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Abstract

The urgency of modeling cognitive evolution that is
modeling evolution of animal cognitive abilities is
underlined. Three initial models of autonomous agents
that have elementary cognitive features are described.
The first model describes emergence of action
sequences of the single self-leaning agent that exists in
two-dimensional cellular environment. The second
model is devoted to adaptive behavior of agents that
have natural needs (feeding, division and safety). The
interaction between evolutionary optimization and
learning processes in evolving population of
autonomous agents is analyzed in the third model. The
models demonstrate the formation of agent adaptive
behavior. The simple cognitive features of agents are
formed, namely, relations between situations and agent
behavior are memorized in agent control systems.
Further directions of modeling cognitive evolution are
proposed.

1 INTRODUCTION

Investigation of cognitive evolution, evolution of
animal cognitive features is very interesting and
urgent. Studies of cognitive evolution are related with
a very profound epistemological problem: why is
human mind applicable to cognition of nature? In
order to investigate the problem seriously, it is
reasonable to analyze it by means of mathematical and
computer models. Modeling cognitive evolution, we
can analyze, why and how did animal and human
cognitive features emerge, how did applicability of
human mind to cognition of nature origin. So, this
modeling is related with foundation of science,
cognitive science and epistemological studies.
Fortunately, there is a direction of research “Adaptive
Behavior” (Meyer and Wilson, 1991; Donnart and
Meyer, 1996) that is in close relation with modeling
cognitive evolution. Using models of adaptive
behavior, it is possible to analyze main steps of
cognitive evolutions from simple forms of adaptive
behavior to human deductive methods (Red’ko, 2008).

The current work describes three models of initial

steps of cognitive evolution studies. Section 2
describes the model of emergence of action sequences
of an autonomous agent that exists in two-dimensional
cellular environment. The model of adaptive behavior
of autonomous agents that have natural needs (feeding,
division and safety) is designed and investigated in
Section 3. Interaction between evolutionary
optimization and learning processes in evolving
population of autonomous agents is analyzed in
Section 4. In particular, the genetic assimilation of
acquired features of agents during a number of
generations of Darwinian evolution (the Baldwin
effect) is observed at computer simulations in this
model. Finally, further steps of modeling cognitive
evolution are discussed in Section 5.

2 GENERATION OF CHAINS OF
ACTIONS

The computer model of adaptive behavior of the single
self-leaning agent in the two-dimensional cellular
environment is designed and investigated below. An
agent control system is based on sets of logic rules that
have the following form «If the situation S takes place,
then it is necessary to execute the action A». The agent
control system is optimized by means of reinforcement
learning (Sutton and Barto, 1998). The formation of
chains of actions leading to the increase of agent
resource is demonstrated by computer simulations.

2.1 Description of the model

It is supposed that the autonomous agent “lives” in the
two-dimensional cellular environment. The agent has
the direction “forward”. In fixed number of cells there
are portions of food of the agent. The agent has
resource R(f) that is increased at eating of food and is
decreased at execution of actions by the agent. The
time ¢ is discrete, t = 0,1, ... The two-dimensional
environment consists of NV, cells.

Each time moment the agent executes one of following
five actions: eating food, moving into the forward cell,
turning right or left, resting. The control system of the
agent is a set of logic rules similar to rules of
classifying systems (Holland et al, 1986).



Executing the action “eating”, the agent eats the whole
portion of food in its cell. After removing the food
portion at this eating, the new portion of food is placed
in a random cell.

The agent control system ensures its action selection.
The control system of the agent consists of the set of
rules that have the following form:

SkeAka (l)

where S, and A; are the situation and the action
corresponding to the rule, & is the number of the rule.
Each rule has the weight W) ; weights of rules are
modified at agent learning. Components of the vector
Sy are equal to 0 or 1. Values 0 and 1 correspond to
presence and absence of a portion of food in a certain
cell of “the field of vision” of the agent. The field of
vision of the agent includes four cells: its own cell, the
forward cell and two cells to right and to left from the
agent.

