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Abstract : A novel Lyapunov function is constructed to investigate the robust exponential stability

in mean square for uncertain stochastic neural networks .A new criteria is derived in terms of
linear matrix inequalities. The maximum value of the exponential convergence rate can be got
from the criteria .The activation function is vary general , assuming neither differentiability nor
strict monotonicity. The criteria can be checked easily by the LMI control toolbox in Matlab.A
numerical example is given by LMI control toolbox in Matlab to demonstrate the effectiveness of
our results.
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1. Introduction

In many practical applications such as signal processing, optimization and control problems, the
information to be processed is in the form of stable states. Therefore , in recent years, the study of
stability analysis of neural networks has been attracting the interest of a great number of
researchers [1-3] . On the other hand , it is known that time delays can not be avoided in the
hardware implementation of neural networks. The existence of time delays may result in instability,
oscillation and poor performances of neural networks. Therefore, the problem of stability of
delayed neural networks have been extensively investigated [4-7] .

In the last few decades, it is often the case that the neural networks model possesses stochastic
phenomenon. Therefore, there was a wide study on the stability analysis for delayed stochastic
neural networks in recent years. So far, there are only a few papers that have taken stochastic
phenomenon into account in neural networks [8-11].

Based on the above discussions, We consider a class of uncertain stochastic neural networks .The
main purpose of this paper is to study the robust exponential stability in mean square. By using

Lyapunov—Krasovskii functional we obtain the sufficient conditions for robust exponential

stability in mean square of stochastic neural networks, in terms of linear matrix inequality (LMI).
We also provide one example to demonstrate the effectiveness of the proposed stability results.
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2. Problem statement

The model of uncertain stochastic neural networks can be expressed as follows:

dx(t) = [A@)X(t) + By (1) f (x(1)) + By (t) f (x(t — z(t)))]dt + (1)
[COX(®) + Do (OX(t — (1)) + Dy (1) T (x(1)) + D, (1) f (x(t — 2 (1)) Jdw(t)

Where x(t) = [%,(t), %, (t),--x, (t)] e R" is the state vector ,

f(x(t)) =[f,0 @), f,(%, ).+, f. (x, ()] is the activation function;

wW(t) =[w, (t), w, (t),--,w, (t)]" is m-dimensional Brownian motion defined on ( Q , F,{F}..,.P).

Let (Q, F.{F}.,.P)be acomplete probability space with a filtration {F},.,satisfying the
usual conditions .where E (1) stands for the mathematical expectation operator with respect to the

given probability measure P. E(dw(t)) = 0, E(dw?(t)) = dt ; z(t) represents the time-varying delay
of neural networks satisfying: 0 < z(t) <7, 7(t) < u <1; A(t) = A+ AA(t) , B,(t) =B, +AB,(t) ,
B,(t) =B, +AB,(t) , C(t)=C+AC() , Dy(t)=D,+AD,(t) , D;(t)=D,+AD(t)
D,(t) =D, +AD,(t) ; A=diag(a,,a,,---a,)(a >0) B,,B,,C,D,, D,, D, are the interconnection
matrices, AA(t), AB,(t),AB, (t), AC(t), AD,(t), AD, (t), AD, (t) are the time-varying uncertainties of
the form: [AA(t), AB, (t), AB, (t), AC(t), AD, (t), AD, (t), AD, (t)] = MF(t)[N,, N,, N, N,, N5, Ng, N, ]

Where M , N, (i=12,3,4,5,6,7)are known constant matrices of appropriate dimensions and

F(t) is the time-varying uncertain matrices, which satisfies F'(t) F(t) <1 .
Note that the function f,(-)(i=1,2,---n) here are Bounded .1t satisfies the following condition:

(A) |;SMS|; forany I , 17 (i=12,--,n)
Yi—Y,

Definition 1. The trivial solution of (1) is said to be globally robust exponential stability in mean

square, if there exist constant 7 >0,k >0,such that: E||x(t)|" <7e* sup E|x(s)|’
—7<s<0

Lemma 1.For any constant symmetric positive-definite matrix M , ascalar r>0 , the following

inequality holds:

