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Abstract

The volume of textual data still increase in these days,
because many types of IRS are created a more and more
documents are stored in them. In IRS are usually per-
formed 2 actions. The first action is compression of the
documents. One possibility for compression of textual data
is word-based compression. Several algorithms for word-
based compression algorithms based on Huffman encoding,
LZW or BWT algorithm was proposed. In this paper, we
describe word-based compression method based on LZ77
algorithm. The second action is cluster analysis of textual
database to improve quality of answers to users’ queries.
The information retrieved from the clustering can be very
helpful in compression. Word-based compression using in-
formation about cluster hierarchy is presented in this pa-
per. Experimental results which are provided at the end of
the paper were achieved not only using well-known word-
based compression algorithms WBW and WLZW but also
using quite new WLZ77 algorithm.

1. Introduction

Data compression is used more and more in these days,
because larger amount of data require to be transferred or
backed-up and capacity of media or speed of network lines
increase slowly. Some data types, which still increase,
are text documents like business materials, documentation,
forms, contracts, emails and many others. For compression
of textual data we usually use universal compression meth-
ods based on algorithms LZ77 and LZ78. However, there
are also algorithms specially developed for text like PPM
or Burrows-Wheeler transformation (BWT). An interesting
approach to text compression is not taking this data as se-
quence of characters or bytes, but as sequence of words.
These words may be real words from spoken language, but
also sequences of characters, which fulfill some condition,
e.g. character pairs. This approach is called word-based

compression.The word-based compression is not a new al-
gorithm, but only a revised approach to the text compres-
sion. In the past, word-based compression methods based
on Huffman encoding, LZW or BWT were tested. This pa-
per describes word-based compression methods based on
the LZ77 algorithm. It is focused on different variants of al-
gorithm itself, various implementations of the sliding win-
dow algorithm and on various possibilities of output encod-
ing. Finally, many tests were performed to compare variants
of our implementation as well as other word-based or clas-
sic compression algorithms.

2. Word-based compression methods

The first widely accessible description is that of Bent-
ley et al. [2] (see also Ryabko [20]), who proposed that a
dictionary of words parsed from the text should be coupled
with codewords that correspond to MTF numbers. Mof-
fat [13] also experimented with word-based models, and
showed that for a range of data files the MTF transforma-
tion was less effective than a straightforward entropy code
in those experiments, arithmetic coding. A similar word-
based model is available as part of the arithmetic coding
implementation of Moffat et al. [14].

Huffword compression method was designed by Moffat
and Zobel in 1994 [22]. HuffWord is a compression method
that is specialized in texts and uses a word-based alphabet.
The compression is based on the so-called Huffman canonic
coding. The authors of the HuffWord claim a compression
ratio of about 30%.

The beginning of the WLZW method dates back to 1998
when its first variant and the first results were published [5,
8]. The WBW method is newer and its beginning dates back
to 2001 [9].

2.1. WLZ77 method

The WLZ77 method is based on LZ77 algorithm devel-
oped in 1977 by Abraham Lempel and Jacob Ziv [23] and



it’s modification LZSS published by J. Storer a T. Szyman-
ski [21] in 1982 and practically implemented by T. C. Bell
[1] in 1986.

LZ77 belongs to a group of dictionary compression algo-
rithms, more precisely to the subgroup of algorithms with
a sliding window. LZ77 algorithm uses a part of the re-
cently encoded text which is stored in sliding window as
a dictionary. This window is divided into two sections -
the encoded section and the plain section. Compression it-
self consists of searching for the longest sequence in the
encoded section, which is equal to the text at begin of the
plain text section.

Speed of compression using LZ77 algorithm is mainly
based on the implementation of sliding window. Several
types of sliding window, based on binary trees or hash table,
were proposed in the recent years. But this proposal was
intended to character based algorithm. Word-based algo-
rithms have other requirements than character based. There-
fore, several variant of three, base types of sliding window:
binary tree, hash tables and patricia tree [15] was tested.

Word-based variant of LZ77 algorithm was goal of mas-
ter thesis of Jan Platoš [17] and was published in 2007 [18].
WLZ77 algorithm used in this paper is word-based variant
of LZSS which uses patricia tree based sliding window im-
plementation with Huffman encoding as a entropy encoder
for position-length pairs and characters.

Scheme of WLZW, WBW and WLZ77 compression al-
gorithms: These compression methods can be roughly di-
vided into two parts that are named front end and back end.
These compression methods process document texts in two
passes. The division of compression methods into two parts
corresponds with those passes. Some parts are not active
at all in the individual passes or their activity is different.
Two algorithm phases can be distinguished according to the
order of passing through document texts in all compression
algorithms:

• First phase - corresponds to the first pass of the com-
pression algorithm. A word-based alphabet is created
in this phase. Individual tokens are extracted from doc-
uments through the process of lexical analysis, which
is implemented by the front end part. This phase is
shared with document indexing in the textual database.

