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Abstract. Classical fuzzy model computes a crisp response for crisp inputs. 
This paper presents a method for computing fuzzy model response for fuzzy in-
puts. The method is based on singleton representation of a fuzzy set and it al-
lows to obtain fuzzy response for fuzzy inputs. The presented method is com-
pared with alternative approaches: Zadeh’s possibilistic method and method 
based on similarity measure. The validity of the proposed method is illustrated 
with experimental results (in comparison with extension principle results). 

1   Introduction 

There are different types of data in the real world: precise (numerical) data and uncer-
tain data. Numerical data, collected with a precise measuring instrument, can be ana-
lyzed and processed by numerical mathematical methods. Uncertainty of the data can 
be caused by e.g. imprecision of sensor (human notions) or an attribute that is not 
quantifiable. Fuzzy set concept, introduced by Zadeh in 1965 [14], is a useful tool for 
a formal representation of uncertain information. Fuzzy set models the value of a lin-
guistic variable. In [17] Zadeh distinguishes four cases which underlie the use of lin-
guistic variables: bounded ability of sensory organs to resolve and store detail infor-
mation (e.g. brain), numerical information may not be available, an attribute is not 
quantifiable, there is a tolerance for imprecision.  

Table 1. Illustrative example: a mixed data set which describes flats for sale 

x1 – price [€] x2 – total 
area [m2] 

x3 – building 
age [years] 

x4 – flat 
standard 

x5 – location at-
tractiveness 

140000 31 26 high average 
265000 87 76 low high 
160000 42 23 average low 
205000 63 7 very high average 

 
Illustrative example: a data set which describes flats for sale, each row contains val-
ues of five attributes. Three of them are numerical variables (price, total area, building 
age); others are linguistic variables (flat standard, location attractiveness). Values of 
the linguistic variables (x4, x5) can not be measured precisely. Assigning each of those 
values to one precise (numerical) value or removing variables x4, x5 would be an 



oversimplification which would cause lost of information. Developing methods which 
process mixed data (precise and uncertain) would enable the use of the whole avail-
able data. 
Major applications of fuzzy set theory are fuzzy modeling and control, their develop-
ment started with papers of Zadeh [15], Mamdani and Assilian [6]. Classical fuzzy 
model [11], [12] consists of three main blocks: fuzzification, inference and deffuzifi-
cation (Fig. 1.). It computes a crisp (numerical) output of the model for crisp inputs. 
Therefore it is not possible to compute an output of classical fuzzy model if any input 
is uncertain (fuzzy). Despite the dynamic development of fuzzy modeling research 
field, only a few papers concerning fuzzy models and controllers with fuzzy inputs 
have been published. In [1], the design of inverse controller for fuzzy interval systems 
is exploited. In [10], a linguistic approach to the design of fuzzy granular models is 
concerned. In [5], the theory and design of interval type-2 fuzzy logic systems are 
presented. 
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Fig. 1. Structure of an exemplary fuzzy model with two inputs and a single output [11] 

The purpose of this study is to develop a method of computing fuzzy model re-
sponse for fuzzy inputs based on singleton representation of a fuzzy set. The key idea 
of our approach is to compute fuzzy model output for each singleton representing in-
put fuzzy set and combine the results into an output fuzzy set. The main advantage of 
this approach is to enable computing the output of fuzzy model both for fuzzy inputs 
and mixed (numerical and fuzzy) inputs (using the classical fuzzy model without 
modification). The paper is organized as follows. In section 2, alternative approaches 
to the problem are presented. In section 3, we apply the singleton representation to 
computing fuzzy model response for fuzzy inputs. Section 4 shows results of experi-
ments. Finally, conclusions are given in section 5. 

2   A review of methods of computing fuzzy model output for fuzzy 
input 

In the approach proposed in [16]: Zadeh’s possibilistic method, used for computing 
with linguistic variables, fuzzy set A is compared with fuzzy sets describing the lin-
guistic variable (Ai) and for each set μi is given by 

)sup( AAii ∩=μ . (1) 



This method describes with a single crisp value (maximal possibility) how much set A 
is similar to set Ai. The use of the method to compute fuzzy model output for fuzzy 
inputs results in the crisp output to be received. 

The next approach involves similarity measures. Many similarity measures of 
fuzzy sets have been proposed in the literature [9], [2], [13], [3]. The commonly used 
similarity measure, proposed by Pappis and Karacapilidis [9], for two fuzzy sets A 
and B (with continuous membership functions) is defined by 
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where │A│ – denotes cardinality of fuzzy set A; xmin, xmax are the boundaries of 
universe of discourse X. The use of similarity measures of fuzzy sets for computing 
response of fuzzy model has been presented in [7]. Similarity measure is used in 
fuzzification to specify similarity between fuzzy value of input and the fuzzy sets de-
scribing the fuzzy variable. The model response is non-fuzzy (crisp) value and it de-
pends on the chosen similarity measure.  

