
Specialios struktūros daugiasluoksnis perceptronas daugiamačiams duomenims vizualizuoti 

Pasiūlytas ir ištirtas radialinių bazinių funkcijų ir daugiasluoksnio perceptrono  junginys daugiamačiams 

duomenis vizualizuoti. Siūlomas vizualizavimo būdas apima daugiamačių duomenų matmenų mažinimą naudojant 

radialines bazines funkcijas, daugiamačių duomenų suskirstymą į klasterius, klasterį charakterizuojančių skaitinių 

reikšmių nustatymą ir daugiamačių duomenų vizualizavimą dirbtinio neuroninio tinklo paskutiniame paslėptajame 

sluoksnyje. 

1. Įvadas 

Daugiamačiams duomenis analizuoti  yra sukurta daug įvairių metodų: klasifikavimo, klasterizavimo, statistinės 

analizės ir kt. Jais galima nustatyti stebimų duomenų taškų ar jų grupių artimumą, sudaryti taisykles, pagal kurias 

tokio tipo duomenys būtų rūšiuojami, vertinti atskirų parametrų įtaką daromam sprendimui. Svarbią vietą duomenų 

analizėje užima vizualizavimas. Didelio matmenų skaičiaus duomenų vizualizavimas leidžia geriau suvokti 

sudėtingas duomenų aibes, padeda nustatyti išskirtinius jų poaibius. Siekiant gauti kuo daugiau naujų žinių apie 

analizuojamus duomenis, bandoma net sujungti kelis skirtingais principais grindžiamus vizualizavimo metodus 

(Dzemyda, Kurasova, Medvedev, 2007). 

Daugiamačiai duomenys – tai objektai (žmonės, įrenginiai, augalai, gamtos reiškiniai), kuriuos charakterizuoja 

faktiniai parametrai, dar vadinami požymiais, savybėmis, rodikliais, ypatybėmis. Objektų skaičius m yra baigtinis. 

Tam tikras parametrų reikšmių rinkinys nusako vieną konkretų analizuojamos aibės objektą ),...,,( 21 iniii xxxX  , 

mi ,1 , čia n yra parametrų skaičius, i yra objekto numeris. Objektai ),...,,( 21 iniii xxxX  dar vadinami 

vektoriais ar taškais, o parametrai nxxx ,...,, 21  – komponentėmis ar požymiais. Analizuojamų duomenų aibę 

galima atvaizduoti kaip matricą X },1,,1,{},...,,{ 21 njmixXXX ijm  , kurios i-oji eilutė yra taškas 

n
i RX   (Dzemyda, Kurasova, Žilinskas, 2008). 

Darbe pasiūlytas ir ištirtas spacialios struktūros daugiasluoksnis dirbtinis neuroninis tinklas (DNT), kurio pirmasis 

paslėptasis sluoksnis yra radialinės bazinės funkcijos, o likusioji tinklo dalis daugiasluoksnis perceptronas, kuris 

paprastai apmokomas klaidos skleidimo atgal algoritmu. Idėja: paskutiniojo paslėptojo sluoksnio išėjimų reikšmių 

vizualus pateikimas. 

2. Daugiamačių duomenų vizualizavimas naudojant DNT paslėptojo sluoksnio išėjimus 

2.1. Tinklo struktūra ir idėja 

Darbe konstruojamas tiesioginio sklidimo daugiasluoksnis DNT, skirtas mokymui su mokytoju, t. y., kai iš anksto 

žinomos norimos išėjimo reikšmės. Tinklo specifikacija: pirmasis paslėptasis sluoksnis susideda iš gausinių 

radialinių bazinių funkcijų (RBF), kurių yra tiek, kiek spėjama, kad daugiamačiuose duomenyse yra klasterių; 

paskutinis paslėptasis sluoksnis susideda iš dviejų neuronų, jei norime gautus išėjimus pavaizduoti dvimatėje 
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erdvėje, arba iš trijų neuronų, jei norime gautus išėjimus pavaizduoti trimatėje erdvėje. 1 pav. pateikiamas 

tyrimams naudotas tinklo atvejis, kuomet buvo trys paslėpti sluoksniai, įskaitant ir pirmąjį su RBF, o paskutinio 

paslėptojo sluoksnio neuronų skaičius lygus 2. Bendru atveju paslėptųjų neuronų sluoksnių skaičius L yra 

neribojamas, l = 0, 1, …, L, čia sluoksnis 0l žymi įėjimus, o Ll   – paskutinįjį (išėjimų) sluoksnį. 

Kiekviename sluoksnyje l gali būti ln neuronų (Dzemyda, Kurasova, Žilinskas, 2008).  

