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Abstract

This paper introduces and compares few techniques of
collective reinforcement learning. In introduction we
briefly show the state-of-art of multiagent learning.
We describe two learning techniques of collective
reinforcement learning — Joint-RL and related TD
procedure and its new modification RTD(d). All this
techniques can be successfully used in multiagent
learning to achieve a coherence property of multiagent
system. In this work we construct decentralized
multiagent  system  which behavior  describes
multijointed robot, and learn every agent locally using
different  proposed techniques of collective
reinforcement learning and compare their efficiency.
Given experiments show, that system of local learning
procedures in complex system can be much faster than
learning system on the whole.

1 INTRODUCTION

More and more, machine learning is being explored as
a vital component to address challenges in multi-agent
systems (MAS). For example, many application
domains are envisioned in which teams of software
agents or robots learn to cooperate amongst each other
and with human beings to achieve global objectives.
Learning may also be essential in many non-
cooperative domains such as economics and finance,
where classical game-theoretic solutions are either
infeasible or inappropriate. Teams of agents have the
potential for accomplishing tasks that are beyond the
capabilities of a single agent. An excellent and
demanding example of multi-agent cooperation is in
robot soccer.

At the same time, multi-agent learning (MAL) poses
significant theoretical challenges, particularly in
understanding how agents can learn and adapt in the
presence of other agents that are simultaneously
learning and adapting. This is a fertile area of research
that seems ripe for progress: the numerous and
significant theoretical developments of the 1990s, in

fields such as Bayesian, game-theoretic, decision-
theoretic, and evolutionary learning, can now be
extended to more challenging multi-agent scenarios
(Vidal 2009). Reinforcement Learning is a newer area
in Machine Learning theory (A. G. Richard S. Sutton
1998). The topic of this paper is combining together
Reinforcement Learning and Multiagent Learning we
can achieve new level of collective behavior of agents.

There are many principles and approaches to
multiagent learning (Liviu Panait 2005 , Eduardo
Alonso 2001); there are some of them, important in
this paper:

1. Some degree of decentralization of learning
process.

2. Interaction between agents during learning
process. Learning feedback (observer, critic,
teacher, e.t.c.).

3. Involvement of agents. Interconnections and
structure of multiagent system must be
included in learning algorithm.

4. Learning in multiagent systems is on principle
another kind of learning and standard
techniques of single learning must be updated
to use it into multiagent systems.

We can use these principles as properties of multi-
agent learning algorithm when we design some of it. In
this paper we introduce new kind of multiagent
reinforcement algorithm that correspond to described
principles and support’s coherence into multiagent
systems to produce desired collective behavior of
multi-agent system.

2 COLLECTIVE
REINFORCEMENT LEARNING

In collective learning task we must learn agents
cooperatively ~ with  other  agents, including
interconnections into the systems and used rules of
environment to produce expected behavior of the
multiagent system. Every agent must learn the rules of



environment, rules of multiagent system, and their
own behavior scenario and acts with these rules with
other agent and environment. Also, collective learning
includes synchronization of sequences of agent’s
actions, and coherence of multiagent structure to
produce complex intellectual behavior. It’s very
important emergent effects of collective reinforcement
learning.

In many articles collective reinforcement learning
shown in context of game theory for founding Nash
equilibrium point for group of agents. Works (Vidal
2009, Tan 2005, Yoav Shoham, Rob Powers, Trond
Grenager 2006) provided generalized view to this
approach, and (Stone. May 2007 ) pointed, that
multiagent learning is a still open question.

2.1 Single Reinforcement Learning

Reinforcement learning is an approach to artificial
intelligence that emphasizes learning by the individual
from its interaction with its environment that produces
optimal behavior (A. G. Richard S. Sutton 1998). It is
often used for learning autonomous agents in unknown
environment. It emerged at the intersection of dynamic
programming, machine learning, biology, studies the
reflexes and reactions of living organisms (reflex
theory, animal cognition (Worgotter 2005, Dr.
Florentin  Woergoetter 2008)). The core of
Reinforcement Learning is method of Temporal
Difference (TD) learning (Sutton 1988, Barto 2007,
Peter Dayan 1994, Worgotter 2005).

