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Abstract—this paper presents an approach to model the 
nonlinear dynamic behaviors of the Automatic Depth Control 
Electrohydraulic System (ADCES) of a certain mine-sweeping 
weapon using Radial Basis Function (RBF) neural networks. In 
order to obtain accurate RBF neural networks efficiently, a 
hybrid learning algorithm is proposed to train the neural 
networks, in which centers of neural networks are optimized by 
genetic algorithm, and widths and centers of neural networks are 
calculated by linear algebra methods. The proposed algorithm is 
applied to the modelling of the ADCES, and the results clearly 
indicate that the obtained RBF neural network can emulate the 
complex dynamic characteristics of the ADCES satisfactorily. 
The comparison results also show that the proposed algorithm 
performs better than the traditional clustering-based method. 
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I.  INTRODUCTION  

The Automatic Depth Control Electrohydraulic System 
(ADCES) of a certain mine-sweeping weapon is a complex 
nonlinear electrohydraulic servo system. The first step in 
designing a high-performance ADCES controller is to model 
the ADCES accurately. The traditional and widely used 
approach for the modelling of such electrohydraulic system is 
based on the first principle methods, i.e. a linear model of the 
ADCES can be derived according to some physical laws such 
as the dynamic equation of valve and the force balance 
equation [1, 2]. However, the ADCES exhibits significant 
nonlinear behaviors which make the linear model obtained by 
the first principle methods inefficient because the linear model 
can’t accurately describes such nonlinearities of the ADCES as 
the flow/pressure characteristics, fluid compressibility and 
friction, etc. It is highly desirable to develop a precise model of 
the ADCES which can be used for the following high-
performance controller design. 

Neural networks have been employed in recent years as 
an alternative to the first principle models due to their ability 
to describe highly complex and nonlinear problems in many 
fields of engineering. Numerous applications of neural 
networks in electrohydraulic systems have been reported [3, 
4]. However, all these papers mentioned above focus on the 
usage of the multi-layer perceptron neural networks which 
have some disadvantages such as slow learning speed, local 
minimal convergence behavior and sensitivity to the randomly 
selected initial weight values. To solve these problems, Radial 
Basis Function (RBF) neural networks can be used, which 
own the merits of simple architecture, small training times and 

global minimum. A few researches have paid attention to the 
application of RBF Neural Networks (RBFNN) in 
electrohydraulic system [5]. 

In this paper, the RBF neural networks based on hybrid 
learning algorithm are employed to develop an accurate model 
for the ADCES of a certain mine-sweeping weapon. In order to 
improve the accuracy performance of the RBFNN, a genetic 
algorithm is used to optimize the center parameters of RBFNN 
in stead of traditionally used clustering-based methods. The 
width and the weight parameters are calculated using some fast 
linear techniques, i.e., the maximum distance measure and the 
least square algorithm, in order to relieve computational burden 
and accelerate the convergence of the proposed hybrid learning 
algorithm. To our best knowledge, this is the first application 
of RBFNN to model an electrohydraulic system intently and 
intensively with genetic algorithm. 

II. THE AUTOMATIC DEPTH CONTROL 

ELECTROHYDRAULIC SYSTEM 

The Automatic Depth Control Electrohydraulic System 
(ADCES) of a certain type of mine-sweeping weapon is 
composed of five parts: a proportional valve, a hydraulic 
cylinder piston, a copying shoe, a shaft position encoder and a 
plough, as illustrated in Fig.1. In the process of operation of the 
mine-sweeping weapon, the shape variation of ground surface 
is detected by the copying shoe, and the encoder linked with 
the copying shoe measures the angle between the plough arm 
and level plane, thus the actual embedded depth of the plough 
can be calculated. The automatic depth control is accomplished 
by reciprocating movement of the hydraulic cylinder, which is 
operated by the proportional valve according to error between 
the actual embedded depth and the target value. In the ADCES, 
there are fixed single-input single-output mapping functions 
among the displacement of the piston, the angle measured by 
the encoder and the actual embedded depth. So, without loss of 
generality, the control voltage of the proportional valve is 
adopted as the input of the ADCES, and the displacement of 
piston is adopted as the output of the ADCES. 

