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Abstract: In this article a versatile algorithm for simulating CNN arrays is implemented using various means. The function 
of the simulator is that it is capable of performing Raster Simulation for any kind as well as any size of input image. It is a 
powerful tool for researchers to examine the potential applications of CNN. This article proposes an efficient pseudo code 
for exploiting the latency properties of Cellular Neural Networks along with well known RK-Fourth Order Embedded 
numerical integration algorithms. Simulation results and comparison have also been presented to show the efficiency of the 
Numerical integration Algorithms. It is found that the RK-Embedded Centroidal Mean outperforms well in comparison with 
the RK-Embedded Harmonic Mean and RK-Embedded Contra-Harmonic Mean.  
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1. INTRODUCTION 

The distinctiveness of Cellular Neural Networks 
(CNNs) are analog time-continuous, non-linear 
dynamical systems and formally belong to the class of 
recurrent neural networks. CNNs have been proposed 
by Chua and Yang [l,2], and they have found that 
CNN has many significant applications in signal and 
real-time image processing. Roska et al. [3] have 
presented the first extensively used simulation system 
which allows the simulation of a large class of CNN 
and is especially suited for image processing 
applications. It also includes signal processing, pattern 
recognition and solving ordinary and partial 
differential equations etc. 

Evans et al. [4] introduced embedded Centroidal 
Mean, Yaacob and Sanugi [5] adapted embedded 
Harmonic mean and Yaakub and Evans [6] have 
presented the Contra-Harmonic Mean. In this article, 
the time-multiplexing CNN simulation problem is 
solved with different approach using the algorithms 
say Embedded Centroidal Mean, Embedded Harmonic 
Mean and Embedded Contra-Harmonic Mean. 

 
2. FUNCTIONS OF CELLULAR NERURAL 

NETWORK 
 

The general CNN architecture consists of M*N cells 
placed in a rectangular array. The basic circuit unit of 
CNN is called a cell. It has linear and nonlinear circuit 
elements. Any cell, C(i,j), is connected only to its 
neighbor cells (adjacent cells interact directly with 
each other). This intuitive concept is known as 
neighborhood and is denoted by N(i,j). Cells not in the 

immediate neighborhood have indirect effect because 
of the propagation effects of the dynamics of the 
network. Each cell has a state x, input u, and output y. 
For all time t > 0, the state of each cell is said to be 
bounded and after the transient has settled down, a 
cellular neural network always approaches one of its 
stable equilibrium points. It implies that the circuit 
will not oscillate. The dynamics of a CNN has both 
output feedback (A) and input control (B) 
mechanisms. The dynamics of a CNN network cell is 
governed by the first order nonlinear differential 
equation given below: 
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and the output equation is given by, 
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≤ N.   
where C is a linear capacitor, xij denotes the state of 

cell C(i,j), xij(0) is the initial condition of the cell, R is 
a linear resistor, I is an independent current source, 
A(i,j;k,l)ykl and B(i,j;k,l)ukl are voltage controlled 
current sources for all cells C(k,l) in the neighborhood 
N(i,j) of cell C(i,j), and yij represents the output 
equation. 

For simulation purposes, a discretized form of equ. 
(1) is solved within each cell to simulate its state 
dynamics. One common way of processing a large 
complex image is using a raster approach [1]. This 
approach implies that each pixel of the image is 
mapped onto a CNN processor. That is, it has an 
image processing function in the spatial domain that is 
expressed as:  

 
g(x,y) = T(f(x,y))                                              (2) 



where g(.) the processed image, f(.) is the input 
image, and T is an operator on f(.) defined over the 
neighborhood of (x,y). It is an exhaustive process from 
the view of hardware implementation. For practical 
applications, in the order of 250,000 pixels, the 
hardware would require a large amount of processors 
which would make its implementation unfeasible. An 
different option to this scenario is multiplex the image 
processing operator. 