 
 

Tinklo mokymas vyksta dviem etapais: pirmo etapo metu mokomas RBF sluoksnis; antrojo etapo metu mokomas 

daugiasluoksnis perceptronas.  

Pirmojo etapo metu atliekamas daugiamačių duomenų ),...,,( 21 iniii xxxX  , mi ,1  , kur n
i RX   , matmenų 

mažinimas, transformuojant n
i RX   į k

i RR  : ),...,,( 21 ikiii rrrR  , kur nk  . Matmenys mažinami 

pasinaudojus gausine RBF, kuri apskaičiuojama pagal formulę: 
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čia j  yra radialinės bazinės funkcijos jr  centro taškas, n
j R , |||| jiX   – atstumas tarp taškų iX  ir j , 

mi ,1 , kj ,1 ,   – pločio parametras, nuo kurio priklauso funkcijos glotnumas. 
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1 pav. Tiesioginio sklidimo DNT, naudotas tyrimams 



Antrojo etapo metu DNT mokomas klaidos skleidimo atgal algoritmu (ang. error back-propagation). Neuronų 

aktyvacijos funkcija – netiesinis loginis sigmoidas ae
af 


1
1)( . Tinklo mokymo duomenys yra RBF išėjimuose 

gauti taškai iR , mi ,1 . DNT mokymo metu keičiamos neuronų perdavimo koeficientų (svorių) taškų 

,{ l
ijwW  },1,,0 1 ll njni  (čia l

ijw  – sluoksnio jungtis tarp l-tojo sluoksnio i-tojo neurono ir l+1 sluoksnio j-

tojo neurono) reikšmės ir siekiama gauti kiek galima mažesnę paklaidą (Dzemyda, Kurasova, Žilinskas, 2008)  
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čia iy  – gautos tinklo išėjimo reikšmės, it – norimos tinklo išėjimo reikšmės. 

Pasiūlyto DNT taikymas vizualizavimui: 

1. Pasirenkamas spėjamas skaičius k klasterių, kuriuos sudaro aibės X taškai. 

2. Vykdomas aibės X taškų klasterizavimas į k klasterių kjK j ,1,  . 

3. Naudojantis klasterizavimo rezultatais: a) apskaičiuojami RBF parametrai; b) kiekvienam klasteriui priskiriama 

tam tikra skaitinė reikšmė kjj ,1,  . 

4. Transformuojami  aibės X taškai n
iniii RxxxX  ),...,,( 21  į taškus k

ikiii RrrrR  ),...,,( 21 . 

5. Daugiasluoksnio perceptrono mokymas naudojant taškus ),,...,,( 21 ikiii rrrR  mi ,1 , kaip įėjimo reikšmes ir 

j , kaip norimą tinklo reakciją į iR )( ji KX   

6. Vizualizuojamos DNT L-1 sluoksnyje gautos reikšmės (1 pav. atveju, tai neuronų 3
1P ir 3

2P  išėjimai). 

2.2. Daugiamačių duomenų suskirstymas į klasterius ir klasterį charakterizuojančių skaitinių reikšmių j  

nustatymas 

Perceptrono tipo tinklo mokymui su mokytoju reikia žinoti norimas tinklo išėjimo reikšmes. Mūsų atveju tinklo 

išėjimo reikšmė yra konkretų klasterį jK , kuriam priskiriamas duomenų taškas iX )( ji KX  , atitinkanti tam 

tikra skaitinė charakteristika.  

Pradinius daugiamačius duomenis galima suskirstyti į nurodytą klasterių skaičių k, pasinaudojant kuriuo nors 

klasterizavimo metodu. Šiame straipsnyje naudotas k-vidurkių (ang. k-means) metodas. Šis klasterizavimo metodas 

dėl savo paprastumo ir greitumo yra dažnai naudojamas daugiamačiams duomenims skirstyti į klasterius (Frahling, 

Sohler, 2006). k-vidurkių metodas minimizuoja kvadratinę paklaidą (Kurasova, 2005) 
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čia |||| jiX  atstumas tarp kiekvieno duomenų taško iX ir klasterio, kuriam jis priklauso, centro j , k – 

klasterių skaičius. 



Klasterizavimo rezultate duomenų aibę iX , mi ,1  suskirstome į k klasterių jK , kj ,1 . Viena kiekvieno 

klasterio skaitinė charakteristika yra jo centras j , ji yra n-matė, t. y. n
j R . Kita skaitinė charakteristika – 

klasterio numeris. 