RL used in robotics for learning autonomous agents.
Algorithms of RL can produce optimal control (A. G.
Richard S. Sutton 1991). Classic RL works only on
MDP, so it widely used for learning in game theory,
e.g. TD-Gammon (Tesauro 1994).
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Figure 1: One iteration of Reinforcement Learning.

Reinforcement learning goal is to approximate Q-
function, e.g. finding true Q-values of Q-function for
each action in every state. By simple, RL is a trial-
and-error learning technique. Agent try’s to do some
action in some state and receive reward as a feedback
of recent action. During learning agent try to select the
best action in some state, and best action usually more
rewarded in future then another. There are existing

many versions of RL algorithms. Fig 1. Shown usage
of SARSA algorithm; another widely used RL
algorithm is Q-Learning (Chris J.C.H. Watkins 2002,
A. G. Richard S. Sutton 1998, C. J. Watkins 1992).

Natural extension of standard RL algorithm is a
including eligibility traces - are one of the basic
mechanisms of reinforcement learning. Eligibility
trace is a temporary records of the occurrence of an
event, such as the visiting of a state or the taking of an
action. When a TD error occurs, only the eligible
states or actions are updated (Fig. 2).
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Figure 2: Action values increase by (a) one-step
SARSA, (b) by SARSA with Eligibility Trace, 2=0.9
(adopted from (A. G. Richard S. Sutton 1998)).

Almost any temporal-difference method, such as Q-
learning or SARSA, can be combined with eligibility
traces to obtain a more general method that may learn
more efficiently. Its produce modified versions of
algorithms used in this work SARSA(L) and Watkins-
Q(\), Peng-Q(2) and another.

The main goal of RL is great adaptivity to learning
environment. Environment may be totally unknown
for agent and as a result of learning agent achieve
optimal behavior on it. RL sometimes looks like agent
self-adaptation to gathered environment.

Reinforcement learning — is a great learning technique,
but they have some limitations if we want to use pure
RL to multiagent learning (Dr. Florentin Woergoetter
2008):

1. Learning time grown up with state-action space.

2. Curse of dimensionality as a legacy of dynamic
programming (A. G. Richard S. Sutton 1998);

3. Hard learning and convergence with function
approximations (linear and non-linear).

4. Single agent learning as limitation of standard
RL-model.

5. State-action space grown exponentially
depending on number of agents, and
generalization techniques need to be used to
avoid this problem (Tan 2005).

2.2 Joint Reinforcement Learning

The simplest form of collective reinforcement learning
named Joint Reinforcement Learning where on the



whole multiagent system learned as one agent.
Comparison of standard and Joint-RL approach to RL-
model shown on Fig. 3.
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Figure 3: Standard (a) and Joint (b) models of
Collective Reinforcement Learning

Like in standard RL model every agent in multiagent
system has state, and can select some action at this
state. We can collect all states into one composite
multiagent system joint state s*(t). Also, if some (may
be all) agents in MAS produce actions at this time
step, we can collect these actions into one composite
joint action a‘(t). In this way we can represent
multiagent systems as one agent and learn it by
standard RL model. Next, composite action is
executed in external environment. In response to
executed action, environment produce new composite
state s*(t+1) and composite reward r(t+1) for MAS.
After this we can learn MAS using every TD
procedure in different ways.

1. Joint MAS learning. On multiagent system level
we can  learn total MAS  updating
Q(s™(t).a*(t))

2. Local-Joint Learning. We can learn every agent
locally updating  Q(Si(:.a®)for ~ every
contributed agent. To use second update rule
composite reward must be divided into sub
rewards for agents contributed to composite
action (agent must produce action) in previous
time step t.