 
3. PERFORMANCE  OF RASTER CNN 

SIMULATIONS  
 

Raster CNN simulation is an image scanning-
processing technique for solving the system of 
difference equations of CNN.  The equation (1) is 
space invariant, which means that A (i,j;k,l) = A(i-k,j-
1) and B(i,j;k,l) =  B(i-k,j-1) for all i,j,k,l. Therefore, 
the solution of the system of difference equations can 
be seen as a convolution process between the image 
and the CNN processors. The basic approach is to 
imagine a square subimage area centered at (x,y), with 
the subimage being the same size of the templates 
involved in the simulation. The center of this 
subimage is then moved from pixel to pixel starting, 
say, at the top left corner and applying the A and B 
templates at each location (x,y) to solve the 
differential equation. This procedure is repeated for 
each time step, for all the pixels in the image. An 
instance of this image scanning-processing is referred 
to as “iteration”.  

  
The processing stops when it is found that the states 

of all CNN processors have converged to steady-state 
values, and the outputs of its neighbor cells are 
saturated, e.g. they have 1±a  value [1,2]. This whole 
simulating approach is referred to as raster simulation. 
A simplified pseudo code is presented below gives the 
exact notion of  this approach.  

 
3.1 PSEUDO CODE FOR RASTER CNN SIMULATION 

 
Step 1: Initially get the input image, initial conditions 
and templates from end user. 
/* M,N = Number of  rows and columns of the 2D 
image */ 
while (converged-cells < total number of cells)  
{ 
for (i=l; i<=M; i++) 
for (j=l; j<=N; j++)  
{ 
if (convergence-flag[i] [j]) 
continue; /* current cell already converged*/ 
 

Step 2: /* Calculate the next state */  
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Step 3:          /* Check the convergence criteria */ 
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{ 
convergence-flag[i][j] = 1; 
converged-cells++ ; 
}  
}                       /* end for */ 
 
Step 4: /* Update the state values of the entire Image 
*/ 
for (i=l; i<=M; i++) 
for (j=l; j<=N; j++)  
{ 
if (convergence-flag[i][j]) continue; 
xij(tn) = xij(tn+1); 
} 
Number of iteration++; 
}                          /* end while */ 
 

4. NUMERICAL INTEGRATION 
TECHNIQUES 

 
The CNN is described by a system of nonlinear 
differential equations. Therefore, it is necessary to 
discretize the differential equation for performing 
behavioral simulation. For computational purposes, a 
normalized time differential equation describing CNN 
is used by Nossek et al. [7] 
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1 ≤ i ≤ M; 1 ≤ j N;                                                     (5) 
 
where τ  is the normalized time. For the purpose of 
solving the initial-value problem, well established 
Single Step methods of numerical integration 



techniques are used in [8]. These methods can be 
derived using the definition of the definite integral 
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Explicit Euler's, the Improved Euler Predictor-

Corrector and the Fourth-Order (quartic) Runge-Kutta 
are the mostly widely used single step algorithm in the 
CNN behavioral raster simulation. Three types of 
numerical integration algorithms are used in raster 
CNN simulations. They are RK-Embedded Centroidal 
Mean is discussed by Evans et al. [4], RK-Embedded 
Harmonic Mean is discussed by Yaacub and Sanugi[5] 
and RK-Embedded Contra-Harmonic Mean is 
discussed by Yaakub and Evans[6] 
 

4.1 EXPLICIT EULER’S ALGORITHM 
 

Euler’s method is the simplest of all algorithms for 
solving ordinary differential equations. It is an explicit 
formula which uses the Taylor-series expansion to 
calculate the approximation. 
 

hyy nn +=+1                                                      (8) 
 
 

4.2 RK-GILL ALGORITHM 
 
The RK-Gill algorithm discussed by Oliveria [9] is 

an explicit method which requires the computation of 
four derivatives per time step. The increase of the state 
variable xij

 is stored in the constant k1.  This result is 
used in the next iteration for evaluating k2 and repeat 
the same process to obtain the values of  k3  and k4. 
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Therefore, the final integration is a weighted sum of 

the four calculated derivates is given below. 
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5.  FOURTH ORDER RK METHOD BASED 
ON EMBEDDED MEANS 

 
5.1 RK-EMBEDDED CENTROIDAL MEAN 

 
The Fourth Order RK-Embedded Centroidal Mean is 
given by,  
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Therefore, the final integration is a weighted sum of 

the four calculated derivates is given below. 
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5.2 RK-EMBEDDED HARMONIC MEAN 
 