In the presented approaches fuzzy model response for fuzzy inputs is a crisp value. 
It is not what one would expect: though input value is fuzzy (uncertain), the output is 
non-fuzzy. 

3   Using Singleton Representation of Fuzzy Set for Computing 
Fuzzy Model Response for Fuzzy Input 

There are different representations of fuzzy set in the literature. For example, in dis-
crete universe of discourse X={x1,...,xn} fuzzy set A⊆X can be represented by 
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It is the singleton (vertical) representation of a fuzzy set [11], [12,] [4]. The fuzzy set 
with continuous membership function (X – continuous universe of discourse) is given 
by 

∫=
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For any input fuzzy set the fuzzy model response can be computed using the sin-
gleton representation. First, fuzzy sets is represented by set of singletons (3), therefore 
fuzzy sets with continuous membership functions are discretized. The idea of discre-
tizing the continuous membership functions of fuzzy sets and the use of discrete rep-
resentation of fuzzy sets in fuzzy arithmetical operations is presented in [4]. The 
range of singletons for exemplary fuzzy set A is shown at Fig. 2. The singleton s3, 



μ(s3)=1, has the widest representation range, whereas boundary singletons s1 and s5 
(μ(s1)= μ(s5)=0) have the range reduced to a point. 
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Fig. 2. Fuzzy set A=“about 37.5” in continuous and singleton representation 
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Fig. 3. Computing fuzzy model response for two input fuzzy values 

For each singleton of input fuzzy set the model response is computed. Then the output 
fuzzy set is created with the use of extension principle: the fuzzy model is represented 
by a mapping f: X→Y and for any fuzzy set A⊆X fuzzy set B=f(A) is defined by 
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If X is the Cartesian product X1×X2×...×Xn,  the fuzzy model is represented by a map-
ping f: X1×X2×...×Xn →Y, for any fuzzy sets A1⊆X1, A2⊆X2, ..., An⊆Xn, fuzzy set 
B=f(A1,A2 ...,An) is defined by 
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In (8) minimum operation can be replaced by other t-norm (e.g. algebraic product). 
Example: fuzzy model with two inputs x1 and x2 is given. The values of inputs can 

not be measured precisely, though the expert describes them with fuzzy sets: 
A=“about 20” and B=“about 77”. To compute fuzzy model response, input fuzzy sets 
x1=A and x2=B (with continuous membership functions) are replaced by singleton rep-
resentation. Next, for each pair of singletons of A and B an output of the model is 
computed. For each output singleton its membership function value μC is computed 
(where fuzzy set C=f(A,B)), and if the output singletons for two pairs of input single-
tons are the same the maximum membership is chosen according to (9). The result of 
the computation is fuzzy set C=“about 48.3” (Fig. 3.) 

4   Experiments 

In this section we present the results of using our method to compute fuzzy model re-
sponse for fuzzy inputs. The synthetic data set that contains fuzzy sets (Fig. 7) is used 
as inputs in 10 experiments. The computation is done with two classical fuzzy models 
designed using the known functions f1 , f2. The  known function are used to enable 
comparison of the results of the proposed method. The models have two inputs (x1, x2) 
and an output (y). Fuzzy sets of inputs and outputs of both models: Ai, Bj, Ck (i,j, 
=1,..,5; model 1: k=1,...,10; model 2: k=1,...,16), are shown at Fig. 5 (Ai for x1 and Bj 
for x2). The rules used in the models are given in the following form: “IF x1=Ai AND 
x2=Bj THEN y=Ck”. The rule base of model 1 and model 2 is given in Table 1. The in-
ference engine is MAX-MIN type and defuzzification is done by height method. 
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Fig. 4. The surfaces of the mappings used in experiments 

Fig. 4. shows the surfaces of the functions used in experiments, function f1 is used in 
experiments no. 1-7, 9 and function f2 is used in experiments no. 8 and 10. The func-
tions  f1 and f2 are defined as follows 
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Based on functions f1 and f2 two fuzzy models are designed, their surfaces are shown 
in Fig. 6. The values of x1, x2, y1, y2 belong to the interval <0;100>.  
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Fig. 5. Fuzzy sets of inputs (a), output of model 1 (b) and output of model 2 (c) 

Table 2. The rule base of model 1 and model 2 

MODEL 1 MODEL 2 
   x1 
x2 

A1 A2 A3 A4 A5 
   x1 
x2 

A1 A2 A3 A4 A5 

B1 C1 C1 C1 C1 C1 B1 C1 C2 C3 C6 C9 
B2 C1 C2 C3 C4 C5 B2 C3 C4 C5 C8 C11 
B3 C1 C3 C5 C6 C7 B3 C5 C6 C7 C10 C13 
B4 C1 C4 C6 C8 C9 B4 C7 C8 C9 C12 C15 
B5 C1 C5 C7 C9 C10 B5 C9 C10 C11 C14 C16 