Each time moment the agent executes one action and
is learned too. The action for the execution A~ is
selected as follows. If there are rules corresponding to
the current situation S(7) (i.e. Sy = S(7)), then the action
A" is chosen in accordance with the e-greedy method
(Sutton and Barto, 1998): the action A~ = A
corresponding to the rule that has maximal W is
chosen with the probability 1-¢, the arbitrary action A"
is chosen with the probability ¢ (0 < & < 1). If there is
no rule corresponding to the current situation S(¢), then
the arbitrary action 4" is chosen. If the rule S(f) > 4"
is absent in the agent control system, then the new rule
S(#) > A" is formed; the initial weight of this rule W is
equal to 0. The selected action 4" is executed.

The annealing method (Kirkpatrick et al, 1983) was
used at computer simulation: at # = 0 it was set ¢ = 1,
then the value ¢ was exponentially decreased to zero;
the characteristic time of ¢ reduction was 1000 time
steps. At initial steps of simulation, rules were formed;
at ¢+ >> 1000 actions were selected according to rule
weights.

The rule weights W, of the agent are adjusted by
means of reinforcement learning (Sutton and Barto,
1998):

AW(t-1) = a [R(f) - R(t-1) + yW(¢) - W(t-1)], 2)

where W(t-1) and W(¢) are weights of rule that are used
at time moments 7-1 and ¢, respectively, R(z-1) and R(?)
is agent resource at these time moments, a is the
learning rate, y is the discount factor; 0 <a << 1,0 <y
<1, 1-y << 1. The rule weights that lead to growth of
agent resource are increased during learning.

2.2 Simulation results
The main parameters of simulations were as follows.

The environment consisted of 100 cells (N, = N, = 10);
portions of food were distributed in 50 random cells.

The increase of agent resource at eating was 1. The
decrease of the agent resource at any action was equal
to 0.01. The initial value of resource of the agent (at
t=0)wasR=1.

Simulations demonstrated that initially unknown
chains of agent actions, leading to food finding, were
formed. The example of time dependence of agent
resource R(f) is shown on Figure 1.
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Figure 1: Time dependence of resource R(¢) of the
single self-learning agent.

The each situation S(f) is determined by food
presence/absence in 4 cells of agent field of vision, so
there are 16 possible situations and 5 possible actions;
consequently, there are 80 possible rules. In any
simulation, the total number of the rules generated by
the agent was 80. However, weights of these rules
were varied by means of reinforcement learning, and
at the end of a simulation only 16 rules were mainly
used. The set of these selected rules can be considered
as the following agent heuristics: 1) if a portion of
food is present in the same cell where the agent is
placed, then the agent executes the action “eating”; 2)
if there is no food in the agent cell, and there is food in
a cell that is forward or right/left with respect to the
agent cell, then the agent executes the action “moving
forward” or “turning right/left”, respectively; 3) if
there is no food in the agent field of vision, then the
agent prefers the searching action “moving forward”.
We can note that the action “resting” is ignored in all
situations. Hence, during learning, the autonomous
agent forms quite natural heuristics, that define
“reasonable” chains of actions resulting to reaching
and eating of food.

Thus, the model demonstrates generation of effective
action chains resulting to the increase of agent
resource.

3 SEVERAL NEEDS OF AGENTS

The current computer model describes adaptive
behavior of autonomous agents that have several
natural needs (feeding, reproduction, safety). The
model is similar to the described one in the previous
section. The time ¢ is discrete, ¢ = 0,1, ... The agent
control system is a set of rules, characterized by the



Eq. (1). The rule weights W, are adjusted both by
reinforcement learning (in accordance with the Eq.
(2)), and in the course of evolutionary optimization.

