Learning with Adaptive Layer Activation in
Spiking Neural Networks

Janis ZUTERS
Computing Department, University of Latvia, Latvia

Abstract. Spiking neural network (SNN) is a neural modelerenthe communica-
tion between two neurons is performed by a ‘puts#et i.e., computation consid-
ers timings of the signals (spikes) whilst ignorthg strengths. It has been theo-
retically proven that a neural network composedpiking neurons is able to learn
a large class of target functions. In this paperuasupervised learning algorithm
for the spiking neural network is introduced. Thgodathm is based on the Heb-
bian rule, additionally using the principle of atitpn of layer activation level in
order to guarantee frequent firings of neuronsefach layer. The proposed algo-
rithm has been illustrated with experimental resolt detection of temporal pat-
terns in an input stream.

Keywords. spiking neural networks, unsupervised learningpéite activation,
temporal patterns

1. Spiking Neural Networks
1.1. Pulse Code Instead of Rate Code

Neural network refers to a computational model madeof relatively simple inter-
connected processing units, which are put into atjer through a learning process.
Typically, neurons of a network communicate byaa€ercode’, i.e. through transmitting
“pure” continuous values irrespective of the tinsngf the signals. Work with such
models is usually arranged in steps: during eash esxactly one pattern is classified or
recognized, and no temporal information is direptlgcessed by the neural network.

In contrast to classical models, SNNs are designegbt use of temporal dynamics
of neurons. Communication between neurons thereaiized by a ‘pulse code’: exact
timing of the transmitted signal (i.e., spike) fskey importance, while the strength of
the signal is not considered.

Each neuron produces a train of spikes (i.e.résji, and the operation of a neuron
i is fully characterized by the set of firing timi@$ (see Figure 1):

®; = {ti(l),...,ti(”)}, @)

wheret," is the most recent spike of neurion

! Janis Zuters, Computing Department, University_afvia, Raina bulvaris 19., LV-1050 Riga, Latvia;
E-mail: janis.zuters@lu.lv

Figure 1. Single spiking neuron. Small filled circless{ denote synaptic weightsh)™ denotes incoming
spike trainj; the neuron produces spike traxt"* (adapted from [5])

(f)
w; & (t=t") D 2w (t-tf")

jer oeE,

Figure 2. Graphic interpretation of activation statgEq. (3))

1.2. Operation of a Spiking Neuron
Neuroni is said to fire, if its activation statg reaches a threshol@l A the moment of
threshold crossing, a spike with firing tirg8 is generated (see Eq. 2)).
Thus Eq. (1) can be clarified with Eqg. (2) [2]:
o ={tNa<f <nj=ft|u @) =9}, (2)

where activation statg; is given by the linear superposition of all camitions (see
also Figure 2 for graphic interpretation).

) =mit—t)+ > D> wye t—tiD), ®)

jeli tj(f)eFj

whereT is the set of presynaptic neurons to netrdn is the last spike of neurdn
the functionz; takes care of refractoriness after a spike em{tged (7)); the kernels;
model the neurons response to presynaptic spilees8p.

2. Learning in Spiking Neural Networks

Although there already exist several kinds of mead#ISNNs, the problem of learning
with these networks is still a live issue. Both ayised and supervised learning meth-
ods are available for spiking neural networks. Tastion provides a brief insight into
a couple of approaches to do learning in SNNs.

2.1. SpikeProp Algorithm

In [1], a supervised learning method for SNNs, dasa the well known error-

backpropagation is introduced. The general weightection rule is similar with that

of error-backpropagation, namely, weight correci®proportional to the correspond-
ing input (for SNNs: response to presynaptic spigsind a special value, local gradi-
ent, o

Local gradient is derived using activation staie

- _OE ot)
oot oy

where error functioit is defined as difference between desired and bspilee times
respectively, also in a similar way to that of efbackpropagation.

Obtained in this way SNNs solve, in general, profdef the same classes, which
multi-layer perceptrons (trained with error-backmagation) are intended for.

2.2. Hebbian Learning

If for ‘non-spiking’ neural networks supervised fleimg methods are of a great pre-
dominance, then for SNNs the things are different.

