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Abstract: An efficient simulator for Cellular Neural Networks (CNNs) is presented in this study. This simulator
1s capable of performing Multi-Layer Raster Sumulation for any size of input image, thus a powerful tool for
researchers investigating potential applications of CNN. This study reports an efficient algorithm exploiting the
latency properties of Cellular Neural Networks along with popular numerical integration techniques; simulation

results and comparison are also presented.
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INTRODUCTION

Cellular Neural Networks (CNNs) are analog, time-
continuous, nonlinear dynamical systems and formally
belong to the class of recurrent neural networks. Since
their introduction by Chua and Yang (1988a, b) they have
been the subjects of mtense research. Imtial applications
include image processing, signal processing, pattern
recognition and solving partial differential equations, ete.

Runge-Kutta (RK) methods have become very
popular, both as computational techmques as well as
subject for research, which were discussed by Butcher
(1987, 2003). This method was derived by Runge around
the year 1894 and extended by Kutta a few years later.
They developed algorithms to solve differential equations
efficiently and yet are the equivalent of approximating the
exact solutions by matching “n” terms of the Taylor series
exXpansion.

Butcher (1987) derived the best RK pair along with an
error estimate and by all statistical measures it appeared
as the RK-Butcher algorithms. This RK-Butcher algorithm
15 nominally considered sixth order smnce it requires six
functions evaluation, but in actual practice the working
order is closer to five (fifth order).

Bader (1987,1988) introduced the RK-Butcher
algorithm for finding the truncation error estimates and
mtrinsic accuracies and the early detection of stiffness in
coupled differential equations that arises in theoretical
chemistry problems. Recently Murugesh and Murugesan

(2006) used the RK-Butcher algorithm for time-
multiplexing scheme of Cellular Neural Networks. Oliveria
(1999) mtroduced the popular RK-Gill algorithm for
evaluation of effectiveness factor of immobilized enzymes.

Lee and Pineda de Gyvez (1994) introduced Euler,
Improved Euler Predictor-Corrector and Fourth-Order
Runge-Kutta algorithms in Raster CNN simulation. In this
article, we consider the same problem (discussed by Lee
and Pineda de Gyvez (1994)) but presenting a different
approach using the algorithms such as Euler, RK-G1ll and
RK-Butcher with more accuracy.

CELLULAR NEURAL NETWORKS

The basic circuit unit of CNN is called a cell It
contains linear and nonlinear circuit elements. Any cell,
C(1,7), 18 commected only to its neighbor cells 1.e. adjacent
cells interact directly with each other. This intwtive
concept is called neighborhood and is denoted as N(1,j).
Cells not in the immediate neighborhood have indirect
effect because of the propagation effects of the dynamics
of the network. Each cell has a state x, input u and output
y. The state of each cell is bounded for all time t=0 and,
after the transient has settled down, a cellular neural
network always approaches one of its stable equilibrium
points. This fact 18 relevant because it umplies that the
circuit will not oscillate. The dynamics of a CNN has both
output feedback (A) and input control (B) mechanisms.
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The first order nonlinear differential equation defining the
dynamics of a cellular neural networlk cell can be written
as follows

dx; .
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where x; 15 the state of cell C(1,), x;(0) 15 the 1mtial
condition of the cell, C is a linear capacitor, R is a linear
resistor, T is an independent current source, A(i,j:k Dy
and B(1,);k,Du, are voltage controlled current sources for
all cells Cik,1) m the neighborhood N(1,7) of cell C(1,5) and
y; represents the output equation.

Notice from the summation operators that each cell is
affected by its neighbor cells. A(.) acts on the output of
neighboring cells and 13 referred to as the feedback
operator. B(.) in turn affects the input control and is
referred to as the control operator. Specific entry values
of matrices A(.) and B(.), are application dependent, are
space invariant and are called clomng templates. A
current bias T and the cloning templates determine the
transient behavior of the cellular nonlinear networlk.

MULTI-LAYER RASTER CNN SIMULATION

Multi-Layer Raster CNN simulation is an image
scanning procedure for solving the system of difference
equations of CNN. In this approach the templates A and
B are applied to a square subimage area centred at (x,y),
whose size is the same as that of the templates. The centre
of the templates are then moved left to right pixel by pixel
from the top left comner to the bottom right corner
applying the A and B templates at each location (x,y) to
solve the system of difference equations. This full
scanning of the image 1s repeated for each time-step
which 15 defined as iteration. The processing 1s stopped
when the states of all CNN cells have converged to the
steady-state values.

A simplified algorithm 1s presented below for this
approach. The part where the mtegration 1s mvolved 1s
explained in the Numerical Integration Techniques
section.