The main particularizes of the current model are as
follows. The external world consists of two cells: one
cell is dangerous for agents; other cell is safe. The
status of cells is changed with period 7, time steps: the
dangerous cell becomes the safe one, and the safe cell
becomes the dangerous one. The agent in the
dangerous cell loses resource rp each time moment ¢.
Each time moment the agent executes one of the
following of 4 actions: division, eating, moving to
another cells, resting. The agent sensory system
defines the situation S(7). Vector S(f) has 3 binary
components (0 or 1) that determine the following: 1)
does amount of food in the external world exceed the
certain threshold f;, , 2) does agent resource R(f)
exceed the threshold ry , 3) where is the agent in the
moment #: in the safe cell or in the dangerous cell. As
the total number of different situations is 8 and the
number of actions is 4, the whole number of rules is
32. The initial weights of these rules {#¥} constitute
the genome of the agent. This genome is received by
the agent from its parent (with small mutations). The
temporary rule weights {#;}, which are used by the
agent at action selection, are adjusted by reinforcement
learning. So, each agent has two sets of rule weights:
initial weights {W;,} that are not modified during
agent life and temporary adjusted rule weights {W,}.
At the moment of agent birth the temporary weights
are equal to the initial ones: {W;} = {Wy}. In odder to
consider restricted lifetime of agents, it is supposed
that any agent dies at small probability P, (P; << 1)
each time moment. If resource of the agent becomes
smaller than R,,;, , then this agent dies.

The decrease of the agent resource R(f) at performance
of one of actions “division”, “eating”, “moving to
another cell”, and “resting” is equal to 4, 7, , , , and
r. , respectively. The increase of the agent resource
R(?) at eating is equal to 7, . Actions “division” and
“eating” correspond to needs of reproduction and
feeding. The action “moving” corresponds to the need
of safety, as it can provide movement of the agent
from the dangerous cell into the safe cell. At action
selection e-greedy method is used.

The main simulation parameters were as follows. The
resource decrease at any action was equal to 0.01: r,=
r.=r,=r.=0.01. The period of status change of cells
(dangerous <« safe) was Tp = 100. The reduction of
agent resource in the dangerous cell was rp = 10. The
increase of agent resource at eating was r,,, = 10. The
probability of a random death of the agent was P, =
0.001. Parameters of reinforcement learning were o =
0.1 and y = 0.9. The parameter of the ¢-greedy method
was ¢ = 0.1. Thresholds R, , fi , 4 did not influence
strongly on agent behavior; in typical simulations
these values were: R,;,, = 0, f5, = 10, ry, = 1. The

control system of each agent consisted of 32 possible
rules; at the start of simulations weights Wy, of all
rules were small and random. The variations of these
weights at mutations were uniformly distributed in the
interval [-0.5P,,, 0.5P,], where P, is the intensity of
mutations, P,, = 0.1.

Using special choice of parameters, following three
cases were analyzed:

Case LE (learning + evolution), i.e. full model, with
the parameters described above.

Case L (pure learning); in this case the intensity of
mutations was zero: P,, = 0.

Case E (pure evolution), in this case the intensity of
learning and the parameter of greedy method were
zero: o.=0 and € = 0.

According to simulations, learning (the case L) ensures
quicker finding of asymptotic form of behavior as
compared with evolutionary optimization (the case E).
The asymptotic behavior was reached during 5000 and
100000 time steps for the cases L and E, respectively.
Behavior of agents in the case LE (the full model) was
similar to that of in the case L.

In the case L actions of agents in the stationary mode
(at t > 5000) were distributed as follows. The action
“resting” was executed by 25% of agents of the
population, the action “eating” was executed by 70%
of agents; the action “division” was executed by 3% of
agents. Just after changing the danger status of cells
(5-10 time steps), the frequency of the action
“division” did not vary essentially, and frequencies of
actions “resting” and “eating” decreased to 5% and
30%, respectively. The frequency of the action
“moving” just after changing the danger status of cells
increased from 5% to 60%.

In the case E actions of agents in the stationary mode
(at t = 200000) were distributed as follows. The action
“resting” was executed by 5% of agents of the
population, the action “eating” was executed by 55%
of agents; the action “division” was executed by 40%
of agents. Just after changing the danger status of cells,
the frequency of the action “division” was decreased to
5%, and frequencies of actions “resting” and “eating”
decreased, but only in small amount (about 5%). The
frequency of the action “moving” just after changing
the danger status of cells was increased from almost
zero value to 40%.