Already in 1949, Donald Hebb proposed a precise thét might govern the syn-
aptic changes underlying learning: “When an axonedf A is near enough to excite a
cell B and repeatedly or persistently takes parfiring it, some growth process or
metabolic change takes place in one or both cadlh that A’s efficiency as one of the
cells firing B, is increased” [4].

Y F

synaptic change
o
synaptic change

Ao 40 ms 100 -50 0 50 100ms

synaptic change
synaptic change

60 60 ms 40 0 40 ms

\Y4

-25 25 ms 40 0 40 ms

synaptic change
synaptic change

Figure 3. Spike-timing dependent learning rules (origindretn several authors), where positive time indi-
cates that the postsynaptic spike follows the pragtic spike ([7]).

Hebb’s formulation of his rule has several importaatures. Causality is one such
feature. According to Hebb, the firing of neuromAist be causally related to the firing
of neuron B, which means in practice that spikeagéaron A must precede spikes in
neuron B. A simple correlation in which the ordésspike times is unimportant would
not fit with Hebb’s hypothesis. A second featurg¢his assignment of a critical role to
spikes. This is explicit for the postsynaptic @l is implicit for the presynaptic cell
since Hebb's discussion always considers neuraneféaction as mediated by spikes.
[7].

Figure 3 shows several known strategies of synaptight changes, proposed by
different authors.

3. The Learning M ethod with Adaptive Layer Activation

In this Section, a Hebbian rule based method ahleg in SNNs is proposed. The key
novelties of the method are the following:
1. Adjustment of average activation state of neuransach layer in order to en-
sure a definite average rhythm of spikes withiayeet.
2. Maintenance of fixed average volume of synapticgivein each neuron in or-
der to avoid weights to become ‘hollow’ (too greatoo small).
In [3], several principles of unsupervised learnimgve been stated. The two above
stated ideas ensure two of those principles toobsidered:
1. Cooperation. Adjustment of activation state is common for alurons in a
layer; thereby cooperation among neurons in a lesyensured.
2. Competition. Sum of weights in a neuron is fixed; thus thereampetition
among weights in a neuron.
Below in this section, these two ideas are desdribeletail.

3.1. Some details of construction and operation of neurons

In this subsection, a neural model is describedayliith the proposed learning method
was incorporated.

A feed-forward (MLP-like) network architecture isad.
Activation statey; is computed similarly to Eqg. (3) by adding a notiof activa-
tion acceleration factor a®:

2 2wet-tf") ©

. el tDeF,
ui®) =nt-t) +a®*(t) Jelitj ey |
n

wheren; — weight count of the neurdn activation acceleration factef™ is adjusted

during learning; computation of kernelsande are specified in Egs (7), (8) (adapted
from [2], [6]):

s (7)
-gexp-); s>0
ni(9)=, IR s>0,
0; s<0
whereris a time constant.
s— A7 s— A% ax (8)
expE —expE i S—AT >0
£ (9) = pe o) —exp(..) >0
0; s—A"’}Xgo

wherez; and 7, are time constants, aatf” is axonal transmission delay for presynaptic
neuron;.

The activatiomacceleration factoa® is introduced for each layer in order to gov-
ern the activation statg. Since operation of spiking neurons are fully elcéerized by
firings and these occur only if is big enough, the adjusting mechanism is requioed
ensure it, and the fact@f™ is to server for it. A2** is common for whole layer of
neurons, the proposed acceleration makes firinrgpofe neurons of the layer frequent
while not guaranteeing the same effect for eachameapart by itself.

Output of the neuron (in the output layer) is defiras follows:

0; otherwise ’

A eE ©)
yi(t):{l (=ar)eh

whereF; is the spike train, generated by neurrat® is axonal transmission delay.
3.2. The Learning Algorithm
The proposed algorithm consists of two parts:

e Modification of synaptic weights; (Eq. (10));
e Adjustment of the activation acceleration fad@f (Eq. (11)).

synaptic change

t VVi avg

0 t-t,"

Figure 4. Spike-timing dependent learning rule, realize&dn (9)

3.2.1. Weight Modifications

In the proposed algorithm, described by Eq. (18,synaptic weights of a neuron bear
modifications only at moments when the neuron hasfjred.