• Second phase - corresponds to the second pass of the
compression algorithm. A complete word-based al-
phabet is available upon the completion of the first
phase and the actual document compression can begin.
A lexical analysis is again performed and the token se-
quence that is being created is compressed by a chosen
algorithm. Both phases of the compression algorithm,
the front end and the back end, are already active in
this phase.

The division of the compression algorithm into two rel-
atively independent parts made it possible to separate two
different compression algorithm phases, i.e. the creation of
a word-based alphabet and the actual compression. Natu-
rally, this separation has simplified the algorithm design, it
has made the implementation more transparent, etc.

3. The Topic Evolution

3.1. Ultrametric

The triangular inequality holds for a metric space:
d(x, z) ≤ d(x, y) + d(x, z) for any triplet of points x, y, z.
In addition the properties of symmetry and positive definite-
ness are respected.

Definition 3.1 A metric space (X, d) is called ultra-
metric if for all x, y, z ∈ X we have d(x, z) ≤
max{d(x, y), d(y, z)} [4].

Definition of the hierarchical agglomerative clustering
method outgoing from [11], which compute ultrametric tree
from the distance matrix.

3.2. Aglomerative Clustering Method and Ultra-
metric

Finding of groups of objects with the same or similar fea-
tures within given set of objects is the goal of cluster analy-
sis [3]. These groups are called clusters. In our case objects
are equal to documents that will be stored in textual base,
and clusters are equal to groups of similar documents. First
of all the distance of two documents and distance matrix C
for each pair of documents should be defined. Our approach
of cluster analysis is based on ultrametric tree [11].

As is well known, in clustering a bijection is defined be-
tween a rooted, binary, ranked, indexed tree, called a den-
drogram, and a set of ultrametric distances [16, 11].

3.3. TOPIC-CA

Our research concerns with the topics undergoing an
evolution. Let’s assume the document from the collection
of documents, that describes the same topic. It is clear, that
there are some other documents in the collection that de-
scribe the same topic, but they use different words to char-
acterize the topic. The difference can be caused by many
reasons. The first document focused on the topic uses a set
of words and next documents may use synonyms or for ex-
ample exploration of new circumstances, facts, or political
situation etc. [7, 12]. The result of searching the evolution
of topic is to engaged query finding the lists of documents
related by thematic with engaged query. We mean the query



Algorithm 1 TOPIC-CA
UTree ← Nodes from ultrametric Tree

function TOPIC CA(node ∈ UTree ∪ null)
L← Empty list
if node 6= null then

AddNodeToEnd(L, node)
while node 6= null do

sibling ← SIBLING(node)
L← SUB(sibling, L)
node← PARENT(node)

end while
end if
return L

end function

function SUB(node ∈ UTree ∪ null, list L)
if node = null then

return L
end if
sibling ← SIBLING(node)
if node ∈ leaf nodes of UTree then

AddNodeToEnd(L, node)
else if sibling 6= null then

siblingLeft← LEFTCHILD(sibling)
siblingRight← RIGHTCHILD(sibling)
simLeft ← SIM(node, siblingLeft)
simRight ← SIM(node, siblingRight)
if SimRight ≤ SimLeft then

L← SUB(siblingLeft, L)
L← SUB(siblingRight, L)

else
L← SUB(siblingRight, L)
L← SUB(siblingLeft, L)

end if
end if
return L

end function

function SIM(n1 ∈ UTree ∪ null, n2 ∈ UTree ∪ null)
if node1 = null ∨ node2 = null then

return 0
end if
cn1 ← centroid created from all leafs nodes in n1

cn2 ← centroid created from all leafs nodes in n2

sim← similarity between cn1 and cn2

return sim
end function

as query sets by terms or as document which is set as rele-
vant.

An algorithm TOPIC-CA [6] which is described in the
algorithm 1. This algorithm for getting the evolution of the
topic from the clusters hierarchy, which uses the count of
documents in evolution as the binding condition.

Definition 3.2 TOPIC-CA is defined in the ultrametric tree
X as a list ST = TOPIC CA(dq). Where dq is the node
of ultrametric tree for which the topic is generated.

