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Abstract. Spiking neural network (SNN) is a neural model, where the communica-
tion between two neurons is performed by a ‘pulse code’, i.e., computation consid-
ers timings of the signals (spikes) whilst ignoring the strengths. It has been theo-
retically proven that a neural network composed of spiking neurons is able to learn 
a large class of target functions. In this paper, an unsupervised learning algorithm 
for the spiking neural network is introduced. The algorithm is based on the Heb-
bian rule, additionally using the principle of adaptation of layer activation level in 
order to guarantee frequent firings of neurons for each layer. The proposed algo-
rithm has been illustrated with experimental results on detection of temporal pat-
terns in an input stream. 
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1. Spiking Neural Networks 

1.1. Pulse Code Instead of Rate Code 

Neural network refers to a computational model made up of relatively simple inter-
connected processing units, which are put into operation through a learning process. 
Typically, neurons of a network communicate by a ‘rate code’, i.e. through transmitting 
“pure” continuous values irrespective of the timings of the signals. Work with such 
models is usually arranged in steps: during each step exactly one pattern is classified or 
recognized, and no temporal information is directly processed by the neural network. 

In contrast to classical models, SNNs are designed to get use of temporal dynamics 
of neurons. Communication between neurons there is realized by a ‘pulse code’: exact 
timing of the transmitted signal (i.e., spike) is of key importance, while the strength of 
the signal is not considered. 

Each neuron produces a train of spikes (i.e., it fires), and the operation of a neuron 
i is fully characterized by the set of firing times [2] (see Figure 1): 
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where ti
(n) is the most recent spike of neuron i. 
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Figure 1. Single spiking neuron. Small filled circles (wij) denote synaptic weights, Φj

in denotes incoming 
spike train j; the neuron produces spike train Φi

out (adapted from [5]) 
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Figure 2. Graphic interpretation of activation state ui (Eq. (3)) 

 

1.2. Operation of a Spiking Neuron 

Neuron i is said to fire, if its activation state ui reaches a threshold ϑ. A the moment of 
threshold crossing, a spike with firing time ti

(f) is generated (see Eq. 2)). 
Thus Eq. (1) can be clarified with Eq. (2) [2]: 
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where activation state ui is given by the linear superposition of all contributions (see 
also Figure 2 for graphic interpretation). 
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where Γi is the set of presynaptic neurons to neuron i; ti
^ is the last spike of neuron i; 

the function ηi takes care of refractoriness after a spike emitted (Eq. (7)); the kernels εij 
model the neurons response to presynaptic spikes (Eq. (8)). 

2. Learning in Spiking Neural Networks 

Although there already exist several kinds of models of SNNs, the problem of learning 
with these networks is still a live issue. Both supervised and supervised learning meth-
ods are available for spiking neural networks. This section provides a brief insight into 
a couple of approaches to do learning in SNNs. 

2.1. SpikeProp Algorithm 

In [1], a supervised learning method for SNNs, based on the well known error-
backpropagation is introduced. The general weight correction rule is similar with that 
of error-backpropagation, namely, weight correction is proportional to the correspond-
ing input (for SNNs: response to presynaptic spikes εij) and a special value, local gradi-
ent, δj: 

iijijw δε≡∆  (4) 

Local gradient δj is derived using activation state ui: 
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where error function E is defined as difference between desired and actual spike times 
respectively, also in a similar way to that of error-backpropagation. 

Obtained in this way SNNs solve, in general, problems of the same classes, which 
multi-layer perceptrons (trained with error-backpropagation) are intended for. 

2.2. Hebbian Learning 

If for ‘non-spiking’ neural networks supervised learning methods are of a great pre-
dominance, then for SNNs the things are different. 

Already in 1949, Donald Hebb proposed a precise rule that might govern the syn-
aptic changes underlying learning: “When an axon of cell A is near enough to excite a 
cell B and repeatedly or persistently takes part in firing it, some growth process or 
metabolic change takes place in one or both cells such that A’s efficiency as one of the 
cells firing B, is increased” [4]. 

 



 
Figure 3. Spike-timing dependent learning rules (originated from several authors), where positive time indi-
cates that the postsynaptic spike follows the presynaptic spike ([7]).  

 
Hebb’s formulation of his rule has several important features. Causality is one such 

feature. According to Hebb, the firing of neuron A must be causally related to the firing 
of neuron B, which means in practice that spikes in neuron A must precede spikes in 
neuron B. A simple correlation in which the order of spike times is unimportant would 
not fit with Hebb’s hypothesis. A second feature is the assignment of a critical role to 
spikes. This is explicit for the postsynaptic cell and is implicit for the presynaptic cell 
since Hebb’s discussion always considers neuronal interaction as mediated by spikes. 
[7]. 