Experiments shown that Joint-RL model can produce
successful learning and expected behavior of MAS,
but using this model we don’t avoid described
limitations of RL. There is no principal difference
between Joint RL and standard RL; in Joint RL we use
only scale approach to standard RL. For Joint learning
convergence time is very slow and very sensitive to
number of agents because we must search optimal
policy in multidimensional state action space, where
number of dimensions is equal to number of agents
into multiagent systems. Following for state-space
complexity we have problem with function
approximation (but generalization potential is greater
in this case). We can use different selecting technique
for building composite actions to force search process,
for example Genetic Algorithms with chromosome
represented by composite action.

Local-Joint learning can’t produce coherence structure
and synchronization between agents (convergences
time for synchronized actions the same as for Joint
MAS learning). Hence, Joint RL can be successful
applied only for simple multiagent learning tasks,
without deep synchronization and emergent effects.
Following for more complex multiagent learning task
we need to develop new collective learning techniques.

2.3 Related Temporal Difference Learning

Related TD - is new adaptation of standard TD
technique for multiagent system. If some problem
solved cooperatively by agents, and they must learned
together, so their learning is related to each other. In
this case, actions from one agent may be directed to
another agents (and change their states), not only to
environment or himself (as in standard RL model).

Let’s see to A and B - agents interconnected into one
multiagent system. Agent A actions directed not to
environment as in standard and Joint approached, but
to agent B. Agent A at state s, execute action a over
agent B, and set it into new state s,. Agent B produce
action b and execute it somewhere (on another agent,
or on environment). This situation is shown at Fig. 4.
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Figure 4: Related Temporal Difference update rule

Actions a and b has their Q-values Q(S,, &) and Q(Sy,
b) respectively. Agent B sent to A feedback their Q-
value Q(sp, b) and reward r as a response to action a.
Receiving this feedback agent a can learn using
standard TD technique and can update their Q(s,, ).
In feedback reward value r depends from agent B, and
means reaction from it to action a. Feedback from next
agent substantialize factor in related learning of two
agents.

Described learning technique extends Temporal
Difference method from Reinforcement Learning and
adopts them to interactions in Multiagent system.
IMustrated situation shows related learning between
two agents when state of one agent depends from
actions of another (interaction). Interconnections and
structure of multiagent system is included RTD
algorithm.



This technique looks to local perspective and learn
agents in multiagent system at local level including
interconnections with another agents. Using related
learning we can apply standard RL model locally in
multiagent system. It means that we can learn agents
one by one use only its local interconnection with
other agents in multiagent system instead of learning
system on the global level.

2.4 Related Temporal Difference Learning with
Influence Trace

One of the biggest problems of collective learning — is
a decentralization of learning process. How efficient to
learn group of agent if they are sparse far away from
each other. We use term coherence to refer property of
multiagent systems to be “as one organism”.
Coherence multiagent systems can easily produce
synchronized actions and have many interesting
properties. Multiagent System may be decentralized,
but learning process on it can produce coherence
property. Related Temporal Difference with influence
trace — is a new designed method to learning into
multiagent systems. It closely referred to idea of
Eligibility traces, but changes the subject of trace. In
original eligibility traces we store in memory
previously visited states (see fig. 2), but in influence
trace we store history of agent influences in MAS as
number of RTD procedures. Eligibility traces
distributed in time, Influence trace — in structure.

For example, let’s see to more complicated and
distributed example from previous chapter. Let’s
introduce one more agent C. This situation is shown at
Fig. 5.
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Figure 5: RTD with influence trace for agent C.
We have next scenario:

1. Agent A acts to agent B with Q(s,, a). B goes to
state sp.

2. Agent B acts to agent C with Q(sp, b). C goes to
state s.

3. Agent C acts with action ¢ to environment Env
and receive their reward.

4. Agent B produces feedback and reward to agent
A and learns it using update rule at (1).

5. Agent C produces feedback and reward to both
B and A agents, and learn it using update rule
(2-3).

AQ(s,,a) = a(r, + YQ(S,,b) —Q(s,,a))i(d) |, (1)
AQ(sy,b) = ax(r, +7Q(s,.,¢) —Q(s,, b))i(d) o, ()
AQ(s,,a) = a(r, + 1Q(s,.¢) — Q(s,,a))i(d) |,_, (3)

State of agent C depends from actions and states of
agents A and B and this is its influence trace. We
introduce parameter of influence distance i(d) that

shows how far away structurally produced influence to
this agent. It analogous to time discount parameter y
or A in eligibility trace. RTD(d) is a very simple
intuitive recursive learning procedure.