The main principle of weight modification is Hebbilke: the weight value is in-
creased proportionally to how recently spikes weeeived from the corresponding
presynaptic neuron (‘recentliness’ is representgdhb response of incoming neuron,
computed using kerne}).

This strategy is complemented by two additional ma@isms to normalize weight
values:

e The maximum value of a weight is restricted by¢hastant"™;

e Hebb’s rule describes the conditions under whialapyic efficacy increases
but does not describe the conditions under whidtedreases [7]. To deter-
mine this, the overall value of the weights of epkat O (by subtracting the
average weight value®9).

AWij =T7rate(cvwmx_wlj) zsij (t_tgf))_wiavg' (20)
t e,

rate

wheren "¢ is learning ratec"™ is a constant representing maximum allowed weight
value; andn® — average weight value of the neuron.

Figure 4 proposes graphical interpretation of ttappsed weight adjustment strat-
egy (Eg. (10)) in a similar manner to that of FieyGr

3.2.2. Adjusting the Activation Acceleration Factor

Eq. (11) describes another part of the algorithimctv takes care of adjustment of the
activation acceleration facta®”. The factora®™® is essential to ensure a definite
rhythm of firing in a layer.

gy A+ 2™ m(t) - ¢ e (t-1; t>0 (11)
cx t=0

acc2

wherec®™* andc¢®* are constants representing modification styl@®dt c* is a con-
stant representing recommended value of the neuresgonse, thus defining the di-

rection of modification o&°®; £*™ is cumulative response of all neurons in a layer i
recent period.

The main idea of adjusting the fac#f is to make cumulative responses of layers
to be close enough to some fixed vadfiérecommended response).

gcum(t) 3 Ccum gavg (t) + (1_ Ccum) 8CUI’\’](t _1)’ t> 0 (12)
0; t=0

wheres™ is average response of all neurons in a layémattt

Zgi (t) (13)

() =L —
n

where g(t) is response of neuranin a layer at time (neuroni itself, not some pre-
synaptic neuron).

) G (14)
aM= 3 expc i) —expe T

T T
e, m s

In terms of computation, Eq. (14) is simplificatiohEq. (8).

4. Experimental Work

The proposed learning method was tested on deteofioeiterative temporal patterns
in an input stream. A trained neural network shdwddable to detect such patterns by
giving output of 1 after pattern is encountered.

4.1. Configuration of Experimental Environment

The testing environment produces 3 binary signatsaah discrete time momenand
passes them to the input of the neural networkielmeral, signals are generated at ran-
dom, but at times patterns from a predefined stoeeinterwoven into them. There are
6 possible temporal patterns in the store (seer€i§), and at each test run, two of
them are used.

ill II:1 3#&:3] °
_W#Zz :j'i'##:“ mE EEEE

> t > t > t

Figure 5. The 6 temporal patterns used in experiments: wiithignals, length=10 times; black squares
denote ‘1’ or ‘spike’, but white squares — ‘0’ @10 spike’

Procedurerun_test

Input
Y — an initialized neural network
n™ _ size of input of neural network

n®a _ pattern count to be exploited

t — time counter

it — count of iterations to be performed
Output

Using
Begin

Doit times
If get_random_value < 77" then

Forj « 1 to lengthg) do
PasgjtoY;
runY with t
else
Fork < 1 ton™ do

elsenput[k] =0
Passnput to Y;
runY with t
tet+1

pattern_store — set of temporal patterns of wichf{”
AP, A _ constants, representing probability

Sequence of signals generated and passed to netwark
get_random_value — generates a random value from interval 0..1

Choose at random a subset of pattgraspattern_store with |p| = n®a;

Choose at random a pattgxre p;

If get_random_value < 7% theninput[K] = 1

Figure 6. Algorithm to generate a temporal sequence of $ggass to a neural network

Figure 7. Example of generated signals using the proceduretest (Figure 6). The environment was con-
figured according Table 2 (in this example, patesrand 6 opattern_store have been used). Asterisks (*)
represent input values of 1, while dots (.) repreSe An excerpt of length of 100 is displayed

Figure 6 describes the algorithm of operation ef tisting environment, while Figure
7 displays an excerpt of a generated sequence thégnglgorithm.