5w (s)Mw(s)ds [ [5 w(s)ds | M ] w(s)ds |
Lemma 2 .Let A, D, E, F and P be real matrices of appropriate dimensions , andP>0, F'F<I ,

Then for any £ >0making p™ —&'DD" > 0 ,the following inequality holds:

(A+DFE)" P(A+DFE)< AT (P —¢'DD")A+¢E'E



Lemma 3 .LetU,V,W and M = MT be real matrices of appropriate dimensions , withV satisfying

V'V < I thenM +UVW +W'V'UT <0 , If and only if there exists a positive scalar >0 , such
that M +&UU" +sWWT <0
. . S, S .
Lemma 4. (schur complement )For a given matrix S :{ v 12} with S, =S],S,, =S,, ,then the
12 22

following conditions are equivalent:

1) S<0
2) S,,<0,S,-5,5,S), <0
3) S, <0,S,—-S,5,,'S,, <0
3. Main Results and Proofs

Consider the following uncertain stochastic neural networks

dx(t) = [~ AX(t) + B, f (x(t)) + B, f (x(t — z(t)))]dt + )
[AC(R)X(t) + AD, (t)X(t — 7(t)) + AD, (t) f (x(t)) + AD, (t) f (x(t - 7()))]dw(t) (2)
In the following we denote L, =diag (I 1, 1,15+, 1;17), L, =diag (I, +1;,1; +15,--,1; +17)

'n'n

Theorem 1. System (2) is robust exponential stability in mean square, if there exist positive matrices

P>0,Q >0Q,>0,R>0 , positive  diagonal  matrices U, =diag(u, U, Uy )>0,

U, =diag(u,,,U,,,---U,,) =0 , and g >0, such that

-P PM
o= 4 el <0

v, &N;N; PB,+LU,+&N; N, PB, +&N, N,
s, = * Y2 &Ng N ] LU, "“lesT N
* * —2U, +R+& Ny N &Ng N,
* * * —~(1- e ® R-2U, +gNIN,

v, =2kP—PA—AP+Q, +7°Q, —2LU, + &N N,

W, =—(1— )™ Q, —2LU, + NI N,

Where * mean symmetric terms.
Proof For system(2),we choose the following Lyapunov— Krasovksii function

V(1) =e™x" (OPX() +[i_, ¢ X" (5)QX(s)ds +7[° I}, , €*°X" (5)Q,x(s)dsd B +1;_. ,, €% T (X(5))RF (x(s))ds



Where P,Q,,Q,.andR are positive matrices

By Ito differential formula ,the stochastic derivation ofV (t) along ( 2 ) can be obtained as follows:
dV (t) < e®{2kx" (t)Px(t) +2x" (t)P [—Ax(t) + B, f (x(t))+ B, f (x(t - ‘r(t)))] +

[AC(t)x(t) + AD, (t)x(t —z(t)) + AD, (t) f (x(t)) + AD, (t) f (x(t — z-(t)))]T P

[AC(t)x(t) + AD, (t)x(t —z(t)) + AD, (t) T (x(t)) + AD, (t) f (x(t — ‘r(t)))] +

X" (DQX(1) — (A ©)e ™ X" (t = ()QX(t — 7 (1) +7°x ()Q,x(t)

re j:_r X" (8)Q,x(s)ds + f T (X(t)RF (X(t)) — (L— ) 2 £ T (x(t — z(t)))RF (x(t — z(t)))}dt +

{2x" (t)P [AC(t)x(t) + AD, () x(t — 7(t)) + AD, (t) f (x(t)) + AD, (t) f (x(t — 7 (t))) Jrdw(t)

From Lemma 1,we know that

—TJ‘:#XT(S)QZX(S)dSS—r_[t;(t)XT(S)QZX(S)dS<— (s o X(8)ds)’ ([ o X(8)ds) < ([ o X(8)ds)” Q. o X(5)ds)

