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Abstract：A novel Lyapunov function is constructed to investigate the robust exponential stability 

in mean square for uncertain stochastic neural networks .A new criteria is derived in terms of 

linear matrix inequalities. The maximum value of the exponential convergence rate can be got 

from the criteria .The activation function is vary general , assuming neither differentiability nor 

strict monotonicity. The criteria can be checked easily by the LMI control toolbox in Matlab.A 

numerical example is given by LMI control toolbox in Matlab to demonstrate the effectiveness of 

our results. 
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1.  Introduction 

 

In many practical applications such as signal processing, optimization and control problems, the 

information to be processed is in the form of stable states. Therefore , in recent years, the study of 

stability analysis of neural networks has been attracting the interest of a great number of 

researchers [1-3] . On the other hand , it is known that time delays can not be avoided in the 

hardware implementation of neural networks. The existence of time delays may result in instability, 

oscillation and poor performances of neural networks. Therefore, the problem of stability of 

delayed neural networks have been extensively investigated [4-7] . 

In the last few decades, it is often the case that the neural networks model possesses stochastic 

phenomenon. Therefore, there was a wide study on the stability analysis for delayed stochastic 

neural networks in recent years. So far, there are only a few papers that have taken stochastic 

phenomenon into account in neural networks [8-11]. 

Based on the above discussions, We consider a class of uncertain stochastic neural networks .The 

main purpose of this paper is to study the robust exponential stability in mean square. By using 

Lyapunov–Krasovskii functional we obtain the sufficient conditions for robust exponential 

stability in mean square of stochastic neural networks, in terms of linear matrix inequality (LMI). 

We also provide one example to demonstrate the effectiveness of the proposed stability results. 
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2.  Problem statement 

The model of uncertain stochastic neural networks can be expressed as follows: 

0 1

0 1 2

( ) [ ( ) ( ) ( ) ( ( )) ( ) ( ( ( )))]

[ ( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ( )))] ( )

dx t A t x t B t f x t B t f x t t dt

C t x t D t x t t D t f x t D t f x t t dw t



 

     

    
                      （1） 

Where  1 2( ) ( ), ( ), ( )
T n

nx t x t x t x t R  is the state vector , 

1 1 2 2( ( )) [ ( ( )), ( ( )), , ( ( ))]T

n nf x t f x t f x t f x t  is the activation function; 

1 2( ) [ ( ), ( ), , ( )]T

mw t w t w t w t  is m-dimensional Brownian motion defined on t 0,{ } , )tF F P（ ， . 

Let t 0,{ } , )tF F P（ ， be a complete probability space with a filtration t 0{ }tF  satisfying the 

usual conditions .where ( )E  stands for the mathematical expectation operator with respect to the 

given probability measure P. 2( ( )) 0, ( ( ))E dw t E dw t dt  ; ( )t represents the time-varying delay 

of neural networks satisfying: 0 ( ) , ( ) 1t t       ; ( ) ( )A t A A t  ， 0 0 0( ) ( )B t B B t  ，

1 1 1( ) ( )B t B B t  ， ( ) ( )C t C C t  ， 0 0 0( ) ( )D t D D t  ， 1 1 1( ) ( )D t D D t   

2 2 2( ) ( )D t D D t  ; 1 2( , , )( 0)n iA diag a a a a  0 1 0 1 2, , , , ,B B C D D D are the interconnection 

matrices , 0 1 0 1 2( ), ( ), ( ), ( ), ( ), ( ), ( )A t B t B t C t D t D t D t       are the time-varying uncertainties of 

the form: 0 1 0 1 2 1 2 3 4 5 6 7[ ( ), ( ), ( ), ( ), ( ), ( ), ( )] ( )[ , , , , , , ]A t B t B t C t D t D t D t MF t N N N N N N N         

Where M ， iN ( 1,2,3,4,5,6,7)i  are known constant matrices of appropriate dimensions and 

( )tF is the time-varying uncertain matrices, which satisfies ( )T tF ( )tF  I . 