In order to motivate the ADCES sufficiently and collect 
complete data containing all the dynamic characteristics of the 
ADCES, it is important to select an appropriate input signal for 
the ADCES. In the field of linear system identification, the 
Pseudo- Random Binary Signal (PRBS) that only contains two 
amplitude levels is widely used. However, the identifiability 
will be lost for the nonlinear ADCES if the PRBS is also 
adopted. So an input signal that contains all interesting 
amplitudes and frequencies and all their combinations should 
be employed, such as Pseudo-Random Multi-Level Signals 
(PRMS), chirp signals, and independent sequences with a 



Gaussian or uniform distribution. Experience shows that the 
PRMS is the most suitable choice of input signal for 
identification of a hydraulic system [6]. So in this paper the 
PRMS is selected as the input signal for the ADCES. 

III.  METHOLOGIES: RBF NEURAL NETWORK AND THE 

PROPOSED LEARNING ALGORITHM 

A. RBFNN and its training algorithm  

The radial basis function neural network is a three-layer 
feedforward neural network which consists of input layer, 
signal hidden layer and output layer, as depicted in Fig.2. The 
input layer consists of neurons which corresponding to the 
elements of input vector. These neurons does not process the 
input information, they only distribute the input vector to the 
hidden layer. The hidden layer does all the important process. 
Each neuron of the hidden layer employs a radial basis function 
as nonlinear transfer function to operate the received input 
vector and emits the output value to the output layer. The 
output layer implements a linear weighted sum of the hidden 
neurons and yields the output value. 

A typical radial basis function that is used in this paper is 
the Gaussian function which assumes the form 
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where x is input vector, cm is the center of RBFNN, 
mcx− denotes the distance between x and cm, σ is the width.  

The output of the RBFNN has the following form 
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where M is the number of independent basis functions, tmw  is 

the weight associated with the mth neuron in the hidden layer 
and the tth neuron in the output layer, bt is the bias of the tth 
neuron. 

In general, three types of adjustable parameters which 
should be determined for the RBFNN: basis function center 
cm, basis function width σ  and output weight tmw . Several 

algorithms available in the literature have been proposed for 
training these parameters which can be divided into two 
stages. The first stage includes the selection of appreciate 
centers and widths for the radial basis functions, which is a 
nonlinear problem. The second stage involves the adjustment 
of the output weights, which is a linear problem. Unsupervised 
learning algorithm, for example clustering-based method, can 
be applied to the first stage, whereas linear algebra solutions, 
for example least square method, can be applied to the second 
stage. 

The training of the RBFNN can be seen as an optimization 
problem, where the modelling accuracy can be maximized by 
adjusting the parameters of the RBFNN. Genetic algorithm 
(GA) is a parallel and robust optimization technique inspired 
by the mechanism of evolution and genetics, and it has been 
successfully applied to innumerable search and optimization 
problems. Many researches have devoted to the study of 
training RBFNN by GA, and the results indicate that the 

adoption of GA for determining the parameters of RBFNN can 
avoid local minimum and improve performance [7-10]. 

In this paper, a hybrid learning algorithm named GA-RBF 
is proposed to train the RBF neural network, in which the 
centers are optimized by genetic algorithm, while the widths 
and weights are calculated using traditional matrix operation 
described as follows. 

The widths of RBFNN control the domain of influence of 
the corresponding radial basis functions. In order to obtain 
more accurate RBFNN, different width value is used for each 
radial basis function. The width of the ith center is set to the 
maximum Euclidean distance [11] between ith center ci and its 
candidate center cj 
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After the centers and widths have been fixed, the weights of 
the output layer can be calculated by an algorithm suitable to 
solve the linear algebraic equations. In this paper, the output 
weights are computed by the least square algorithm.  

