuttings – if the sector is located below the plane (hyperplane) Cij, 
the proper bit is set to ‘0’, otherwise ‘1’. Transferring the binary values to a decimal 
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numbers we obtain shorter, unique label for each of the sectors. Now we can simplify 
notation of the formula (6): 

IF  (s ∈ SL)  THEN (s ∈ p) (8) 

where SL – decimally labeled sector. Predicted decision class p for sector SL is 
determined as the dominant decision class within the sector.  

Rule acceptance takes place after performing 2 tests: 

1. confidence test – the dominant decision class representatives - to - all  samples in 
the cell ratio must exceed the confidence threshold,  

2. strength test – the dominant decision class in the cell must be of a higher 
percentage of all the class representatives than the strength threshold. 

 An additional mechanism that supports rule acceptance consists in uniting adjacent 
cells if they produce the same conclusion (dominant decision class). Although it 
seems to be difficult to find all the neighbors of an irregularly shaped sector SL in n-
dimensional space, but using the introduced labeling system we can reduce it to 
search of all the sectors with label that differ with L in 1 bit. Uniting cells before 
strength test can help to accept single rules, that are not strong enough. 

Because more than one sector can produce the same conclusion, finally, the 
decision rule can be defined as follows: 

IF  (s ∈ SL1)  OR  (s ∈ SL2)  OR …      THEN (s ∈ p) (9) 

where L1, L2 – decimal labels of the sectors. 
 
 

 
 
 
     Discovered rules: 
 
1.  IF (s ∈ S0) OR (s ∈ S2) 
     THEN (s ∈ class 1) 
 
2.  IF (s ∈ S4) OR ( s∈ S6) 
     THEN (s ∈ class 2) 
 
3.  IF (s ∈ S3) OR (s ∈ S7) 
     THEN (s ∈ class 3) 
 

Fig. 4. An example of rule discovery in 2-dimentional feature space discretized 
nonorthogonally. 
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4. Experiment 

The research aims to compare prediction accuracy of the rule sets 
discovered through orthogonal and nonorthogonal discretization of the feature 
space. In order to estimate and rate the rule set quality there were introduced: 

1. efficiency E∈[0,1] 
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2. predictive accuracy A∈[0,1] 

∑=
p

pTPA )(  (11) 

where: 
− p – the index of decision class (predicted class)  
− TP(p) – true positives – the number of cases that belong to p and are covered by 

the rule predicting class p; 
− FP(p) – false positives – the number of cases covered by the rule predicting class p 

but belonging to different class; 
− FN(p) – false negatives – the number of cases that belong to p but are not covered 

by the rule predicting p; 
− TN(p) – true negatives – the number of cases that are not covered by the rule 

predicting p and that do not belong to class p [4]. 

In order to test the new approach to discretization there has been performed 
classification process for 3 datasets [3] that differ in both number of instances, 
attributes and decision classes (main characteristics are summarized in table 1). For 
further research, all attributes in datasets were normalized. 

 
dataset 
name #cases #continuous  

attributes 
#decision 

classes 
multiple correlation 

with decision 
Wines 178 13 3 0.9487 

Wisconsin 
breast cancer 683 9 2 0.9183 

Iris 150 4 3 0.9646 

Table 1. Datasets used in the experiment (from repository [3]) 

 

Searching for the cuttings system that produces the most efficient and accurate 
rules for current feature space (in case of both orthogonal and nonorthogonal 
discretization) was performed randomly, supported by roulette wheel selection. 
Accessible domain of each Aijk was divided into 20 equal bins (0.05 long). After 
random selection of the cuttings, the discovered rule set was rated. Next, the 
probability of drawing the same bin for Aijk was increased in proportion to E. 
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These steps have been repeated 10000 times for the training set. Then using the 
winning system of cuttings Cij (with the highest efficiency), predictive accuracy of the 
rules for testing set was calculated. The procedure has been repeated 15 times. The 
population was randomly split anew into training (50%) and testing (50%) set after 
each iteration.  

The simulation has been performed for 3 datasets, with the same simulation 
parameters, such as confidence threshold = 0.75, strength threshold = 0.2 and with 
varying number of cuttings – 1 or 2 cuttings for each attribute xi, and the third option 
– 1 cutting for each of selected features (with the highest correlation with decision). 

5. Results and conclusions 

The results of the experiment show that the method of the heuristic search – the 
roulette wheel selection appears to be effective in such classification tasks. The 
proposed amount of drawings (10000) in most cases was more than enough to find an 
efficient system of cuttings for rule discovery (table 2). 

 
mean E  

(training set) 
mean A [%] 
(training set) 

mean A [%] 
(testing set) dataset 

name #cuttings 
orth. nonorth. orth. nonorth. orth. nonorth. 