Note that the function ( )( 1,2, )if i n    here are Bounded .It satisfies the following condition: 

（Ａ） 1 2

1 2

( ) ( )i i
i i

f y f y
l l

y y

 
 


 for any il

 ， ( 1,2, , )il i n    

Definition 1. The trivial solution of (1) is said to be globally robust exponential stability in mean 

square, if there exist constant 0  , 0k  ,such that: 
2 22

0

( ) sup ( )kt

s

E x t e E x s


 

  

  

Lemma 1.For any constant symmetric positive-definite matrix Ｍ，a scalar 0r  ，the following 

inequality holds: 

0 0 0( ) ( ) ( ) ( )
T

r T r rr w s Mw s ds w s ds M w s ds           

Lemma２.Let , , ,A D E F and P be real matrices of appropriate dimensions，and 0P , TF F I ，

Then for any 0  making 1 1 0Tp DD   ,the following inequality holds: 

 1 1( ) ( ) ( )T T T TA DFE P A DFE A P DD A E E        



 

 

Lemma３.Let , ,U V W and TM M be real matrices of appropriate dimensions， withV satisfying 

TV V I ,then 0T T TM UVW W V U   ， If and only if there exists a positive scalar 0  ，such 

that 1 0T TM UU WW     

Lemma 4. (schur complement )For a given matrix 
11 12

12 22

T

S S
S

S S

 
  
 

with 11 11 22 22,T TS S S S  ,then the 

following conditions are equivalent: 

1） 0S   

2)  1

22 11 12 22 120, 0TS S S S S    

3) 1

11 22 12 11 120, 0TS S S S S    

3.  Main Results and Proofs 

Consider the following uncertain stochastic neural networks 

0 1

0 1 2

( ) [ ( ) ( ( )) ( ( ( )))]

[ ( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ( )))] ( )

dx t Ax t B f x t B f x t t dt

C t x t D t x t t D t f x t D t f x t t dw t



 

     

     
（2） 

In the following we denote    1 1 1 2 2 2 1 1 2 2, , , , , , ,n n n nL diag l l l l l l L diag l l l l l l                  

Theorem 1. System (2) is robust exponential stability in mean square, if there exist positive matrices 

1 20, 0, 0, 0P Q Q R    , positive diagonal matrices  1 11 12 1, , 0,nU diag u u u   

 2 21 22 2, , 0nU diag u u u  ，and 1 0  , such that 

0

1

0
*

P PM

I

 
   

 
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   

  
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   
 

  
   
 

     

   

2

11 1 2 1 1 1 4 42 2 TkP PA AP Q Q LU N N          

2

22 1 1 2 1 5 5(1 ) 2k Te Q LU N N        

Where *  mean symmetric terms. 

Proof  For system(2),we choose the following Lyapunov– Krasovksii function  

2 2 0 2 2

( ) 1 2 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ( ))kt T t ks T t ks T t ks T

t t t t tV t e x t Px t e x s Q x s ds e x s Q x s dsd e f x s Rf x s ds                



 

 

Where P ,
1Q ,

2Q ,and R  are positive matrices 

By It o


differential formula ,the stochastic derivation of ( )V t along（2）can be obtained as follows: 

 

 

 

2

0 1

0 1 2

0 1 2

1

( ) {2 ( ) ( ) 2 ( ) ( ) ( ( )) ( ( ( )))

( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ( )))

( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ( )))

( ) ( ) (1 )

kt T T

T

T

dV t e kx t Px t x t P Ax t B f x t B f x t t

C t x t D t x t t D t f x t D t f x t t P

C t x t D t x t t D t f x t D t f x t t

x t Q x t



 

 



      

         

         

 

 

2 2

1 2

2 2

2

0 1 2

( ( )) ( ( )) ( ) ( )

( ) ( ) ( ( )) ( ( )) (1 ) ( ( ( ))) ( ( ( )))}

{2 ( ) ( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ( ))) } ( )

k T T

tk T T k T

t

T

e x t t Q x t t x t Q x t

e x s Q x s ds f x t Rf x t e f x t t Rf x t t dt

x t P C t x t D t x t t D t f x t D t f x t t dw t



 



  

   

 



 



   

     

        



 

From Lemma 1,we know that 

2 2 2 2( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )

( )

t t t t t tT T T T

t t t t t t t t t t t
x s Q x s ds x s Q x s ds x s ds Q x s ds x s ds Q x s ds

t     


 

     
             

From Lemma 2,we know that 

 

 

 

0 1 2

0 1 2

4 5 6 7

4 5 6

( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ( )))

( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ( )))

{ ( ) ( ) ( ( )) ( ( )) ( ( ( ))) }

{ ( ) ( ) ( ( ))

T

T

C t x t D t x t t D t f x t D t f x t t P

C t x t D t x t t D t f x t D t f x t t

MF t N x t N x t t N f x t N f x t t P

MF t N x t N x t t N

 

 

 



         

         

     

   

 

 

7

1 4 5 6 7

4 5 6 7

( ( )) ( ( ( ))) }

( ) ( ( )) ( ( )) ( ( ( )))

( ) ( ( )) ( ( )) ( ( ( )))

T

f x t N f x t t

N x t N x t t N f x t N f x t t

N x t N x t t N f x t N f x t t



  

 

  

     

    

 

 From Lemma 4,we know that  

1 1 0TP MM   and
1

0
*

P PM

I

 
 

 
 are equivalent. 