Let 
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then the weights can be calculated using the least square 
algorithm [11], 
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where Φ+ is the pseudo-inverse of Φ, and y is the target output 
data. 

B. The proposed learning algorithm 

Genetic algorithm has been successfully employed in 
search and optimization problems by simulating natural 
evolution.  The GA has a population of individuals competing 
against each other in relation to a fitness function, with some 
individuals breeding, others dying off, and new individuals 
arising through crossover and mutation. In this paper, the GA 
is used to optimize the centers of RBF neural networks. The 
following segments present the main areas where the GA 
applies to RBF neural networks. 

Genetic encoding of the GA-RBF algorithm: The choice 
of the appropriate encoding for the individuals is the first step 
for the optimization of RBF neural network by the GA. 
Traditionally, encoding scheme uses binary strings. However, 
the bit strings of binary-coded genetic algorithm becomes very 
long and the search space blows up, while in real-coded 
genetic algorithm, the variables appear directly in 
chromosome simply, and computation burden is relieved, so 
real-coded scheme is adopted in this paper. 

Genetic operators of the GA-RBF algorithm: There are 
three operators in the GA, i.e., selection, crossover and 
mutation. The selection operator employs a fitness function to 
evaluation the individuals from the population, assigning the 
fitness for each individual according a predefined criterion. In 
this paper, the roulette wheel selection method is used to select 
individuals to operate. In order to prevent optimal 



chromosomes from being ignored, elitist selection are also 
used, i.e., the best chromosomes are always preserved in 
population. Crossover operator produces offspring individuals 
by combining genes of parent individuals. The two crossover 
operators used here are the simple arithmetic crossover and the 
whole arithmetic crossover, which are selected randomly. 
Mutation operator is a stochastic variation of the genes of 
individuals. The uniform mutation and the Gaussian mutation 
are employed randomly in the proposed GA-RBF algorithm. 

Objective function of the GA-RBF algorithm: The Root 
Mean Square Error (RMSE) which is most widely used for 
modelling problem is employed as the objective function of 
the GA-RBF algorithm. 

Stop criteria of the GA-RBF algorithm: The evolution 
process will repeat for a fixed number of generations or being 
ended when the objective function satisfies a given accuracy 
performance. In the proposed approach, the individuals evolve 
for a predefined generations, and the neural network with 
minimum testing error is selected for each generation. At the 
end of evolution, the neural network with minimum testing 
error will be selected as the optimal neural network. 

The proposed GA-RBF algorithm used to evolve the RBF 
neural network can be summarized in the following steps. 

1) Randomly choose an initial population with a fixed 
number of individuals. Each individual associates the 
centers of an RBF neural network. 

2) Compute the widths and weights of RBFNN. The 
outputs of RBFNN can be obtained, and the fitness 
functions of initial population can also be calculated. 

3) Apply three genetic operators to the parent individuals, 
and the offspring individuals are generated. 

4) Calculate the widths and weights of RBFNN, and 
compute the fitness function of each offspring 
individual. 

5) If the number of generation is equal to the given 
threshold, then stop, otherwise go to step 3. 

IV.  EXPERIMENTS AND RESULTS 

This section presents the application of the proposed GA-
RBF algorithm to evolve the radial basis function neural 
network for modelling of the Automatic Depth Control 
Electrohydraulic System (ADCES) of a certain type of 
weapon. 

 
In the ADECS, the input signal is the control voltage of 

servo valve in the range of [-8 8] volt, and the output signal is 
the displacement of the piston in the range of [0 0.45] meter. 
Although the ADECS is a high-order nonlinear system, it will 
not be vibrated within the normal input allowed. So the 
experiment to gather data is conducted without any closed 
loop controller. With 100ms sampling time, 10000 data are 
collected, as illustrated in Fig.3: (a) presents the input data, 
and (b) shows the output data. The first 600 data are used to 
train the model, while the other 400 data are employed to 
validate the obtained model. 

