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Abstract. Classical fuzzy model computes a crisp response for crisp inputs.
This paper presents a method for computing fuzzy model response for fuzzy in-
puts. The method is based on singleton representation of a fuzzy set and it al-
lows to obtain fuzzy response for fuzzy inputs. The presented method is com-
pared with alternative approaches: Zadeh’s possibilistic method and method
based on similarity measure. The validity of the proposed method is illustrated
with experimental results (in comparison with extension principle results).

1 Introduction

There are different types of data in the real world: precise (numerical) data and uncer-
tain data. Numerical data, collected with a precise measuring instrument, can be ana-
lyzed and processed by numerical mathematical methods. Uncertainty of the data can
be caused by e.g. imprecision of sensor (human notions) or an attribute that is not
quantifiable. Fuzzy set concept, introduced by Zadeh in 1965 [14], is a useful tool for
a formal representation of uncertain information. Fuzzy set models the value of a lin-
guistic variable. In [17] Zadeh distinguishes four cases which underlie the use of lin-
guistic variables: bounded ability of sensory organs to resolve and store detail infor-
mation (e.g. brain), numerical information may not be available, an attribute is not
quantifiable, there is a tolerance for imprecision.

Table 1. Tllustrative example: a mixed data set which describes flats for sale

_ orice [€ X, — total x3 — building x4 — flat X5 — location at-
X — price [€] area [m’] age [years] standard tractiveness
140000 31 26 high average
265000 87 76 low high
160000 42 23 average low
205000 63 7 very high average

Ilustrative example: a data set which describes flats for sale, each row contains val-
ues of five attributes. Three of them are numerical variables (price, total area, building
age); others are linguistic variables (flat standard, location attractiveness). Values of
the linguistic variables (x4, X5) can not be measured precisely. Assigning each of those
values to one precise (numerical) value or removing variables x4, Xs would be an



oversimplification which would cause lost of information. Developing methods which
process mixed data (precise and uncertain) would enable the use of the whole avail-
able data.

Major applications of fuzzy set theory are fuzzy modeling and control, their develop-
ment started with papers of Zadeh [15], Mamdani and Assilian [6]. Classical fuzzy
model [11], [12] consists of three main blocks: fuzzification, inference and deffuzifi-
cation (Fig. 1.). It computes a crisp (numerical) output of the model for crisp inputs.
Therefore it is not possible to compute an output of classical fuzzy model if any input
is uncertain (fuzzy). Despite the dynamic development of fuzzy modeling research
field, only a few papers concerning fuzzy models and controllers with fuzzy inputs
have been published. In [1], the design of inverse controller for fuzzy interval systems
is exploited. In [10], a linguistic approach to the design of fuzzy granular models is
concerned. In [5], the theory and design of interval type-2 fuzzy logic systems are
presented.
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Fig. 1. Structure of an exemplary fuzzy model with two inputs and a single output [11]

The purpose of this study is to develop a method of computing fuzzy model re-
sponse for fuzzy inputs based on singleton representation of a fuzzy set. The key idea
of our approach is to compute fuzzy model output for each singleton representing in-
put fuzzy set and combine the results into an output fuzzy set. The main advantage of
this approach is to enable computing the output of fuzzy model both for fuzzy inputs
and mixed (numerical and fuzzy) inputs (using the classical fuzzy model without
modification). The paper is organized as follows. In section 2, alternative approaches
to the problem are presented. In section 3, we apply the singleton representation to
computing fuzzy model response for fuzzy inputs. Section 4 shows results of experi-
ments. Finally, conclusions are given in section 5.

2 A review of methods of computing fuzzy model output for fuzzy
input

In the approach proposed in [16]: Zadeh’s possibilistic method, used for computing
with linguistic variables, fuzzy set A4 is compared with fuzzy sets describing the lin-
guistic variable (4;) and for each set ; is given by

Hi =sup(4; N A4). ()]



This method describes with a single crisp value (maximal possibility) how much set 4
is similar to set 4;. The use of the method to compute fuzzy model output for fuzzy
inputs results in the crisp output to be received.

The next approach involves similarity measures. Many similarity measures of
fuzzy sets have been proposed in the literature [9], [2], [13], [3]. The commonly used
similarity measure, proposed by Pappis and Karacapilidis [9], for two fuzzy sets 4
and B (with continuous membership functions) is defined by

X max

, [ min(e, (6), 2, ()

S(A B) |A N X min 2
’ _|AUB|_xmax ? ()
[ max (e, (), 2y (e))dx
where | 4| — denotes cardinality of fuzzy set A; xmin, xmax are the boundaries of

universe of discourse X. The use of similarity measures of fuzzy sets for computing
response of fuzzy model has been presented in [7]. Similarity measure is used in
fuzzification to specify similarity between fuzzy value of input and the fuzzy sets de-
scribing the fuzzy variable. The model response is non-fuzzy (crisp) value and it de-
pends on the chosen similarity measure.