Figure 3 shows several known strategies of synaptic weight changes, proposed by 
different authors. 

3. The Learning Method with Adaptive Layer Activation 

In this Section, a Hebbian rule based method of learning in SNNs is proposed. The key 
novelties of the method are the following: 

1. Adjustment of average activation state of neurons in each layer in order to en-
sure a definite average rhythm of spikes within a layer. 

2. Maintenance of fixed average volume of synaptic weight in each neuron in or-
der to avoid weights to become ‘hollow’ (too great or too small). 

In [3], several principles of unsupervised learning have been stated. The two above 
stated ideas ensure two of those principles to be considered: 

1. Cooperation. Adjustment of activation state is common for all neurons in a 
layer; thereby cooperation among neurons in a layer is ensured. 

2. Competition. Sum of weights in a neuron is fixed; thus there is competition 
among weights in a neuron. 

Below in this section, these two ideas are described in detail. 

3.1. Some details of construction and operation of neurons 

In this subsection, a neural model is described, in which the proposed learning method 
was incorporated. 



A feed-forward (MLP-like) network architecture is used. 
Activation state ui is computed similarly to Eq. (3) by adding a notion of activa-

tion acceleration factor aacc: 
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where ni – weight count of the neuron i; activation acceleration factor aacc is adjusted 
during learning; computation of kernels η and ε are specified in Eqs (7), (8) (adapted 
from [2], [6]): 
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where τ is a time constant. 
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where τs and τm are time constants, and ∆j
ax is axonal transmission delay for presynaptic 

neuron j. 
The activation acceleration factor aacc is introduced for each layer in order to gov-

ern the activation state ui. Since operation of spiking neurons are fully characterized by 
firings and these occur only if ui is big enough, the adjusting mechanism is required to 
ensure it, and the factor aacc is to server for it. As aacc is common for whole layer of 
neurons, the proposed acceleration makes firing of some neurons of the layer frequent 
while not guaranteeing the same effect for each neuron apart by itself. 

Output of the neuron (in the output layer) is defined as follows: 
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where Fi is the spike train, generated by neuron i; ∆i
ax is axonal transmission delay. 

3.2. The Learning Algorithm 

The proposed algorithm consists of two parts: 
• Modification of synaptic weights wi (Eq. (10)); 
• Adjustment of the activation acceleration factor aacc (Eq. (11)). 
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Figure 4. Spike-timing dependent learning rule, realized in Eq. (9) 

 

3.2.1. Weight Modifications 

In the proposed algorithm, described by Eq. (10), the synaptic weights of a neuron bear 
modifications only at moments when the neuron has just fired. 

The main principle of weight modification is Hebbian like: the weight value is in-
creased proportionally to how recently spikes were received from the corresponding 
presynaptic neuron (‘recentliness’ is represented by the response of incoming neuron, 
computed using kernel εij). 

This strategy is complemented by two additional mechanisms to normalize weight 
values: 

• The maximum value of a weight is restricted by the constant cwmax; 
• Hebb’s rule describes the conditions under which synaptic efficacy increases 

but does not describe the conditions under which it decreases [7]. To deter-
mine this, the overall value of the weights of is kept at 0 (by subtracting the 
average weight value wi

avg). 
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where η rate is learning rate; cwmax is a constant representing maximum allowed weight 
value; and wi

avg – average weight value of the neuron. 
Figure 4 proposes graphical interpretation of the proposed weight adjustment strat-

egy (Eq. (10)) in a similar manner to that of Figure 3. 

3.2.2. Adjusting the Activation Acceleration Factor 

Eq. (11) describes another part of the algorithm, which takes care of adjustment of the 
activation acceleration factor aacc. The factor aacc is essential to ensure a definite 
rhythm of firing in a layer. 
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where cacc1 and cacc2 are constants representing modification style of aacc; cε is a con-
stant representing recommended value of the neurons’ response, thus defining the di-



rection of modification of aacc; εcum is cumulative response of all neurons in a layer in 
recent period. 

The main idea of adjusting the factor aacc is to make cumulative responses of layers 
to be close enough to some fixed value cε (recommended response). 
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where εavg is average response of all neurons in a layer at time t. 
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where εi(t)
 is response of neuron i in a layer at time t (neuron i itself, not some pre-

synaptic neuron). 
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In terms of computation, Eq. (14) is simplification of Eq. (8). 

4. Experimental Work 

The proposed learning method was tested on detection of reiterative temporal patterns 
in an input stream. A trained neural network should be able to detect such patterns by 
giving output of 1 after pattern is encountered. 