3 EXPERIMENT

Let’s use described techniques of Joint-RL and
RTD(d) in model of multi-joined robot (MJR) and
compare their efficiency in one experiment. MJR
model is simple decentralized model, but learning
process on it can produce coherence property —
coordinated movement to the target.

3.1 Model of Multi-Joined Robot

MJR contains one root segment (R), several
intermediate segments (S, M) and one terminal
segment (T). At one time step each segment, excluding
terminal, can rotate all next segments at 5°in every
direction or do nothing. Every action-segment can
rotate at full circle (360°) every next segment. First
acts root segment, then second, and so on until
terminal. Root segment can’t move, can’t be moved
and don’t change their position. Terminal segment
don’t produce any act, only receive actions from
previous segments.

1. Root produce action a that change state of all next
segments. Segment S produce action b, and so on until
terminal segment will be reached.

2. Terminal segment verify reaching the target and produce
reward I for actions a, b, c.

3. Terminal agent calculates reward r. for action ¢ and starts
RTD(d) procedure.

Figure 6: Multi-Joined Robot with influence traces and
its scenario.

Every segment — is an intellectual agent learned via
reinforcement  learning. Agent use function
approximation to build optimal policy (John N.
Tsitsiklis 1997, Schneider 2006). The goal of
multiagent system is reaching by terminal segment



target grid cell pointed by cross. After learning MJR
must reach by oneself any acceptable target cell of grid
world.

3.2 Experimental Results

Learning time depends on number of segments, used
algorithm and values of RL configuration parameters.

RL parameters include: « (learning rate) = 0.05~0.1;
y (discount factor) = 0.7; A (eligibility discount

factor) = 0.7~0.99, d (influence discount factor) =
0.5~0.7

MJR behavior in first simulations step looks like
chaotic. During the learning become synchronization
between segments (successful learning) and MJR
successfully reach target (fig 7). Sometimes (5% of
experiments) MAS can’t synchronize at all. In this
case different segments compensate each other and
MJR can’t successfully move in consolidate direction.
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Figure 7: Modeling of Multi-Joined Robot.

Quality of convergence depends from number of
segments. If MJR have more than 7-10 segments then
probability of convergence is much lower. Actions in
the beginning of robot not synchronized with actions
in the end of robot. In this case need to develop new
techniques of learning for reducing complexity, or use
hierarchical reinforcement learning (modular influence
traces).
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Figure 8: Average TD error for one agent per episode.

Fig. 8 shows efficiency of compassion Joint-RL (in
legend marked as JAL) and RL algorithms under
Related TD learning with influence traces. We can see
experimentally that techniques using principle of local

learning such as RTD and RTD(d) convergence much
more faster. MJR is a decentralized learning task, so
techniques with lower TD error produce more
coherence and synchronization into multiagent system.

Behavior policy variously changed in way of use
different algorithms. RL algorithms with influence
tract (SARSA(A,d), Watkins-Q(A,d)) shown more
smooth behavior and better synchronization than
algorithms  without it (Q-Learning). Another
unobvious result was seen in robot behavior. For
algorithms with eligibility traces robot prefer rotation
about a fixed root point with segment reconfiguration
on new round to reach the target. Nevertheless, for Q-
Learning (without eligibility traces) robot prefer reach
the target in a straight way.

Conclusion

This work suggests new approaches to collective
reinforcement learning and looks deeply into local
learning techniques in multiagent systems. We
introduce few learning approaches: Joint-RL, Related
Temporal Difference Learning and its modification
using influence traces RTD(d). All of these techniques
can be used in multiagent learning.

There are many different reward-count strategies in
this multijointed robot task. For example, we don’t
regulate it what way robot reaches the target. In future
experiments we can calculate additional reward for
“speed” or “beauty” of target reaching for robot. It is a
topic of future experiments.
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