4. Compression with clustering support

Ordering of input documents was not taken in considera-
tion in general description of word-base compression meth-
ods. The compression method works correctly for any or-
dering of documents. Probably the simplest ordering of
input documents is time ordering, i.e. the documents are
compressed in the same order as they are added to textual
database. Seeing that compression methods are based on
searching of repeated parts of texts, it is easy to see, that this
ordering is not necessary the best possible. Improvement of
compression performance can be achieved by reordering of
input documents. Better ordering of input documents moves
similar documents to one another.

Similar documents are grouped together using cluster
analysis. Of course cluster analysis is very time consuming
so that it is counterproductive to perform the analysis only
to enhance compression performance. But when compres-
sion method for IRS is developed, results of cluster analy-
sis can be used in query processing [7, 12] and vice versa,
cluster analysis originally devoted to query processing can
be incorporated to compression.

To group similar documents together, agglomerative
clustering algorithm was used. But the question how to
convert hierarchical tree structure of clusters to linear list
of documents still remains. The ultramnetric tree was cre-
ated during clustering. We can used this fact and for list of
documents LX for compression used ultrametric ball query:
BX(x, r), where r is maximal distance in ultrametric tree.
LX be sorted before compression aided distance d(x, z)
where z ∈ LX .

Two strategies were used to reorder collection of docu-
ments entering the compression process:

Most Similar Left (MSL) – x inBX(x, r) is leftmost doc-
ument in the ultrametric tree.

Most Similar Right (MSR) – x in BX(x, r) is rightmost
document in the ultrametric tree.



5. Experimental Results

Some experiments were done to test impact clustering
on word-based compression methods. Both compression
methods were used in our tests. Two large text files were
used for our tests: latimes.txt coming from TREC corpus
[10], and enron.txt, which consists of emails from Enron
email corpus1. In file latimes.txt individual documents are
represented by each newspapers article and ordering is de-
termined by date of publication. Each individual email rep-
resents document in file enron.txt, and ordering is defined
as alphabetical ordering of users in Enron corpus. Results
for this type of ordering without ordering is provided in Ta-
ble 1.

The following notation will be used to describe results of
experiments:

• CS is the size of compressed file

• CSα, where α ∈ {WLZW,WBW,GZIP,BZIP2}
is the size of compressed file without clustering, see
Table 1

• ∆CS = CSα−CS
CSα

× 100%

• CR = CS
S0
× 100% is compression ratio

• ∆CR = CRα − CR, where α ∈
{WLZW,WBW,WLZ77, GZIP,BZIP2}

∆ values represents difference between given value and cor-
responding value in compression without clustering. Posi-
tive ∆ value means that given value is worse than original
value, negative value means than new value is better than
original one.

The first experiments was focused on comparison be-
tween three types of word-based compression methods and
two commonly-used programs - GZip and BZip. Result of
this experiment are depicted in Table 1. As can be seen, the
best result was achieved by algorithms WBW for latimes.txt
file and WLZ77 for enron.txt file. Other algorithms were
much worst than WLZ77.

The second experiments are focused on compression
of clustered files. Both files are relatively large. The
size of documents (newspapers articles, emails) varies from
houndreds of bytes to eight kilobytes. Compression with
clustering and five random permutations were tested.

It is easy to see from Table 2, that clustering brings pos-
itive results in terms of compression ratio. The size of the
compressed text for latimes.txt file is about 4% less than
the original size in the WLZW methods, about 5% smaller
than the original one in the WBW method and about 3.5%
smaller than the original size in the WLZ77 method. The
compression ratio improves to cca 1.2% with respect to

1Duplicate emails were deleted before processing.

original values in all cases. Better results were achieved
for file enron.txt, see Table 2. The improvement of com-
pression ratio is more than 2 % with respect to the original
compressed size in the WLZW and WLZ77 methods, and
cca 4 % in the WBW method.

Random permutations deteriorate compression in all
cases (see Table 3). These negative results mean that clus-
tering has measurable impact on compression performance,
and the positive results of regarding cluster supported com-
pression are not coincidental.

The results of standard GZip and BZip2 compression
utilities provide data for comparison with our proposed
word-based compression methods. As can be seen from ta-
bles, character of these results is very close to our methods;
therefore clustering has serious impact on compression re-
gardless of selected compression method.

6. Conclusion and future works

Word-based variant of LZ77 compression algorithm is at
least so good as other word-based compression algorithms
and in many cases is much better than other. In compari-
son with GZIP or BZIP program is WLZ77 algorithm bet-
ter of about several percent of compression ratio. Word-
based compression methods combined with cluster analysis
of input document have been presented in this paper. These
compression methods are suitable especially for IRS. Ex-
perimental results prove that clustering has a positive im-
pact on the compression ratio.
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