In order to accelerate the speed of convergence and 
improve the effectiveness of the GA-RBF algorithm, the 
collected data are scaled between zero and one 
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where  xi, xmax and xmin are the original, the maximum and the 

minimum values respectively, scal
ix  is the value which has 

been pre-processed. 
In order to weigh the performance of different models of 

the ADCES, the Root Mean Square Error (RMSE) is applied 
to measure the precision of the obtained model 
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where y is the target value of displacement, ym is the output 
of the obtained model, N is the number of data. 

The number of hidden units greatly influences the 
performance of an RBF neural network. If the number is too 
low, the precision of the network will be deteriorated. On the 
other hand, if the network employs too many hidden units, it 
will trend to overfit the data and increases the computational 
burden. In this paper, the method to determine the number of 
hidden units is described as follows: firstly, a number range of 
hidden units is determined empirically; secondly, a set of RBF 
neural networks are construed with different number of hidden 
units; then the number of hidden units of the RBF network 
with minimum testing error is selected as optimum number. 

In order to stand out the advantages of the proposed GA-
RBF algorithm, the conventional K-Means (KM-RBF) 
training algorithm is also used for comparison. 

In the GA-RBF algorithm, the population size is chosen 
as 40, and the selection rate is 0.8, the crossover rate is 0.8 and 
the mutation probability is 0.05, the maximum generation is 
300. 

The KM-RBF algorithm and GA-RBF algorithm are both 
employed to determine the number of hidden units. 
Empirically, the minimum number of hidden units is 6, and 
the maximum number of hidden units is 50. The number of 
hidden unit increases incrementally from 6 to 50 with an 
increment of 2, thus total 23 RBF neural networks is obtained. 
The performance of the neural networks with different initial 
conditions may be varied, so the training algorithm runs 10 
times and the average precision values of the 10 runs are used 
to measure the performance of the RBF neural networks. 

Fig. 4 shows the results obtained for the RBF neural 
networks with different number of hidden units for both KM-
RBF algorithm and GA-RBF algorithm. The training errors of 
neural networks are illustrated in Fig.5 (a), and the testing 
errors of neural networks are showed in Fig.5 (b). Obviously, 
for KM-RBF algorithm, the neural network with 34 hidden 
units yields the minimum amount of testing error (0.0466), 
and an over-training was caused for the testing data when the 
number of hidden units more than 34. It is also seen that, for 
GA-RBF algorithm, the testing errors continue reduce with 
increased number of hidden units, however, the testing error 
performance of RBF neural networks only improve 3.72% 
(from 0.0430 to 0.0414) when the number of hidden units 



increases from 34 to 50. So taken into account of KM-RBF 
algorithm and GA-RBF algorithm, the best number of hidden 
units of the RBF neural networks is chosen as 34 eventually. 

Fig.5 shows the evolution of the RMSE on both training 
data and testing data. In 288 generation, the minimum RMSE 
on testing data is obtained (0.466) corresponding to the RMSE 
of 0.0413 on training data. 

Fig.6 (a) shows the outputs of the obtained RBF neural 
network with 34 hidden nodes by the proposed GA_RBF 
algorithm as compared to the target outputs for the training 
data, and Fig.6 (b) shows the target outputs and the outputs of 
the obtained RBF neural network for the testing data. It can be 
seen that the predicted outputs of GA-RBFNN follow 
reasonably close to the target outputs for both training data 
and testing data. 

V. CONCLUSIONS 

In this paper, we present a hybrid learning algorithm, named 
GA-RBF, to construct accurate radial basis function neural 
network for the ADCES of a certain mine-sweeping weapon. 
The simulation results and comparisons with other algorithm 
demonstrate its effectiveness and validity. 

The next step of our work will be the design of high 
performance controller of the ADCES based on the obtained 
neural network. 
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Fig.1. The automatic depth electrohydraulic control system 
 

Fig.2. Radial basis function neural network 
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Fig.3. Input-output data of the ADECS 
 

Fig.4. Determination number of hidden units 
 

Fig.5. RMSE with different generations 
 

Fig.6. Comparison of target outputs and predicted outputs of RBFNN 