The Fourth Order RK-Embedded Harmonic Mean is 
given by,  
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Therefore, the final integration is a weighted sum of 

the four calculated derivates is given below. 
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5.3 RK-EMBEDDED CONTRA- HARMONIC 
MEAN 

 



The Fourth Order RK-Embedded Contra-Harmonic 
Mean is given by, 
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Therefore, the final integration is a weighted sum of 

the four calculated derivates is given below. 
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6. SIMULATION RESULTS AND 
COMPARISONS  

 
All the simulated outputs presented below here are 

performed using a high power workstation, and the 
simulation time used for comparisons is the actual 
CPU time used. The input image format is the X 
windows bitmap format (xbm), which is commonly 
available and easily convertible from popular image 
formats like GIF or JPEG. Figs. 1(b), 2(b) and 3(b) 
show the results of the raster simulator obtained from 
a complex image of 1,25,600 pixels.  

 
Using RK-Embedded Harmonic Mean, Embedded 

Contra-Harmonic Mean and RK-Embedded Centroidal 
Mean the results of the raster simulator obtained from 
a complex image of 1, 25,600 pixels are depicted 
respectively in Figs.1, 2, and 3.  For the present  
example an averaging template followed by an Edge 
Detection template were applied to the original image 
to yield the images displayed in Fig. 1(b). The same 
procedure has been adapted for getting the results 
shown in Figs. 2(b) and 3(b).  It is observed from Figs. 
1(b), 2(b) and 3(b) that the edges obtained by the 
Embedded Centroidal Mean is better than that 
obtained by the Embedded Harmonic Mean, 
Embedded Contra-Harmonic Mean. 

 
As speed is one of the major concerns in the 

simulation, determining the maximum step size that 
still yields convergence for a template can be helpful 
in speeding up the system. The speed-up can be 
achieved by selecting an appropriate (Δt) for that 

particular template. Even though the maximum step 
size may slightly vary from one image to another, the 
values in Fig. 4 show a comparison between three 
different templates. These results were obtained by 
trial and error over more than 100 simulations on a 
Coins figure. 

 
It is observed from Fig. 4 that RK-Embedded 

Centroidal mean allows us to select a maximum step-
size (Δt) as compared to other two methods 
irrespective of the selection of templates. Fig. 5 shows 
that the importance of selecting an appropriate time 
step size (Δt).  If the step size is chosen is too small, it 
might take many iterations, hence longer time, to 
achieve convergence. But, on the other hand, if the 
step size taken is too large, it might not converge at all 
or it would be converges to erroneous steady state 
values. The results of Fig. 5 were obtained by 
simulating a small image of size 256×256 pixels using 
Averaging template on a Coins figure.  

 
7. CONCLUSION  

 
The attention of the present article is focussed on 

different numerical integration algorithms involved in 
the raster CNN simulation.  The significance of the 
simulator is capable of performing raster simulation 
for any kind as well as any size of input image. It is a 
powerful tool for researchers to investigate the 
potential applications of CNN. It is pertinent to pin-
point out here that the RK-Embedded Centroidal 
Mean guarantees the accuracy of the detected edges 
and greatly reduces the impact of random noise on the 
detection results in comparison with the RK-
Embedded Harmonic Mean and Embedded Contra-
Harmonic Mean. It is of interest to mention that using 
RK-Embedded Centroidal Mean; the edges of the 
output images are proved to be feasible and effective 
by theoretic analysis and simulation.  
 

    
Fig. 1. (a) Original Coins Image;(b) After Averaging and 

Edge Detection Templates by employing                                     
RK-Embedded Centroidal Mean. 

 



    
Fig. 2.  (a) Original Coins Image;(b) After Averaging 

and Edge Detection Templates by adapting RK-
Embedded Harmonic Mean. 

 

   
Fig. 3.    (a) Original Coins Image;(b) After Averaging 

and Edge detection Templates by adapting RK-
Embedded Contra-Harmonic Mean. 
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Fig. 5.   Comparison of Five Numerical Integration 

Techniques using the Averaging Template. 
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