So, dynamics of actions of agents in cases L and E
were similar each to other. The main difference
consisted in relatively large frequency of the action
“division” in the case of pure evolution.

In the case LE (the full model) frequencies of actions
of agents were approximately the same as in the case
L.



Thus, simulations demonstrate formation of rather
natural behavior of agents. It is essential that
reproduction plays the important role at evolutionary
optimization. Evolutionary optimization is slower as
compared with learning. When learning and
evolutionary optimization function together, learning
plays a dominant role and simulation results in case of
the full model are close to results in the case of pure
learning.

4 INTERACTION BETWEEN
LEARNING AND EVOLUTION

The computer model of agents which are similar to the
biological organisms adapting to change of
temperature 7 in environment is designed and
analyzed in this section. The control system of an
agent is based on neural network adaptive critic
designs (Prokhorov and Wunsch, 1997). The control
system ensures forecasting of 7 changes and agent
movement in accordance with temperature changes.
Agent behavior is adjusted by means of reinforcement
learning and evolutionary  optimization. The
interaction between learning and evolution is analyzed.
The Baldwin effect is demonstrated: certain acquired
features (obtained by means of learning) of agents can
be genetically assimilated during several generations
of Darwinian evolution.

The Baldwin effect (Baldwin, 1896; Turney et al,
1996) that is the genetic assimilation of acquired
features during a number of generations of Darwinian
evolution is well known. The operation of this effect
includes two stages. At the first stage, evolving
organisms obtain (owing to appropriative mutations) a
property to learn some useful features. Fitness of such
organisms increases; hence, they are distributed in the
population. But learning has some disadvantages: it
demands energy and time. Therefore the second stage
(the genetic assimilation) is possible: useful features
can “be reinvented” by evolutionary processes and
these features can be directly coded in genomes of
organisms.

In the article (Red’ko et al, 2005), the Baldwin effect
was demonstrated for the model of agents-brokers.
However, the model of agents-brokers is too far from
biology. The current model is more close to biological
organisms.

4.1 Description of the model

The model is based on the following analogy. Modeled
“lizards” that adapt to temperature changes are
considered. The adaptation essence consists in the
following. There are two places, which lizards can
choose: 1) a place on a stone, 2) a place in a burrow.
The natural behavior is as follows. At large
temperature the lizard heats on the stone, at low

temperature it gets into the burrow and keeps its body
warm.

A lizard uses its control systems to choose a place. The
control systems of agents-lizards are based on neural
network adaptive critic design (Prokhorov and
Wunsch, 1997). The agent control system is optimized
by means of reinforcement learning and Darwinian
evolution.

The temperature of environment T, (the temperature
on a stone) is determined by time series T,.(f), t =
0,1,2... The current situation S(¢) is determined by two
values T, (f) and P(f), S(¢) = {T..(¢),P(t)}, where P(f)
is the parameter of the position of a lizard. It is
supposed that P(f) = 0 if the lizard is in a burrow, and
P(f) = 1 if the lizard is on a stone. Actions of the lizard
consist in a choice of its position P(++1) in the next
time moment.

It is supposed that there is some optimum temperature
of lizard body 7, and when the lizard is in the burrow
its temperature is close to 7} ; though the environment
temperature influences slightly on the temperature in
the burrow. So, the temperature in burrow 7;,(¢) is the
following:

Tint(t) = TO + kl [Text(t) - TO] s (3)

where k; is small positive parameter, k; > 0, k; <<1.

The reinforcement r(f), which is received by a lizard at
the time moment ¢, is proportional to the difference
T(t) - Ty , where T(¢) is the current temperature in that
place where the lizard is in the moment #:

H0) =k [T(0) - To] , “

where k, > 0. For simplicity we suppose that the lizard
predicts T,(f), and T;,(f) can be estimated by it
according to the Eq. (3).

4.1.1 Control system of the agent-lizard

The control system of the agent-lizard is intended for
maximization of the utility function U(#) (Sutton and
Barto, 1998):

U@oy=Y7rt+j, t=12.., )
j=0

where r(¢) is the current reinforcement determined by

the Eq. (4), y is the discount factor (0 < y < 1,

I-y<<1).