In the presented approaches fuzzy model response for fuzzy inputs is a crisp value.
It is not what one would expect: though input value is fuzzy (uncertain), the output is
non-fuzzy.

3 Using Singleton Representation of Fuzzy Set for Computing
Fuzzy Model Response for Fuzzy Input

There are different representations of fuzzy set in the literature. For example, in dis-
crete universe of discourse X={xi,...,x,} fuzzy set ACX can be represented by

_IUA(xl) H(x,) ﬂA(xn)_ o (X))
A= + +...+ —; _— 3

xl x2 xn i

It is the singleton (vertical) representation of a fuzzy set [11], [12,] [4]. The fuzzy set
with continuous membership function (X — continuous universe of discourse) is given

by

()

For any input fuzzy set the fuzzy model response can be computed using the sin-
gleton representation. First, fuzzy sets is represented by set of singletons (3), therefore
fuzzy sets with continuous membership functions are discretized. The idea of discre-
tizing the continuous membership functions of fuzzy sets and the use of discrete rep-
resentation of fuzzy sets in fuzzy arithmetical operations is presented in [4]. The
range of singletons for exemplary fuzzy set 4 is shown at Fig. 2. The singleton s;,



u1(s3)=1, has the widest representation range, whereas boundary singletons s; and ss
(u(s1)= u(ss)=0) have the range reduced to a point.
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Fig. 2. Fuzzy set A="about 37.5” in continuous and singleton representation
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Fig. 3. Computing fuzzy model response for two input fuzzy values
For each singleton of input fuzzy set the model response is computed. Then the output

fuzzy set is created with the use of extension principle: the fuzzy model is represented
by a mapping f> X—Y and for any fuzzy set AcX fuzzy set B=f(A4) is defined by

B=f(A)={(y, 1y W]y = f(x),x € X}, (5)
where
{ sup 41, (x)
g (y) =qreX.y=f(x) . (6)
0, else

If X is the Cartesian product X;xX,%...xX,, the fuzzy model is represented by a map-
ping f- X;xX,x...xX, =Y, for any fuzzy sets 4,cX;, A,cX, ..., 4,2X,, fuzzy set
B=f(4,,4, ...,A,) is defined by

B=f(4,sA,) = {0ty DY = [ (Xpe0s X)), (X x,) € X, (7)
where

sup  min{a, (s i1y, (5,)}
/uB (y) = < (X)X JEX Y= (X1 500Xy ) .
0, else



In (8) minimum operation can be replaced by other t-norm (e.g. algebraic product).

Example: fuzzy model with two inputs x; and x;, is given. The values of inputs can
not be measured precisely, though the expert describes them with fuzzy sets:
A="about 20” and B="about 77”. To compute fuzzy model response, input fuzzy sets
x1=A and x,=B (with continuous membership functions) are replaced by singleton rep-
resentation. Next, for each pair of singletons of 4 and B an output of the model is
computed. For each output singleton its membership function value uc is computed
(where fuzzy set C=f(4,B)), and if the output singletons for two pairs of input single-
tons are the same the maximum membership is chosen according to (9). The result of
the computation is fuzzy set C="about 48.3” (Fig. 3.)

4 Experiments

In this section we present the results of using our method to compute fuzzy model re-
sponse for fuzzy inputs. The synthetic data set that contains fuzzy sets (Fig. 7) is used
as inputs in 10 experiments. The computation is done with two classical fuzzy models
designed using the known functions f; , /5. The known function are used to enable
comparison of the results of the proposed method. The models have two inputs (x1, x;)
and an output (y). Fuzzy sets of inputs and outputs of both models: 4;, B;, C; (i,
=1,..,5; model 1: £/=1,...,10; model 2: k=1,...,16), are shown at Fig. 5 (4, for x, and B,
for x;). The rules used in the models are given in the following form: “IF x;=4; AND
x,=B; THEN »=C;”. The rule base of model 1 and model 2 is given in Table 1. The in-
ference engine is MAX-MIN type and defuzzification is done by height method.

a) y1=fi(x1,x2) b) y2=f2(x1,x2)

Fig. 4. The surfaces of the mappings used in experiments

Fig. 4. shows the surfaces of the functions used in experiments, function f; is used in
experiments no. 1-7, 9 and function £, is used in experiments no. 8 and 10. The func-
tions f; and f; are defined as follows

X[ "X,
100

vy =h1x,x)= (9)

and
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yz:fz(xlaxz):[%+sz/2- (10)

Based on functions f; and f; two fuzzy models are designed, their surfaces are shown
in Fig. 6. The values of xy, x,, y, ¥, belong to the interval <0;100>.

