Modelling of Electrohydraulic System using RBF
Neural Networks and Genetic Algorithm

Abstract—this paper presents an approach to model the
nonlinear dynamic behaviors of the Automatic DepthControl
Electrohydraulic System (ADCES) of a certain mine-sweping
weapon using Radial Basis Function (RBF) neural natorks. In
order to obtain accurate RBF neural networks efficently, a
hybrid learning algorithm is proposed to train the neural
networks, in which centers of neural networks are ptimized by
genetic algorithm, and widths and centers of neurahetworks are
calculated by linear algebra methods. The proposedlgorithm is
applied to the modelling of the ADCES, and the rests clearly
indicate that the obtained RBF neural network can mulate the
complex dynamic characteristics of the ADCES satistdorily.
The comparison results also show that the proposedgarithm
performs better than the traditional clustering-based method.

global minimum. A few researches have paid attentoothe
application of RBF Neural Networks (RBFNN) in
electrohydraulic system [5].

In this paper, the RBF neural networks based orridhyb
learning algorithm are employed to develop an ateumodel
for the ADCES of a certain mine-sweeping weaporrtter to
improve the accuracy performance of the RBFNN, aetle
algorithm is used to optimize the center parameiERBFNN
in stead of traditionally used clustering-based hods. The
width and the weight parameters are calculatecgusime fast
linear techniques, i.e., the maximum distance meaand the
least square algorithm, in order to relieve comipatal burden
and accelerate the convergence of the proposedtdHgarning

Keywords-dlectrohydraulic — system;  neural  network; genetic  ajgorithm. To our best knowledge, this is the fagplication
algorithm; modelling of RBFNN to model an electrohydraulic system intersind
intensively with genetic algorithm.
I.  INTRODUCTION

II.  THEAUTOMATIC DEPTHCONTROL

The Automatic Depth Control Electrohydraulic System
ELECTROHYDRAULIC SYSTEM

(ADCES) of a certain mine-sweeping weapon is a derip
nonlinear electrohydraulic servo system. The fisgep in The Automatic Depth Control Electrohydraulic System
designing a high-performance ADCES controller isttodel ~(ADCES) of a certain type of mine-sweeping weapsn i
the ADCES accurately. The traditional and widelyedis S0mposed of five parts: a proportional valve, a raytc

approach for the modelling of such electrohydraalistem is
based on the first principle methods, i.e. a lin@adel of the
ADCES can be derived according to some physicas$ lsmch

cylinder piston, a copying shoe, a shaft positinoogler and a
plough, as illustrated in Fig.1. In the processpération of the
mine-sweeping weapon, the shape variation of graumthce
is detected by the copying shoe, and the encodkedi with

as the dynamiC equation of valve and the force roala the Copying shoe measures the ang'e between thglﬂpmm

equation [1, 2]. However, the ADCES exhibits sigmint
nonlinear behaviors which make the linear modehioled by
the first principle methods inefficient because lthear model
can’t accurately describes such nonlinearitiehefADCES as
the flow/pressure characteristics, fluid comprabgiband
friction, etc. It is highly desirable to developeecise model of

the ADCES which can be used for the following high-

performance controller design.

and level plane, thus the actual embedded deptiheoplough
can be calculated. The automatic depth contratésmplished
by reciprocating movement of the hydraulic cylindehich is
operated by the proportional valve according torebetween
the actual embedded depth and the target valubelADCES,
there are fixed single-input single-output mappfagctions
among the displacement of the piston, the anglesumed by
the encoder and the actual embedded depth. Smuwiibss of
generality, the control voltage of the proportionalve is

Neural networks have been employed in recent yasrs adopted as the input of the ADCES, and the dispiaoé of

an alternative to the first principle models duetteir ability
to describe highly complex and nonlinear problemsmiany

piston is adopted as the output of the ADCES.
In order to motivate the ADCES sufficiently and leot

fields of engineering. Numerous applications of méu complete data containing all the dynamic charesties of the

networks in electrohydraulic systems have beenrtedd3,
4]. However, all these papers mentioned above fatushe
usage of the multi-layer perceptron neural netwonksch
have some disadvantages such as slow learning ,sjoead
minimal convergence behavior and sensitivity tordmedomly
selected initial weight values. To solve these [@ois, Radial
Basis Function (RBF) neural networks can be useugctw
own the merits of simple architecture, small tnaintimes and

ADCES, it is important to select an appropriateutrgignal for
the ADCES. In the field of linear system identitica, the
Pseudo- Random Binary Signal (PRBS) that only éostavo
amplitude levels is widely used. However, the ideitility
will be lost for the nonlinear ADCES if the PRBS adso
adopted. So an input signal that contains all @stémg
amplitudes and frequencies and all their combinatishould
be employed, such as Pseudo-Random Multi-Level eé&gn
(PRMS), chirp signals, and independent sequencéls ai



Gaussian or uniform distribution. Experience shdhat the

adoption of GA for determining the parameters ofARBI can

PRMS is the most suitable choice of input signat fo avoid local minimum and improve performance [7-10].

identification of a hydraulic system [6]. So indhpaper the
PRMS is selected as the input signal for the ADCES.