4.1. Configuration of Experimental Environment 

The testing environment produces 3 binary signals at each discrete time moment t and 
passes them to the input of the neural network. In general, signals are generated at ran-
dom, but at times patterns from a predefined store are interwoven into them. There are 
6 possible temporal patterns in the store (see Figure 5), and at each test run, two of 
them are used. 
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Figure 5. The 6 temporal patterns used in experiments: width=3 signals, length=10 times; black squares 
denote ‘1’ or ‘spike’, but white squares – ‘0’ or ‘no spike’ 



Procedure run_test 
Input 
 ϒ – an initialized neural network 
 n(inp) – size of input of neural network 
 pattern_store – set of temporal patterns of width n(inp) 
 π(patt), π(1) – constants, representing probability 
 n(patt) – pattern count to be exploited 
 t – time counter 
 it – count of iterations to be performed 
Output 
 Sequence of signals generated and passed to neural network 
Using 
 get_random_value – generates a random value from interval 0..1 
Begin 
 Choose at random a subset of patterns p ⊂ pattern_store with |p| = n(patt); 
 Do it times 
  If get_random_value < π(patt) then 
   Choose at random a pattern pi ∈ p; 
   For j ← 1 to length(pi) do 
    Pass pij to ϒ; 
    run ϒ with t 
  else 
   For k ← 1 to n(inp) do 
    If get_random_value < π(1) then input[k] = 1 
    else input[k] = 0 
   Pass input to ϒ; 
   run ϒ with t 
  t ← t + 1 

Figure 6. Algorithm to generate a temporal sequence of signals to pass to a neural network 
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t  
Figure 7. Example of generated signals using the procedure run_test (Figure 6). The environment was con-
figured according Table 2 (in this example, patterns 5 and 6 of pattern_store have been used). Asterisks (*) 
represent input values of 1, while dots (.) represent 0. An excerpt of length of 100 is displayed 

 
Figure 6 describes the algorithm of operation of the testing environment, while Figure 
7 displays an excerpt of a generated sequence using this algorithm. 

Neural networks used in the experiments operated as described above (Eqs. (2), (6), 
(9), (10), (11)). Table 1 describes architecture of neural networks, as well as various 
constants that affect operation. 

 
Table 1. Parameters of configuration of neural network. 

Parameter Used in Eqs. Value or description 

Input count n(inp)  3 

Output count n(outp)  1 

Layer topology τtop  feed-forward ; one of {3, 5, 1}, and {3, 5, 3, 1} 

Constants τm, τs, τ (7), (8), (14) 1.5, 0.5, 2.0 

Threshold ϑ (2), (7) 1.0 



Parameter Used in Eqs. Value or description 

Learning rate ηrate (10) 0.05 

Axonal delay ∆i
ax (8), (9) chosen at random from axonal delay set ∆ax 

Axonal delay set ∆ax  one of {0}, {0, 1}, {0, 1, 2}, and {0, 1, 2, 3} 

Constants cacc1, cacc2, ccum (11), (12) 10.0, 0.02, 0.1 

Recommended response cε (11) one of 0.01, 0.02, 0.03, 0.05 

Initial weight values wij  chosen at random from interval -0.3..+0.3 

Maximum weight value cwmax (10) 1.0 

 

4.2. Performing the Experiment 

32620 test runs were made during experimentation, according the algorithm shown in 
Figure 8, and configuration parameters depicted in Table 1 and Table 2. 

 
Table 2. Parameters of experiments. 

Parameter Value or description 

pattern_store 6 patterns, each pattern of size 10×3 (see Figure 5) 

Probabilities π(patt), π(1) 0.1, 0.2 

Pattern count in one test run n(patt) 2 

count of iteration for the learning phase itlearn 5000 

count of iteration for the recall phase itrecall 600 

 
Procedure do_experiment 
Input 
 ϒ – a neural network 
Output 
 Result sets Rgood and Rbad 
Using 
 run_test – generates input, passes it to a neural network, and runs the network 
Begin 
 Do many times 
  Initialize neural network ϒ according Table 1; 
  Initialize environment according Table 2; 
    /* r represents results of one test run */ 
  r ← ∅; 
  Call run_test with t = 0, it = itlearn in learning mode and record test parameters to r; 
  aacc_max ← maximum activation acceleration factor aacc among layers after learning 
  aacc_min ← minimum activation acceleration factor aacc among layers after learning 
  If aacc_max / aacc_min > 5.0 then 
   Add r to bad results Rbad 
  else 
     /* recall mode differs from learning mode with the fact that no learning is performed */ 
   Call run_test with t = itlearn, it = itrecall in recall mode, record input, output  
    and test parameters to r; 
   Add r to good results Rgood 

Figure 8. Algorithm to obtain experimental results 



5. Experimental Results and Conclusion 

5.1. Collection and Assessment of the Results 

Experimental activities were performed according the algorithm of Figure 8, and then 
the obtained result set Rgood was further analyzed. 