The control system of the agent consists of two neural
networks (NNs): the model and the critic. The model
NN predicts dynamics of the environment temperature
T..(). The critic NN estimates the utility function U
for the current situation S(#), predicted situations for
two possible positions of the agent in the next time
step, and the next situation S(¢+1).



4.1.2 Operation and learning of the agent
control system

Inputs of the model NN are m previous values of
temperature T, (t-m+1),...,T,(¢), this NN predicts the
environment temperature in the next time moment
T (t+1). The model is the two-layer NN that
operates according to formulas:

XM = AT ol t-mH1),. T o)}, V™= tanh (T, w; X)),
Tprext (tJrl):Zijijj,
where x™ is the input vector, yM is the vector of

outputs of neurons of the hidden layer, w"; and v"; are
synaptic weights of the model NN.

The critic NN is intended for the estimation of quality
of a situation V(S(¢)), namely, the estimation of the
utility function U(?) for the agent in the situation S(¥).
The critic is the two-layer NN that operates according
to formulas:

x© = S(t) = {T.(?), P(t)}, <, =tanh (¥, w;x),
V()= V(S(t) = ¥ v 0

where x© is the input vector, y° is the vector of outputs
of neurons of the hidden layer, w"; and V", are
synaptic weights of the critic NN.

Following operations are carried out in the agent
control system each time moment ¢:

1) The model NN predicts the external temperature in
the next time moment 7%, (¢+1).

2) The critic NN estimates the value V for the current
situation V(f) = V(S(¢)) and for predicted situations for
both possible actions V' p(¢+1) = V(S p(¢+1)), where
SPa(t+1) = {T7 . (t+1),P(t+1)}, P(t+1) = 0 or P(t+1) =
1.

3) The e-greedy method is applied (Sutton and Barto,
1998): the action corresponding to the maximum value
" p(t+1) is chosen with probability 1-¢, the alternative
action is chosen otherwise (0 < ¢ << 1). The action
choice is the selection of the value P(z+1).

4) The chosen action P(¢#+1) is carried out. The
transition to the next time moment 1 occurs. The
reinforcement r(#+1) in accordance with the Eq. (4) is
obtained by the agent. The real value T,.(t+1) is
observed and compared with the prediction 77" (¢+1).
The synaptic weights of the model NN are adjusted to
minimize the error of the prediction by means of the
usual back-propagation method (Rumelhart et al,
1986). The learning rate of the model NN is equal to
Oy

5) The quality of the next situation is estimated by the
critic NN: V(t+1) = V(S(++1)); S(t+1) = {T.(t+1),
P(¢+1)}. The time difference error J(f) is calculated
(Sutton and Barto, 1998):

@) = r(t+1) + yV(t+1) - V(1) . (6)

6) The synaptic weights of the critic NN are adjusted
to minimize the time difference error J(¢); this
adjustment is carried out by the gradient method,
similar to the back-propagation method. The learning
rate of the critic NN is equal to ac .

4.1.3 The evolution scheme

In addition to agent learning, the evolutionary
optimization of control systems of agents takes place.
The evolving population consists of n agents. Each
agent has its resource R(?) that changes according to
reinforcements: R(t+1) = R(¢) + r(t), where r(¢) is
determined by the Eq. (4). Evolution passes through a
number of generations, n, = 1, 2,... Duration of each
generation n, is T, time steps (7, is lifetime of the
agent). At the beginning of each generation, initial
resource of any agent R(¢) is zero. At the end of each
generation the agent having maximum resource
Rya(ng) (the best agent of the generation n,) is
determined. This best agent gives birth to n
descendants that constitute the next generation.

Each agent has two sets of synaptic weights of both
NNs: G and W. The set G are initial NN synaptic
weights that are received by the agent at the moment
of its birth from the agent-parent. This set G is the
agent genome that does not vary during its life. The set
W are temporary NN synaptic weights that are
adjusted during the agent life by means of learning. At
the moment of the agent birth W = G. Descendants of
the agent inherit its genome G (with small mutations).
As the genome G is inherited, the evolution process
has Darwinian character.