From（Ａ）,we know that  

( ( ) ( ) ( ( ) ( ) 0, (0) 0, 1,2, ,

( ( ( )) ( ( )) ( ( ( )) ( ( )) 0, (0) 0, 1,2, ,

i i i i i i i i i

i i i i i i i i i

f x t l x t f x t l x t f i n

f x t t l x t t f x t t l x t t f i n   

 

 

          

              




 

 there exist positive diagonal matrices, 1 11 12 1( , , , ) 0nU diag u u u   and 

2 21 22 2( , , , ) 0nU diag u u u   ,such that 

 

1
1

2
1

1 0 1

( ) ( ) 2 ( ( )) ( ) ( ( )) ( )

2 ( ( ( ))) ( ( )) ( ( ( ))) ( ( ))

( ) ( ) 2 ( ) ( ) ( ) ( ) ( ( )) ( ) ( ( ))

n

i i i i i i i i i
i

n

i i i i i i i i i
i

T T

dv t dv t u f x t l x t f x t l x t

u f x t t l x t t f x t t l x t t

t t dt x t P C t x t D t x t t D t f x t

   

  

 



 



          

            

       





  2 ( ) ( ( ( ))) ( )D t f x t t dw t  

 Where ( ) ( ), ( ( )), ( ( )), ( ( ))T T T Tt x t x t t f x t f t t        

From 1 0  we can prove that a scalar 0   satisfying 1 ( ,0,0,0) 0diag I    exists such that 

2

1

( )
( ) ( ) ( )TdEV t

E t t E x t
dt

         



 

 

So ( ) (0)EV t EV . 

0 0 02 2

1 2(0)

0 02 2

max max 1 max(0) (0)

0 0 22

max 2
0

(0) { (0) (0) ( ) ( ) ( ) ( )

( ( )) ( ( )) } ( ( ) ( ( ) ( ) )

( ) ) sup ( )

T ks T ks T

ks T T ks

ks

s

EV E x Px e x s Q x s e x s Q x s dsd

e f x s R f x s ds P Q R L L e x

Q e dsd E x s

  

 

 


 

  

 

 

 


  

   

  

  

 

 

 

(max( , ), 1, 2, ,i iL diag l l i n     

Also , we have  
22

m i n( ) ( ) ( )ktEV t P e E x t  

Therefore , we have   
2 22

0

( ) sup ( )kt

s

E x t e E x s


 

  

  

We can come to a conclusion that (2) is robust exponential stability in mean square. 

Next, we consider the following uncertain stochastic neural networks 

0 1

0 1 2

( ) [ ( ) ( ( )) ( ( ( )))]

[ ( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ( )))] ( )

dx t Ax t B f x t B f x t t dt

C t x t D t x t t D t f x t D t f x t t dw t



 

     

    
（3） 

Theorem 2. System (3) is robust exponential stability in mean square, if there exist positive matrices 

1 20, 0, 0, 0P Q Q R    , positive diagonal matrices  1 11 12 1, , 0,nU diag u u u   

  2 21 22 2, , 0nU diag u u u  ，and 1 0  , such that 

0

1

0
*

P PM

I

 
   

 
    

11 1 4 5 0 0 2 1 1 4 6 1 1 1 4 7 2

22 1 5 6 0 1 2 2 1 5 7 0 2
2

1 1 6 6 1 1 1 6 7 1 2

2

2 1 7 7 2 2

*

* * 2

* * * (1 ) 2

T T T T T T

T T T T

T T T T

k T T

N N C PD PB L U N N C PD PB N N C PD

N N D PD L U N N D PD

U R N N D PD N N D PD

e R U N N D PD

   

  

 

 

      
 

    
     
 

      

   

2

11 1 2 1 1 1 4 42 2 T TkP PA AP Q Q LU N N C PC           

2

22 1 1 2 1 5 5 0 0(1 ) 2k T Te Q LU N N D PD         

Where *  mean symmetric terms. 

Proof. The Lyapunov–Krasovskii functional is the same as Theorem 1. 