The main idea of analyzing the result data was to account the output spikes, which 
follow the patterns presented to input. Thus we recognize, whether a neural network 
has learned regularities in the input. 

Figure 9 renders a brief insight into performance of neural network after the learn-
ing phase. 
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Figure 9. Example of obtained test results. Asterisks (*) represent input values of 1, dots (.) represent input 
and output values of 0, vertical bars (|) represent output spikes (i.e., values of 1). Actual patterns, presented to 
input, are enframed. Two excerpts of two different tests of length of 100 are displayed. Part (a) shows that the 
network has learned to recognize only 1 of 2 pattern types. Part (b) shows that the network has learned to 
recognize both types, but with mistakes: one spike is wrong, and two of patterns have not been recognized. 
To better keep track of the example, consult Figure 5 

 
Experimental results represent the percentage of ‘good’ output spikes among all 

spikes. 
For each pattern type in a test the ‘good’ output spikes were accounted with re-

spect to 6 different positions and then taken the maximum of these 6. These positions 
were i-3, i-2, i-1, i, i+1, i+2, where i is the end of the pattern (the one after the last). 
For example, in Figure 9a both spikes are at the position -1 with respect to the actual 
pattern (consult Figure 5 to see that each pattern starts and ends with double 0). 

For a fixed pattern p and position posi
p, a spike s has been accounted if the spike s 

was posi
p-1, posi

p, or posi
p+1. Thus, for example, in Figure 9a both spikes were ac-

counted for positions -2, -1, and 0. 
In that manner, a triple of numbers <r1, r2, rtotal> from each test was obtained: spike 

count for each of two patterns and the total spike count. The two cases of Figure 9 
yields the following triples: <0, 2, 2> and <2, 2, 5>. 

Quality of a neural network of a test was measured in two ways: simple q(s) and 
advanced q(a). 

Simple way means the proportion of ‘good’ and all spikes: 
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where r1, r2 – ‘good’ spike count for patterns 1 and 2 respectively, rtotal – total spike 
count. 



For the two cases of Figure 9, this is (0+2)÷2=100% and (2+2)÷5=80%. The qual-
ity of the first case is better, because both spikes are ‘good’. 

Advanced way means taking into account situation, whether both pattern types 
have been recognized correctly: 
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For the two cases of Figure 9, this is (4⋅0⋅2)÷22=0% and (4⋅2⋅2)÷52=64%. The quality 
of the first case is 0, because the network was able to recognize only one of two types 
of patterns. 

5.2. Experimental Results and Analysis 

21117 of 32620 (or ~65%) of results were ‘good’, i.e., were included in the result 
set Rgood, which was further analyzed. A bad result means that the network has not con-
verged during the learning. 

Table 3 describes summarized test results according both quality measures q(s) and 
q(a). Results are grouped according selection of some parameters or parameter sets. 
Consult Table 1 for parameter types. 

 
Table 3. Experimental results overview. 

Parameter or parameter set qs (%) qa (%) 

Layer topology τtop = {3, 5, 3, 1} 70.1 33.2 

Layer topology τtop = {3, 5, 1} 60.3 24.4 

Axonal delay set ∆ax = {0} 56.5 22.3 

Axonal delay set ∆ax = {0, 1} 65.6 28.4 

Axonal delay set ∆ax = {0, 1, 2} 67.7 21.2 

Axonal delay set ∆ax = {0, 1, 2, 3} 67.4 30.1 

Recommended response cε = 0.01 49.1 16.6 

Recommended response cε = 0.02 55.7 16.5 

Recommended response cε = 0.03 62.4 20.2 

Recommended response cε = 0.05 65.9 34.6 

Layer topology τtop = {3, 5, 3, 1}; Axonal delay 
set ∆ax = {0}; Recommended response cε = 0.05 

73.8 42.5 

 
−−−− Experimental results show good quality on measure q(s). This means that obtained 

networks are good on detecting at least one of the hidden patterns types. 
−−−− Experimental results according the measure q(a) is worse. This means that ob-

tained networks have mostly learned only one of two pattern types (like in Figure 
1a). 



−−−− Significantly better results were obtained with recommended response cε = 0.05, 
especially according the quality measure q(a). 

−−−− Networks with two hidden layers were better than those of only one. 
−−−− Effect of different axonal transmission delays depends on the quality measure and 

is mostly uncertain. 

5.3. Conclusion 

The problem of learning in spiking neural networks is still a challenging issue. 
This paper introduces an unsupervised learning method that exploits cooperation of 
neurons using a mechanism of adaptive layer activation. This method is suitable to 
train neural networks for regularity detection in a stream of data. 

Although the environment, built for experiments, was fairly simple, still the first 
results are to be considered very promising and inspiriting for further research. 
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