Fig. 5. Fuzzy sets of inputs (a), output of model 1 (b) and output of model 2 (c)

Table 2. The rule base of model 1 and model 2

MODEL 1 MODEL 2
14, |4, |45 |4, | As L4, |4, |4y |4, | 4s

X2 X2

B | C | C | C |GG B |G |G |G| G| G
B, |G |GG |G| G B, | G G| G| G| Cny
By | G |G |G| G| G By | Cs | Cs | G | Co| Cis
By | C | C | Cs | Cs | Gy By | G | G| Cy | Cph| Cis
Bs | C | G | G| G | Cy Bs | Co | Co | Ci | Ciu| Cig

In each experiment the input values are two fuzzy sets: x;=F and x,=F, (Fig. 7),
their singleton representations are given in Table 2. Firstly extension principle is used
for computing fuzzy sets F3=f|(F1,F>), Fs=f(F,F>), which are reference results (re-
sults of other methods are compared with them). Then the singleton representation of
input fuzzy sets F; and F, is used for computing fuzzy model response (model 1 and
2): Yy, Y, (fuzzy values). Finally Zadeh’s possibilistic method and similarity measure
method are used for computing fuzzy model response in form of a singleton (crisp
value, accordingly z and s).
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Fig. 7. Input fuzzy sets x;=F and x,=F; in experiment no. 6: x;=A; and x,=B,

Table 3. Singleton representation of input fuzzy sets F; and F,

Experiment Singleton Representation
No. F] Fg
1 F=2+¥Y+L+8+ 0 Fp=2+¥+ L+ 0
2 Fi=g5+3r+3r F=g+gte
v [ Aedesied e
R e Robrih
R e e I e e e




Table 4. Comparison of the results: modal values of fuzzy sets computed with extension prin-
ciple (EP) and computed by fuzzy model with singleton representation (SFM); crisp values of
fuzzy model response computed using possibilistic method (MP) and similarity measure
method (SM)

No. | EP (F3, Fy) | SEM (Y, Y2) | MP (z) | SM (s)
1 18.6 20.3 214 | 199
2 18.6 20.3 214 | 199
3 18.6 20.3 217 | 215
4 18.6 20.3 198 | 185
5 | <18.6;21.8> | <20.3;22.38> | 22.1 | 20.53
6 12.5 12.5 8.9 12.2
7 54.7 54.6 553 | 567
8 64.9 65.4 66.9 | 68.1
9 1.7 2.4 3.0 23
10 14.2 15.8 159 | 152

Singleton computed with the use of similarity measure method in most of the ex-
periments is proximal to the modal value of fuzzy sets computed with extension prin-
ciple then singleton computed with the use of Zadeh’s possibilistic method. Both
methods’ results are crisp values: the information about uncertainty is lost in compu-
tations.

On the contrary, computing fuzzy model response with singleton representation
preserves data uncertainty. The shapes of resulting fuzzy sets F3/F, and Y1/Y, are also
similar (Fig. 8.). Results of the proposed method depend on the number of singletons
in the representation and precision of the model. The best performance (experiment
no. 6) is obtained for input fuzzy sets with modal values in the nodes of the model (in
nodes the error of both fuzzy models used in experiments is zero).

5 Conclusions

In this paper we proposed a method for computing fuzzy model response for fuzzy
inputs. The method is consistent with extension principle, where the model is repre-
sented by a mapping f. It can be used for computing fuzzy model response for any
number of input fuzzy sets and also for mixed input data (fuzzy and crisp) and no
modification of the model is necessary. If any input is a fuzzy value the model re-
sponse is a fuzzy set. The experimental results demonstrated that usage of this method
provides fuzzy output for fuzzy inputs, analogical to results of computing fuzzy val-
ues using extension principle. The shapes of resulting fuzzy sets for both computing
methods are also similar. In real situations, when data are often mixed types, the pro-
posed method can be useful for computing fuzzy model response for mixed inputs. In
the future, we plan to focus on design of fuzzy models based on mixed input-output
data (crisp and fuzzy).
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Fig. 8. The graphical presentation of the results: (F3, F,) — extension principle result, (¥7, 15) —
fuzzy model response, s — the result of method based on similarity, z — the result of possibilistic
method
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