1 pav. parodytame DNT yra vienas išėjimas. Naudojantis tinklu, į jį padavus n
i RX  , norėtųsi išėjime gauti 

kažkokį skaičių 1Rj  , kuris atspindėtų to taško priklausomybę j-tajam klasteriui. Klasterio numeris negali būti 

tokia charakteristika, nes jis neatspindi taškų iX  tarpusavio išsidėstymo n-matėje erdvėje. Klasterių centrai tam 

tikra forma atspindi taškų išsidėstymą, tačiau jie patys yra n-mačiai. 
1Rj   iš n

j R galima gauti naudojantis projekcijos metodais (pagrindinių komponenčių analize (ang. 

principal component analysis), tiesine diskriminantine analize (ang. linear discriminant analysis),  daugiamatėmis 

skalėmis (ang. multidimensional scaling) ir kt.) ( Dzemyda, Kurasova, Žilinskas, 2008). 

Šiame straipsnyje taikomas daugiamačių skalių (MDS) metodas, kuriuo nustatomi atitikmenys tarp n
i RX  , 

ji KX  , ir 1Rj  .  

2 pav. pateiktos 1Rj   reikšmės, atitinkančios n-mačius klasterių centrus n
j R , kj ,1 , o taip pat tas 

reikšmes atitinkančius taškus iX , mi ,1  numeriai, t. y. čia parodyta, koks turėtų būti neuroninio tinklo atsakas į 

tašką iX . 

a)  b)   
2 pav. Klasterių centrų atvaizdavimas tiesėje: a) irisų duomenys b) atsitiktinai generuoti duomenys 

3. Pasiūlyto dirbtinio neuroninio tinklo tyrimas 

DNT tyrimai buvo atliekami eksperimentiškai. Eksperimentai atlikti su dviem daugiamačių duomenų aibėm: 

1. Gėlių irisų duomenys (Iris Plants Database). Irisų duomenys buvo surinkti 1936 m. R. Fisher. Duomenų bazėje 

pateikiami trijų rūšių irisai – Setosa, Versicolour ir Virginica. Kiekvienos klasės yra po 50 duomenų taškų, iš 

viso 150 irisų duomenų taškų. Kiekvienas duomenų taškas sudarytas iš keturių parametrų – taurėlapio ilgio, 

taurėlapio pločio, vainiklapio ilgio ir vainiklapio pločio. Ilgis ir plotis matuojasmas centimetrais. (Fisher, 1936) 

2. Atsitiktinai generuoti duomenys. Duomenys generuoti taip, kad sudarytų 5 klases. Kiekvienos klasės yra po 100 

taškų, iš viso 500 duomenų taškų. Kiekvienas duomenų taškas sudarytas iš 10 parametrų. 

1 pav. pateiktas tinklas buvo mokomas aibės X taškais, išėjime siekiant gauti  tuos taškus atitinkančias j  

reikšmes. Vizualizavimo rezultatas – po mokymo gautos ( 3
1P  , 3

2P ) reikšmės visiems aibės X taškams. Tyrime 



buvo keičiamas RBF pločio parametras  . Visos RBF naudojo tokį patį parametrą  . Kiekvieną kartą, prieš 

pradedant mokyti tinklą, atsitiktinai parenkami pradiniai svoriai, dėlto su kiekvienu  buvo atlikta po 100 

bandymų, iš kurių išrinktas geriausias tinklo apsimokymo rezultatas. Geriausiai apsimokiusiu tinklu vadinamas 

DNT, kurio daroma klaida iš atliktų eksperimentų po apsimokymo buvo mažiausia. 1 lentelėje pateiktos iš 100 

atliktų bandymų su kiekvienu parametru   atrinktos mažiausios daromos klaidos. 

1 lentelė Tinklo mokyto irisų ir atsitiktinai generuotais duomenimis eksperimentų rezultatai 
Irisų duomenys Atsitiktinai generuoti duomenys 

Sigma Klaida Sigma Klaida 
2 0.00139 3.3 0.00996 
1 0.00042 2 0.00345 

0.67 0.00037 1 0.00292 
0.5 0.00030 0.67 0.00813 
0.4 0.00155 0.5 0.08028 
0.3 0.00820 0.4 0.14905 

Pagal 1 lentelėje pateiktus duomenis matyti, kad irisų duomenimis gerai apsimokė tinklas, kuriam parinktas 

5.0 . Nuo jo nedaug atsilieka tiklas, kuriam parinktas 67.0 . Po tinklo apmokymo išėjimuose gauti taškai 

atitinka j  reikšmes (2a pav.). 3 pav. parodyti vizualizuoti L-1 sluoksnyje gauti išėjimai po tinklo apmokymo. 