 
In each experiment the input values are two fuzzy sets: x1=F1 and x2=F2 (Fig. 7), 

their singleton representations are given in Table 2. Firstly extension principle is used 
for computing fuzzy sets F3=f1(F1,F2), F4=f2(F1,F2), which are reference results (re-
sults of other methods are compared with them). Then the singleton representation of 
input fuzzy sets F1 and F2 is used for computing fuzzy model response (model 1 and 
2): Y1, Y2 (fuzzy values). Finally Zadeh’s possibilistic method and similarity measure 
method are used for computing fuzzy model response in form of a singleton (crisp 
value, accordingly z and s). 
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Fig. 6. The surfaces of fuzzy models: (a) – model 1, (b) – model 2 
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Fig. 7. Input fuzzy sets x1=F1 and x2=F2; in experiment no. 6: x1=A3 and x2=B2 

Table 3. Singleton representation of input fuzzy sets F1 and F2 

Singleton Representation Experiment 
No. F1 F2 
1 37

0
34

5.0
31
1

28
5.0

25
0

1 ++++=F  68
0

64
5.0

60
1

56
5.0

52
0

2 ++++=F  

2 37
0

31
1

25
0

1 ++=F  68
0

60
1

52
0

2 ++=F  

3 37
0

34
5.0

31
1

1 ++=F  60
1

56
5.0

52
0

2 ++=F  

4 31
1

28
5.0

25
0

1 ++=F  60
1

56
5.0

52
0

2 ++=F  

5 40
0

37
5.0

34
1

31
1

28
5.0

25
0

1 +++++=F  72
0

68
5.0

64
1

60
1

56
5.0

52
0

2 +++++=F  

6 75
0

5.62
5.0

50
1

5.37
5.0

25
0

1 ++++=F  50
0

5.37
5.0

25
1

5.12
5.0

0
0

2 ++++=F  

7, 8 86
0

81
5.0

76
1

71
5.0

66
0

1 ++++=F  84
0

78
5.0

72
1

66
5.0

60
0

2 ++++=F  

9, 10 12
0

9
5.0

6
1

3
5.0

0
0

1 ++++=F  36
0

32
5.0

28
1

24
5.0

20
0

2 ++++=F  



Table 4. Comparison of the results: modal values of fuzzy sets computed with extension prin-
ciple (EP) and computed by fuzzy model with singleton representation (SFM); crisp values of 
fuzzy model response computed using possibilistic method (MP) and similarity measure 
method (SM) 

No. EP (F3, F4) SFM (Y1, Y2) MP (z) SM (s) 
1 18.6 20.3 21.4 19.9 
2 18.6 20.3 21.4 19.9 
3 18.6 20.3 21.7 21.5 
4 18.6 20.3 19.8 18.5 
5 <18.6;21.8> <20.3;22.38> 22.1 20.53 
6 12.5 12.5 8.9 12.2 
7 54.7 54.6 55.3 56.7 
8 64.9 65.4 66.9 68.1 
9 1.7 2.4 3.0 2.3 

10 14.2 15.8 15.9 15.2 
 

Singleton computed with the use of similarity measure method in most of the ex-
periments is proximal to the modal value of fuzzy sets computed with extension prin-
ciple then singleton computed with the use of Zadeh’s possibilistic method. Both 
methods’ results are crisp values: the information about uncertainty is lost in compu-
tations.  

On the contrary, computing fuzzy model response with singleton representation 
preserves data uncertainty. The shapes of resulting fuzzy sets F3/F4 and Y1/Y2 are also 
similar (Fig. 8.). Results of the proposed method depend on the number of singletons 
in the representation and precision of the model. The best performance (experiment 
no. 6) is obtained for input fuzzy sets with modal values in the nodes of the model (in 
nodes the error of both fuzzy models used in experiments is zero). 

5   Conclusions 

In this paper we proposed a method for computing fuzzy model response for fuzzy 
inputs. The method is consistent with extension principle, where the model is repre-
sented by a mapping f. It can be used for computing fuzzy model response for any 
number of input fuzzy sets and also for mixed input data (fuzzy and crisp) and no 
modification of the model is necessary. If any input is a fuzzy value the model re-
sponse is a fuzzy set. The experimental results demonstrated that usage of this method 
provides fuzzy output for fuzzy inputs, analogical to results of computing fuzzy val-
ues using extension principle. The shapes of resulting fuzzy sets for both computing 
methods are also similar. In real situations, when data are often mixed types, the pro-
posed method can be useful for computing fuzzy model response for mixed inputs. In 
the future, we plan to focus on design of fuzzy models based on mixed input-output 
data (crisp and fuzzy). 
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