(t)
From Lemma 2,we know that
[AC(t)X(t) + AD, (t)x(t — z(t)) + AD, (t) f (x(t)) + AD, (t) f (x(t — r(’[)))]T P x
[AC(t)x(t) + AD, (t)x(t — z(t)) + AD, (t) f (x(t)) + AD, (t) f (x(t — z’(’[)))] =
{MF(t)[N4x(t) + N x(t—7(t)) + Ng f (x(t)) + N, f (x(t - r(t))):[}T P x
{MF(t)[N4x(t) + N x(t—7(t)) + Ng £ (x(t)) + N, f (x(t —r(t)))]}S
& [NX() + Ngx(t— (1)) + Ng f (x(®) + N, f (x(t —z(@®)))]' x
[N4x(t) + N x(t—7(t)) + Ng f (x(t)) + N, f (x(t —r(t)))]

From Lemma 4,we know that

-1 1 T —P M R
P7—¢ MM’ >0and| _ | <0 are equivalent.

e,
From ( A ) ,we know that
[FO®O-x® ][ F6®-1x®]<0 £0)=0,i=12,-n

[ 06t =2@) =1 x =) ][ £t —7@®) =1 % (t—(t)) | <0, f,(0) =0,i =1,2,---,n

there exist positive diagonal matrices, U, =diag(u,;,u,,---,u,,) =0 and
U, =diag(uy,U,,, -+, U,,) =0 ,such that

dv(t) < dv(®) - 25 u, [ £,06 ) - 1x O [ @) -1x 0]

ZZU [ £06t=2@) =1 % =) ][ (=) -1 % (t () ] <

{€T O} dt+{2x" ©P[ACE)X(t) + ADy (O)X(t — 7(t)) + AD, (1) f (x(t)) + AD, (1) f (x(t — (1)) ]} dw(t)
Where £(t) = " (t), X (t—z(t)), {7 (x()), f " (t—=(1)) ]

From X, <Owe can prove thata scalar y >0 satisfying X, +diag(y1,0,0,0) <0 exists such that

E <e[e 00 ] <—EloOf



So EV(t)<EV(0).

EV (0) = E{x" (0)Px(0) + [ r(o)estxT (S)le(S)-H'_f j° 2exT (s)Q,x(s)dsd 5 +
[0, 8" T (SR T (X())S} < (e (P) + (e (Q) + A (RILL)[ €7
Vg (Q)[, [, €7 dsd ) sup E Ix(s)|f

. y Ii+ )li :1121'“!n

Also , we have EV(t)> 4, @ ef“E|x t |’
Therefore , we have  E|x(®)[* <ne™ sup E|x(s)|’
—7<s<0

We can come to a conclusion that (2) is robust exponential stability in mean square.
Next, we consider the following uncertain stochastic neural networks

dX(t) = [~ AX(t) + B, f (x(1)) + B, f (x(t — ()]t +
[CR)X(L) + Dy (E)X(t — 7 (t)) + D (t) T (X(t)) + Dy (t) F (x(t - r(t)))]dw(t)( )

Theorem 2. System (3) is robust exponential stability in mean square, if there exist positive matrices

P>0,Q >0,Q, >0,R>0, positive diagonal matricesU, = diag (u,,,u,,,---u,, ) >0,

U, =diag(u,,U,,,---U,,) =0 , and g >0, such that

{—P PM }
Xy = <0
*

—&1
¢, &N,Ng+C'PD, PB,+LU, +&N,;N;+C'PD, PB, +&N, N, +CTPD,
s - * b &N¢ Ng + Dy PD, LU, +&N; N, + Dy PD,
2] * —2U, +R+&N{ N, + D/ PD, &Ng N, + D/ PD,
* *

*

~(1-u)e™R~-2U, +&NIN, + D] PD,

¢, =2kP-PA-AP+Q, +‘L'2Q2 -2LU, +81NI N, +C'PC
b = _(1_/-1)672er1 -2LU, +51N5T N; + Dg PD,

Where * mean symmetric terms.

Proof. The Lyapunov—Krasovskii functional is the same as Theorem 1.