4.2 Simulation results

The main parameters of computer simulations are the
following: the discount factor y = 0.9; the number of
inputs of the model NN m = 10; the number of neurons
in the hidden layers of the model and critic NNs Ny, =
Njc = 10; the learning rate of the model and critic NNs
oc = ac = 0.01; the parameter of the e-greedy method &
= 0.05; the intensity of mutations P,,, = 0.1; the
duration of a generation 7, = 1000, the population size
n=10.

The time dependence of the external temperature is the
sinusoid:

Text (t) = 055111(2711/20) + TO N T0: 1.5.

In order to compare learning and evolutionary
optimization the following cases (similar to cases of
the previous section) were analyzed:

Case L (pure learning); in this case single self-learning
agent was considered;

Case E (pure evolution), i.e. evolving population of
agents without learning;



Case LE (learning + evolution), i.e. the full model
described above.

The values of resource obtained by agents during 1000
time steps for these three cases are compared. For
cases E and LE the generation duration was 7, = 1000,
and the maximum value of agent resource in the
population R,(7.) at the end of each generation was
registered. In the case of L (pure learning) a single
agent was analyzed. The resource of this agent was set
to be zero every 1000 time steps: R(Ty(rng-1)+1) = 0. In
this case the index n, was increased by 1 after every 7,
time steps, and it was set R,,..(1ng) = R(T,n,).

The plots R,a(n,) are shown in Figure 2 that
demonstrates that learning together with evolution (the
case LE), ensures more effective growth R, as
compared with learning or evolution separately (cases
L and E). The curves are averaged over 1000
simulations.

n, (case L)
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Figure 2. The plots R,..(71,).

The obvious influence of leaning on evolutionary
processes was often observed in simulations. The
essential growth of resource of the best agent began
with certain time delay (200-400 time steps). This
means that the agent learnt initially to get satisfactory
behavioral policy, and only after several generations
the resource growth began from the start of a
generation. This phenomenon can be interpreted as the
Baldwin effect: initially acquired (via learning)
property to obtain resource became inherit during
several generations. The example of this phenomenon
is shown in Figure 3. This figure demonstrates
resource dynamics for the best agent of the population
during five generations.

Figure 3 shows that during early generations
(generations 1 and 2), any significant increase of agent
resource begins only after a lag of 200 to 500 time
steps. The best agent optimizes its policy by learning.
Subsequently, the best agents find an advantageous
policy faster and faster. By the fifth generation, a
newborn agent “knows” a decent policy because it is
encoded in its genome G, and the learning does not

improve the policy significantly. Thus, Figure 3
demonstrates that the initially learned policy becomes
inherited (the Baldwin effect).
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Figure 3. Time dependence of the best agent resource
R(?) during five generations. The case LE.

So, simulations show that the strategy initially
obtained by means of learning, becomes inherited (the
Baldwin effect) though evolution has Darwinian
character. It should be underlined that the genetic
assimilation of initially acquired features in the current
model can take place quickly: during only 3-5
generations of Darwinian evolution.

5 FURTHER STEPS

The described models characterize elementary
cognitive features. Autonomous agents memorize
relations between situations and useful actions that
should be executed in these situations. These relations
are stored in the form of set logical rules (in the first
and second models) or by means of neural networks
(in the third model). What should be further steps of
modeling more effective cognitive features? Let us
consider several directions of further research.

The most non-trivial property of considered
autonomous agents is generation of five simple
heuristics by single self-learning agent in the first
model. These heuristics  generalize sensory
information. Using such generalization and certain
prediction of action results, it could be possible to
form plans of behavior.

The second interesting direction of research is to
investigate more powerful models of adaptive agents
that have natural needs. The simplest forms of natural
needs are analyzed in the second model. Now it is
reasonable to develop further this approach.

Along with interesting behavior of evolving population
of self-leaning agents in the third model, this model
outlines rather intelligent agent control system. In
particular, the model block of the control system
provides certain prediction of future and some
knowledge about interaction of an agent and its



environment. More effective control systems could use
similar architectures.
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