Algorithm: (Multi-layer raster CNN simulation)
Obtain the input image, initial conditions and
templates from user;
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/* M,N = # of rows/columns of the image */
while (converged cells<total # of cells) §
for(layer = 0, layer<3; layer ++) {
for (1=1; 1<=M; 1++)
for j=1;J<=N; j+) {

if (convergence flag [1] [j])

continue;/™ curmet cell already

converged */

/* calculation of the next state */

nH

j f(x(t, )t

tl'\

t
XIJ (tn+1) = XIJ (tn )Jr

/* convergence criteria */

dx,(t,) OJ and yy = =1, ¥C(k, DEN, i)
dt

d

{
convergence flag[i][;]=1;
converged_cells++;
+/* end for */
/* update the state values of the whole image */
for (i=1; i<= M, i++)
for (j=1; j==N, j++)
{
if (convergence flag [i][j]) continue;
Xlayer,ij(tn) = Xlayer,1](tn+1 )
H
# of iterationt++;
3/* end while */

The Multi-Layer Raster approach implies that each
pixel is mapped onto a CNN processor. That 1s, we have
an image processing function in the spatial domain that
can be expressed as:

exy) = T(Ex.Y) @
where f(.) is the input image, g(.) the processed image and
T is an operator on f(.) defined over the neighborhood of
().

NUMERICAL INTEGRATION TECHNIQUES

The CNN 1s described by a system of nonlinear
differential equations. Therefore, it 1s necessary to
discretize the differential equation for performing
simulations. For computational purpose, a normalized time
differential equations describing CNN is used by
Nossek et al (1992).
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Where T 15 the normalized time. For the purpose of
solving the mmtial-value problem, well established
numerical integration techniques are used. These methods
can be derived using the defimtion of the defimte integral

XU((I’IJrl)T)*XU(T[’E): f’(x(m))d(m) (4

tn.':l
T

Three of the most widely used Numerical Integration
Algorithms are used in CNN Raster Simulation described
here. They are the Huler’s Algorithm, RK-Gill Algorithm
discussed by Oliveria (1999) and the REK-Butcher
Algorithm discussed by Badder (1987, 1988) and
Murugesh and Murugesan (2006).

Euler algorithm: Euler’s method 1s the simplest of all
algorithms for solving ODEs. It 13 explicit formula which
uses the Taylor-series expansion to calculate the
approximation.

X, (n+1)1)=x, (nt)+ o' (x(mr)) &)

REK-Gill algorithm: The RK-Gill algorithm discussed by
Oliveria (1999) 1s an explicit method requiring the
computation of four derivatives per time step. The
increase of the state variable x” 1s stored m the constant
k¥,. This result is used in the next iteration for evaluating
k",. The same must be done for k¥, and kY,.

1

)
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The final integration is a weighted sum of the four
calculated derivatives:

K :f'(xu(m))
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RK-butcher algorithm: The RK-Butcher algorithm
discussed by Badder (1987, 1988) and Murugesh and
Murugesan (2006), 1s an explicit method. It starts with a
simple BEuler step. The increase of the state variable x” 1s
stored in the constant k% . This result is used in the next
iteration for evaluating k',. The same must be done for k',,

ki, k. and I,

(8)
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The final integration is a weighted sum of the five
calculated derivatives:

where f(.) is computed according to (1). There are many
methods available to us for this purpose. Among all the
methods, RK-Butcher algorithm 1s a very efficient for
solving this problem.

Tk +32KY, + 12K,

1
{+32k”5 + 7k,
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SIMULATION RESULTS AND COMPARISONS

All the simulation reported here are performed using
a SUN BLADE 1500 workstation and the simulation time
used for comparisons is the actual CPU time used. The
input image format is the windows bitmap format (xbm),
which 1s commonly available and easily convertible from
popular image formats like GIF or JPEG.

Figure 1 shows results of the raster simulator
obtammed from a complex image of 1,25,600 pixels. For thus
example an averaging template followed by an Edge
Detection template were applied to the original image to
yield the images displayed in Fig. 1b and ¢, respectively.
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Fig 2: Maximum step size still yields convergence for
three different templates

4
Step size

Fig. 3: Simulafion time comparizon of the three methods
using the averaging template

Since speed iz one of the main concerns in the
gimul ation, finding the maximum step size that still yields
convergence for a template can be helpful in speeding up
the system. The speed-up can be achieved by selecting
an appropriate At for that particular template. Even
though the maximum step size may slightly vary from one
image to another, the valuesin Fig. 2 still serve as good
references. These results were obtained by trial and error

(b)
Fig. 1: Image processing {(a) Original image (b) After averaging template (c) After averaging and edge detection templates
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over more than 100 simulations on a diamond figure. If the
step size is chosen is too small, it might take many
iterations, hence longer time, to achieve convergence. On
the other hand, if the step size taken istoo large, it might
not converge at all or it would be converges to erroneous
steady state values; the latter remark can be observed for
the Euler algorithm.

The results of Fig. 3 were obtained by simulating a
small image of size 16x16 (256 pixels) using Averaging
template on a diamond figure.

CONCLUSIONS

As researchers are coming up with more and more
CNN applications, an efficient and powerful simulator is
needed. The simulator hereby presented meets the need
in three ways: (1) Depending on the accuracy required for
the simulation, the uger can choose from three numerical
integration methods (2) The input image format is the X-
Windows bitmap (xbm), which is commonly available and
(3) The inputimage can be of any size, allowing simulation
of images available in common practices.
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