26 2 for each xi 0.1714 0.7908 56.20 93.98 34.19 87.31 
13 1 for each xi 0.8478 0.7973 95.00 94.44 78.60 87.22 Wines 
6 x1 x6 x7 x8 x11 x12 0.9079 0.8660 97.32 96.30 83.33 88.54 

18 2 for each xi 0.5227 0.9150 77.53 96.78 39.93 91.30 
9 1 for each xi 0.9448 0.9516 98.37 98.46 93.21 95.06 

Wisc. 
breast  
cancer 3 x2 x3 x6 0.8832 0.9469 96.49 98.32 95.28 96.51 

8 2 for each xi 0.9730 0.9894 99.37 99.76 91.85 92.59 
4 1 for each xi 0.9060 0.9802 97.67 99.52 90.78 94.67 Iris 
2 x3 x4 0.8514 0.9030 96.51 97.78 92.41 95.37 

Table 2. Experiment results – efficiency and predictive accuracy for 3 datasets 

In the table 2 we can observe that for nonorthogonal discretization, the obtained 
mean E value is more stable in each dataset (for different cutting sets) and in most 
cases higher than for orthogonal approach. Moreover, the nonorthogonal 
discretization gives better predictive accuracy in general, especially for testing set. 
Also it is noticeable that predictive accuracy is the highest, while taking least 
numerous cuttings sets (fig. 5). We can explain it with: 
− better generalization – the less cuttings, the less risk of overfitting, 
− stronger rules – the less cuttings, the less sectors (in general), 
− more space covered by rules – the less cuttings, the more probably the sectors 

would be more capacious. 
Additionally, the roulette wheel selection, used in the experiment, has to optimize 

less variables Aij when there is less cuttings considered. And also, we can assume that 
the orthogonal cutting sets were found closer to the optimal through 10000 drawings 
than the nonorthogonal cuttings (n-1 variables Aijk more for each single cutting). 
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Therefore, there is a high probability that using more convergent methods we could 
prove the greater advantage of the nonorthogonal over the orthogonal discretization. 

It is also noticeable that the decrease of the predictive accuracy (training set to 
testing set) seems to be proportional to the number of cuttings. We can observe 
similar, but even more significant effect in results of the orthogonal discretization. At 
the same time they are visibly worse (fig. 5) – particularly, the obtained predictive 
accuracy was especially poor for the orthogonal discretization, when there were taken 
2 cuttings for each feature. The reason seems to be a significant number of rejected 
rules that were not strong enough. Hence, one should consider the fact, that when 
each conditional attribute is normally discretized (separately), there is used usually 
more than one cutting (if there are more than 2 decision classes). The research results 
seem to undermine the advisability of this approach for some datasets (Wines, 
Wisconsin).  

 
WINES - predictive accuracy for testing set
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IRIS - predictive accuracy for testing set
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Fig. 5. Experiment results – predictive accuracy for testing set and mean decrease of accuracy – 
training set to testing set, for 3 datasets 
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It is worth to consider the fact that if one takes less number of cuttings than 
features for orthogonal discretization (there are no cuttings for a part of attributes), it 
automatically means reduction of space dimensionality. Nonorthogonal cuttings are 
still able to use information from ‘unconsidered’ features, because they still operate 
on full attribute space. 

6. Summary 

On the basis of the very promising experiment results, the introduced method of 
nonorthogonal discretization in multidimensional feature space provides higher 
prediction accuracy and generalization of discovered rules than traditional orthogonal 
cuttings. In the greater part of analyzed cases the mentioned quality measures were 
significantly higher for the nonorthogonal cuttings. Moreover, increased number of 
degrees of freedom for each cutting (n instead of 1) gives wider range of possible 
cuttings manipulation and better ability to fit spatial distribution of the data (due to 
irregular cells). Therefore, it can be especially efficient in systems of adaptive 
classification, when rule set has to adapt in response to changes in dataset.  

The research revealed that nonorthogonal discretization is especially useful when 
decision classes are not monotonically distributed in domains of particular conditional 
attributes (dataset Wines). Additionally, there can be used less number of cuttings 
than features, what does not mean dimensionality reduction (unlike in case of 
orthogonal discretization). 

Of course, for some classification tasks, data distribution can indicate that 
traditional cutting system would be more efficient. However, orthogonal 
discretization can be considered as a special case of nonorthogonal discretization – in 
such situation we can observe that: 

Aij1 ≅ Aij2 ≅ … ≅ Aijn (12) 

Summing up, the proposed approach appears to be an effective solution for feature 
space discretization and rule discovery. 
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