Last, we consider the following uncertain stochastic neural networks

dx(t) = [~A)X(t) + By (t) F (x(t)) + B, (t) f (x(t — 7(t)))]dt + 3
[COX(®) + Do (Ox(t (1)) + Dy (1) T (x(1)) + D, (1) f (x(t — 2(1)))Jdw(t) (3)

Theorem3. System (3) is robust exponential stability in mean square, if there exist positive matrices

P>0,Q >0,Q, >0,R>0, positive diagonal matricesU, = diag (u,;,U;,--Uy, ) >0,

U, =diag(Uy, Uy, --U,,) >0 , andeg >0 , &, >0, such that



{—P PM }
Xy = <0
*

—&1
o, NN, +C'PD, PB,+LU, +&N; N, +C"PD, —&NN, P PM
* 5 &NJI N, + D] PD, LU, +&NJ N, + D] PD, 0
=] * * —~2U, +R+ NI N, +&,NJ N, gNIN, +D/PD, +&N;N, 0
* * * Paa 0
* * * * _gzl

@, =2kP —-PA-AP+Q +2'2Q2 -2LU, +51NI N, +C'PC +,5‘2N1T N,
Gy = _(1_ﬂ)972kTQ1 -2LU, +‘91N5T Ns + DoT PD,
o, =PB, +$1NIN7 +CT PD, —gleT N,

@ =—1—1)e " R—2U, +gNIN, + D] PD, +&,NJ N,
Where * mean symmetric terms.

Proof. The Lyapunov—Krasovskii functional in the proof of Theorem 1 is used, and A, B,, B,are
replaced by A+ AA(t) , B, + AB,(t) and B, + AB, (t), respectively.

We can known that

%,=%,+MP 00 o]T FO[-N, 0N, NJ+[-N, 0 N, N,]' F(®[M'P 0 0 0]<0

From Lemma 3,we know that %, <0 are equivalent to

Ts=%,+&'[M'P 00 o]T[MTP 00 0]+5[-N, 0N, N;]' [-N, O N, Ny]<0

From Lemma 4,we know that =.and X, are equivalent
So, the uncertain stochastic neural networks (3) is robust exponential stability in mean square

4. Example

In this section, one example is given to show the effectiveness of our theoretical results.
Consider the uncertain stochastic neural networks
dx(t) = [-A)x(t) + B, (t) f (x(t)) + B, (t) f (x(t —z(t)))]dt +

with the following parameters:
[C()x(t) + Dy (1) x(t — (1)) + D, (1) f (x(1)) + D, (t) T (x(t —z(1)))]dw(t)

22 0 0 05 0.6 0.9 01 0 0

A=| 0 24 0 |,B,=0,B=[17 19 18|, M=/0 05 0 |,C=D,=D,=D,=0
0 0 26 13 15 1.9 0 0 03

N,=06l, , N,=0 , N;=02l, , N,=02l, , N,=02l, , Ny=N,=0, =08, |7 =0 ,

I7=05,i=123

u=0 , By solving the LMIS in X;andX, , it can be proved that the uncertain stochastic neural



networks is robust exponential stability in mean square .The maximum value of the exponential
convergence rate can be got. The maximum value of the exponential convergence rate

k =0.0670 . A set of feasible solution are as follows :

23138 5253 -588.4 37471 649.7 -1203.8
P=| 5253 6962 191.1 |, Q=| 649.7 9487 427 |,
5884 191.1 1435 ~1203.8 427 2387.9
(22749 386 -1623.1 3924.1 1362.3 3465
Q,=| 38 102 -3243 |, R=|1362.3 2161.1 1286 |,
|-1623.1 -324.3 122338 3465 1286 3760.9
(83735 0 0 10923 0 0
U= 0 36129 0 |U,=| 0 4308 0 [,
| o 0 56523 0 0 6622

£ =949.1611 , £, =190.0355

5. Conclusion

In this paper, a new criterion is derived by LMIS to ensure the robust exponential stability in
mean square for the uncertain stochastic neural networks. The activation function is vary
general ,assuming neither differentiability nor strict monotonicity . What is more ,we can get the
maximum value of the exponential convergence rate from it.The effectiveness of the proposed
criterion is demonstrated in numerical example.
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