Last, we consider the following uncertain stochastic neural networks 

0 1

0 1 2

( ) [ ( ) ( ) ( ) ( ( )) ( ) ( ( ( )))]

[ ( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ( )))] ( )

dx t A t x t B t f x t B t f x t t dt

C t x t D t x t t D t f x t D t f x t t dw t



 

     

    
（3） 

Theorem3. System (3) is robust exponential stability in mean square, if there exist positive matrices 

1 20, 0, 0, 0P Q Q R    , positive diagonal matrices  1 11 12 1, , 0,nU diag u u u   

  2 21 22 2, , 0nU diag u u u  ，and 1 0  ， 2 0  , such that 



 

 

0

1

0
*

P PM

I

 
   

 
    

11 1 4 5 0 0 2 1 1 4 6 1 2 1 2 14

22 1 5 6 0 1 2 2 1 5 7 0 2

3 1 1 6 6 2 2 2 1 6 7 1 2 2 3 3

44

2

* 0

* * 2 0

* * * 0

* * * *

T T T T T

T T T T

T T T T T

N N C PD PB L U N N C PD N N PM

N N D PD L U N N D PD

U R N N N N N N D PD N N

I

    

  

   





     
 

   
        
 
 
  

   

2

11 1 2 1 1 1 4 4 2 1 12 2 T T TkP PA AP Q Q LU N N C PC N N             

2

22 1 1 2 1 5 5 0 0(1 ) 2k T Te Q LU N N D PD         

14 1 1 4 7 2 2 1 3

T T TPB N N C PD N N       

2

44 2 1 7 7 2 2 2 3 3(1 ) 2k T T Te R U N N D PD N N           

Where *  mean symmetric terms. 

Proof. The Lyapunov–Krasovskii functional in the proof of Theorem 1 is used, and A , 0B , 1B are 

replaced by ( )A A t , 0 0 ( )B B t and 1 1( )B B t , respectively. 

We can known that  

   4 2 1 2 3 1 2 3  0  0  0 ( )   0      0    ( )   0  0  0 0
T TT TM P F t N N N N N N F t M P                

From Lemma 3,we know that 4 0   are equivalent to 

   1

5 2 2 2 1 2 3 1 2 3  0  0  0   0  0  0   0      0    0
T TT TM P M P N N N N N N                 

From Lemma 4,we know that 5 and 3  are equivalent 

So, the uncertain stochastic neural networks (3) is robust exponential stability in mean square 

 

4. Example 

In this section, one example is given to show the effectiveness of our theoretical results.  

Consider the uncertain stochastic neural networks 

0 1

0 1 2

( ) [ ( ) ( ) ( ) ( ( )) ( ) ( ( ( )))]

[ ( ) ( ) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ( )))] ( )

dx t A t x t B t f x t B t f x t t dt

C t x t D t x t t D t f x t D t f x t t dw t



 

     

    
with the following parameters: 

2.2 0 0

0 2.4 0

0 0 2.6

A

 
 


 
  

, 0 0B  , 1

0.5 0.6 0.9

1.7 1.9 1.8

1.3 1.5 1.9

B

 
 


 
  

，

0.1 0 0

0 0.5 0

0 0 0.3

M

 
 


 
  

, 0 1 2 0C D D D     

1 30.6N I , 2 0N  , 3 30.2N I , 4 30.2N I , 5 30.2N I , 6 7 0N N  , 0.8  , 0il
  ，

0.5, 1,2,3il i     

0  ，By solving the LMIS in 0 and 3 ，it can be proved that the uncertain stochastic neural 



 

 

networks is robust exponential stability in mean square .The maximum value of the exponential 

convergence rate can be got. The maximum value of the exponential convergence rate 

0.0670k  。A set of feasible solution are as follows： 

2313.8 525.3 588.4

525.3 696.2 191.1

588.4 191.1 143.5

P

 
 


 
  

， 1

3747.1 649.7 1203.8

649.7 948.7 42.7

1203.8 42.7 2387.9

Q

 
 


 
  

， 

2

2274.9 386 1623.1

386 102 324.3

1623.1 324.3 1223.8

Q

 
 

 
 
   

，

3924.1 1362.3 346.5

1362.3 2161.1 1286

346.5 1286 3760.9

R

 
 


 
  

, 

1

8373.5 0 0

0 3612.9 0

0 0 5652.3

U

 
 


 
  

, 2

10923 0 0

0 4308 0

0 0 6622

U

 
 


 
  

, 

1 949.1611  ， 2 190.0355   

5.  Conclusion 

In this paper, a new criterion is derived by LMIS to ensure the robust exponential stability in 

mean square for the uncertain stochastic neural networks. The activation function is vary 

general ,assuming neither differentiability nor strict monotonicity . What is more ,we can get the 

maximum value of the exponential convergence rate from it.The effectiveness of the proposed 

criterion is demonstrated in numerical example. 
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