Šiame paveiksle, kaip ir kituose, kur pateikiami vizualizavimo rezultatai, abscisių ašyje atidėtos 3
1P  reiškmės, o 

ordinačių ašyje atidėtos 3
2P  reikšmės, gautos pateikiant tinklui visus taškus iX , mi ,1 . 

a)  b)  
3 pav. Paslėptajame L-1 sluoksnyje gautos reikšmės: a) δ = 0.5 b) δ = 0.67 

Iš 3 pav. pateiktų grafikų matyti, kad irisų duomenys aiškiai susiskirsto į tris klasterius. Taip atsitinka, tik gerai 

apsimokius tinklui. Pagal 1 lentelėje pateiktus tinklo apmokyto irisų duomenimis gautus rezultatus matome, kad 

prasčiausiai apsimokė tinklas, kuriam parinktas 3.0 . 4a pav. matome, kad po DNT apmokymo tinklo išėjimo 

reikšmės yra susimaišiusios –  dalis taškų priklausančių pirmajam ir antrajam klasteriui perėjo į trečiąjį klasterį. 

4b pav. parodo, kad blogai parinkus parametrą  duomenys nesusiskirsto į klasterius.  



a)  b)  
4 pav. δ = 0.3: a) tinklo išėjime gautos reikšmės b) paslėptajame L-1 sluoksnyje gautos reikšmės  

Pagal 1 lentelėje pateiktus atsitiktinai generuotų duomenų gautus rezultatus matome, kad gerai apsimokė tinklai, 

kurių 2 ir 1 . Tačiau visais atvejais tinklas neapsimokė taip gerai kaip su irisų duomenimis. Iš 5 pav. 

matome, kad tinklo išėjimuose gautos reikšmės išsibarsčiusios (palyginus su 2b pav.), bet klasteriai tarpusavyje 

nesusimaišę. 

 
5 pav. Tinklo išėjimo reikšmės, kai δ = 1 

6 pav. parodyti vizualizuoti L-1 sluoksnyje gauti išėjimai po tinklo apmokymo, kai 2  ir 1 . 

a)  b)  
6 pav. Paslėptajame L-1 sluoksnyje gautos reikšmės: a) δ = 2 b) δ = 1 

Nors po tinklo apmokymo išėjimo reikšmės yra išsisklaidę, bet iš 6 pav. pateiktų grafikų matyti, kad atsitiktinai 

generuoti duomenys susiskirsto į klasterius. Pagal 1 lentelėje pateiktus duomenis matome, kad didžiausią klaidą 

tinklas daro, kai 4.0 . Tinklo išėjime gautos reikšmės pateiktos 7a pav.  Jos yra išsibarsčiusios intervale [-3, 9] 

ir taškus sunku vizualiai priskirti klasteriams. 7b pav. pateiktos vizualizuotos gautos ( 3
1P  ir 3

2P ) reikšmės, čia 

taškai tarpusavyje susimaišę ir neišskiriamas nei vienas klasteris. 



a)  b)  
7 pav. δ = 0.4: a) tinklo išėjime gautos reikšmės b) paslėptajame L-1 sluoksnyje gautos reikšmės 

4. Išvados 

Darbe pasiūlytas metodas daugiamačių duomenų vizualizavimui naudojant radialinių bazinių funkcijų ir 

daugiasluoksnio perceptrono junginį. Apmokius tokį tinklą, paskutiniojo paslėptojo sluoksnio neuronų išėjimo 

reikšmės yra laikomos įėjimo taško atvaizdu žemesnio matavimo erdvėje. Kiek tame sluoksnyje yra neuronų, į 

tokio matavimo erdvę galime projektuoti daugiamačius duomenis. Šiame straipsnyje eksperimentiškai 

nagrinėjamas atvejis, kai paslėptajame sluoksnyje yra 2 neuronai. Bendru atveju neuronų gali būti ir daugiau. 

Atlikti eksperimentai leidžia padaryti šias išvadą, kad dirbtinio daugiasluoksnio neuroninio tinklo apsimokymo 

kokybė labai priklauso nuo parinkto RBF parametro  . Nustatyta, kad parinkus tinkamą  reikšmę, tinklo 

paskutiniojo paslėptojo sluoksnio išėjimų reikšmės teisingai susiskirsto į vaizdžiai matomus klasterius. 
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Special multilayer perceptron for multidimensional  data visualization 

Summary 



In this paper present, the special feed forward neural network which consisting of radial basis function layer and 

multilayer perceptron. This multilayer perceptron has been proposed and investigated for multidimensional data 

visualization. The proposed visualization approach includes data clustering, determining the parameters of radial 

basis function and forming the data set for training multilayer perceptron. The outputs of the last hidden layer 

considered as coordinates of visualized points. 