Neural networks used in the experiments operatettasribed above (Egs. (2), (6),
(9), (10), (11)). Table 1 describes architectursmetiral networks, as well as various

constants that affect operation.

Table 1. Parameters of configuration of neural network.

Parameter Usedin Egs. Valueor description

Input counin®™ 3

Output counn©? 1

Layer topologyc'®® feed-forward ; one of {3, 5, 1}, and {3, 5, 3, 1}
Constantgm, ts, T (7), (8), (14) 1.5,05,2.0

Threshold9), (7) 1.0

Parameter Usedin Egs. Valueor description

Learning rate;™® (10) 0.05

Axonal delayA® 8), (9) chosen at random from axonal delays&t
Axonal delay sen™ one of {0}, {0, 1}, {0, 1, 2}, and {0, 1, 2, 3}
Constants &%, @2 ¢um (11), (12) 10.0, 0.02, 0.1

Recommended response ¢ (11) one of 0.01, 0.02, 0.03, 0.05

Initial weight valuesw; chosen at random from interval -0.3..+0.3
Maximum weight valug"™ (10) 1.0

4.2. Performing the Experiment

32620 test runs were made during experimentaticeprding the algorithm shown in
Figure 8, and configuration parameters depictelainle 1 and Table 2.

Table 2. Parameters of experiments.

Parameter Valueor description

pattern_store 6 patterns, each pattern of size«d@see Figure 5)
Probabilitiesz™", 7" 0.1,0.2

Pattern count in one test roff®™ 2

count of iteration for the learning phas&™ 5000

count of iteration for the recall phais&™' 600

Procedure do_experiment
Input
Y — a neural network
Output
Result set&®™ andR*™
Using
run_test — generates input, passes it to a neural networkyuns the network
Begin
Do many times
Initialize neural network" according Table 1;
Initialize environment according Table 2;
* r represents results of one test run */
r <« &,
Callrun_test with t = 0, it =it**" in learning mode and record test parameters to
™™ «— maximum activation acceleration fac#f among layers after learning
Qe minimum activation acceleration facef among layers after learning
If @®™ [@*-""> 5.0 then
Addr to bad result&™
else
/* recall mode differs fromlearning mode with the fact that no learning is performed */
Call run_test with t =it®™, it =it in recall mode, record input, output
and test parametersrto
Add r to good result&®™

Figure 8. Algorithm to obtain experimental results

5. Experimental Resultsand Conclusion

5.1. Collection and Assessment of the Results

Experimental activities were performed according #figorithm of Figure 8, and then
the obtained result sBf* was further analyzed.

The main idea of analyzing the result data wasctmant the output spikes, which
follow the patterns presented to input. Thus weogeize, whether a neural network
has learned regularities in the input.

Figure 9 renders a brief insight into performanteeural network after the learn-
ing phase.

Figure 9. Example of obtained test results. Asterisks (Present input values of 1, dots (.) represent input
and output values of 0, vertical bars (|) represeityput spikes (i.e., values of 1). Actual pattepresented to
input, are enframed. Two excerpts of two differiessts of length of 100 are displayed. Part (a) shibvat the
network has learned to recognize only 1 of 2 pattgpes. Part (b) shows that the network has leatoe
recognize both types, but with mistakes: one sjgk&rong, and two of patterns have not been receghi
To better keep track of the example, consult Figure

Experimental results represent the percentage addgoutput spikes among all
spikes.

For each pattern type in a test the ‘good’ outpikes were accounted with re-
spect to 6 different positions and then taken tlaimum of these 6. These positions
werei-3, i-2, i-1, i, i+1, i+2, wherei is the end of the pattern (the one after the.last)
For example, in Figure 9a both spikes are at ttstipa -1 with respect to the actual
pattern (consult Figure 5 to see that each pastamts and ends with double 0).

For a fixed patterp and position pg% a spikes has been accounted if the spike s
was pog-1, pos’, or pog+1. Thus, for example, in Figure 9a both spikesenac-
counted for positions -2, -1, and 0.

In that manner, a triple of numbers <, riig™> from each test was obtained: spike
count for each of two patterns and the total smigant. The two cases of Figure 9
yields the following triples: <0, 2, 2> and <2,5%.

Quality of a neural network of a test was measinetivo ways: simpleg® and
advanced®.

Simple way means the proportion of ‘good’ and pikes:

lotal

wherer,, r, — ‘good’ spike count for patterns 1 and 2 respetfi ri, — total spike
count.

For the two cases of Figure 9, this is (0£23100% and (2+26=80%. The qual-
ity of the first case is better, because both spéce ‘good'.

Advanced way means taking into account situatiohetiverboth pattern types
have been recognized correctly:

2
Motal

For the two cases of Figure 9, this isO){8)=2?=0% and (4&-2):5°=64%. The quality
of the first case is 0, because the network was @btecognize only one of two types
of patterns.

5.2. Experimental Results and Analysis

21117 of 32620 (or ~65%) of results were ‘good,,iwere included in the result
setR® which was further analyzed. A bad result meaas e network has not con-
verged during the learning.

Table 3 describes summarized test results accohtitiyquality measureg® and
q®. Results are grouped according selection of soaranpeters or parameter sets.
Consult Table 1 for parameter types.

Table 3. Experimental results overview.

Parameter or parameter set q° (%) g (%)
Layer topologyt™ = {3, 5, 3, 1} 70.1 33.2
Layer topologyc™ = {3, 5, 1} 60.3 24.4
Axonal delay sen®™ = {0} 56.5 22.3
Axonal delay sen™ = {0, 1} 65.6 28.4
Axonal delay sen™ = {0, 1, 2} 67.7 21.2
Axonal delay sen™ = {0, 1, 2, 3} 67.4 30.1
Recommended response=0.01 49.1 16.6
Recommended response=0.02 55.7 16.5
Recommended response=0.03 62.4 20.2
Recommended response=0.05 65.9 34.6
Layer topologyt™™ = {3, 5, 3, 1}; Axonal delay 73.8 42.5

setA*™ = {0}; Recommended responseé=<0.05

— Experimental results show good quality on measfiteThis means that obtained
networks are good on detecting at least one ofithden patterns types.

— Experimental results according the measyffeis worse. This means that ob-
tained networks have mostly learned only one of patiern types (like in Figure
la).

— Significantly better results were obtained withaeenended responsé = 0.05,
especially according the quality measqf&

— Networks with two hidden layers were better thaysthof only one.

— Effect of different axonal transmission delays detseon the quality measure and
is mostly uncertain.

5.3. Conclusion

The problem of learning in spiking neural netwoigsstill a challenging issue.
This paper introduces an unsupervised learning odethat exploits cooperation of
neurons using a mechanism of adaptive layer a@ivafhis method is suitable to
train neural networks for regularity detection isteeam of data.

Although the environment, built for experiments,swhairly simple, still the first
results are to be considered very promising angiritiag for further research.

Acknowledgements

This research has been supported by ESF (ProjétE8S2004/3).

References

[1] S. M. Bohte, J. N. Kok, H. La Poutré. Error-kpmpagation in temporally encoded networks of isygik
neurons. Neurocomputing 48, pp. 17-37 (2002)

[2] W. Gerstner. Spiking Neurons. In W. Maass andMC Bishop (Eds.), Pulsed neural networks. MIT
Press, 1999.

[3] S. Haykin. Neural networks: a comprehensivenfiation. 2nd ed. Prentice-Hall, Inc., 1999

[4] D. Hebb. The organization of behavior. Johnédiand Sons, New York (1949)

[5] R. Kempter, W. Gerstner, J., and L. van Hemni¢ebbian learning and spiking neurons. Physical Re-
view E, 59:4498-4514, 1999.

[6] W. Maas. Computing with Spiking Neurons. In Waass and C. M. Bishop (Eds.), Pulsed neural net-
works. MIT Press, 1999.

[7]1 P. D. Roberts, C. C. Bell. Spike timing depemtdgynaptic plasticity in biological systems. Bigical
Cybernetics, 87, pp. 392-403 (2002)