Ill.  METHOLOGIES RBF NEURAL NETWORK AND THE

PROPOSED LEARNING ALGORITHM

A. RBFNN and itstraining algorithm

The radial basis function neural network is a tHeger
feedforward neural network which consists of inpayer,
signal hidden layer and output layer, as depiateBig.2. The
input layer consists of neurons which correspondimghe
elements of input vector. These neurons does rumeps the
input information, they only distribute the inpuéator to the
hidden layer. The hidden layer does all the imptrgaocess.
Each neuron of the hidden layer employs a radisislfanction
as nonlinear transfer function to operate the weckiinput
vector and emits the output value to the outpuerayhe
output layer implements a linear weighted sum ef tidden
neurons and yields the output value.

A typical radial basis function that is used instpaper is
the Gaussian function which assumes the form

2
[x=Cml

()=
where x is input vector,c, is the center of RBFNN,
|x-c| denotes the distance betweesindc,, o is the width.

The output of the RBFNN has the following form
M
Yi(X) = 2 Wi (X) + 1o

m=1
whereM is the number of independent basis functiomsg, is
the weight associated with timgth neuron in the hidden layer
and thetth neuron in the output laye, is the bias of théth
neuron.
In general, three types of adjustable parameterghwh
should be determined for the RBFNN: basis funcienter

Cm, basis function widtho and output weighty,,,. Several

algorithms available in the literature have beeoppsed for
training these parameters which can be divided iwto

stages. The first stage includes the selection ppfrexiate
centers and widths for the radial basis functiomsich is a
nonlinear problem. The second stage involves thgsadent
of the output weights, which is a linear problenmsupervised
learning algorithm, for example clustering-basedhod, can
be applied to the first stage, whereas linear algsblutions,
for example least square method, can be appli¢iietsecond
stage.

The training of the RBFNN can be seen as an optitioia
problem, where the modelling accuracy can be madthby
adjusting the parameters of the RBFNN. Genetic ritlgn
(GA) is a parallel and robust optimization techmigaspired
by the mechanism of evolution and genetics, arth# been
successfully applied to innumerable search andropdition
problems. Many researches have devoted to the stfidy
training RBFNN by GA, and the results indicate thhé

In this paper, a hybrid learning algorithm named-BBF
is proposed to train the RBF neural network, in clihthe
centers are optimized by genetic algorithm, while widths
and weights are calculated using traditional maberation
described as follows.

The widths of RBFNN control the domain of influencg
the corresponding radial basis functions. In ortterobtain
more accurate RBFNN, different width value is ufmdeach
radial basis function. The width of th#h center is set to the
maximum Euclidean distance [11] betwetncenterc; and its
candidate centeg;

; =max¢]c, —cj"), j=12---,M j#i.

After the centers and widths have been fixed, thghts of
the output layer can be calculated by an algorituitable to
solve the linear algebraic equations. In this paper output
weights are computed by the least square algorithm.

Let

a) @) - @) 1
0o| A0 B0 - @) 1
a) B0 - @04 1

then the weights can be calculated using the legstre
algorithm [11],

w=o'y=(dTP) o'y,
where®+ is the pseudo-inverse ®f and y is the target output
data.

B. The proposed learning algorithm

Genetic algorithm has been successfully employed in
search and optimization problems by simulating radtu
evolution. The GA has a population of individuatsmpeting
against each other in relation to a fithess fumgtioith some
individuals breeding, others dying off, and new iwdluals
arising through crossover and mutation. In thisgpathe GA
is used to optimize the centers of RBF neural ngtsioThe
following segments present the main areas whereGhAe
applies to RBF neural networks.

Genetic encoding of the GA-RBF algorithm: The choic
of the appropriate encoding for the individualshs first step
for the optimization of RBF neural network by theAG
Traditionally, encoding scheme uses binary stritswvever,
the bit strings of binary-coded genetic algorithecdmes very
long and the search space blows up, while in redéd
genetic algorithm, the variables appear directly
chromosome simply, and computation burden is retieso
real-coded scheme is adopted in this paper.

Genetic operators of the GA-RBF algorithm: There ar
three operators in the GA, i.e., selection, crossoand
mutation. The selection operator employs a fitrfaastion to
evaluation the individuals from the population,igsig the
fitness for each individual according a predeficeiterion. In
this paper, theoulette wheel selection method is used to select
individuals to operate. In order to prevent optimal

in



chromosomes from being ignored, elitist selectioe also
used, i.e., the best chromosomes are always pesbdarv
population. Crossover operator produces offspnmjviduals
by combining genes of parent individuals. The twossover
operators used here are the simple arithmetic avessnd the
whole arithmetic crossover, which are selected oarg.

Mutation operator is a stochastic variation of tpenes of
individuals. The uniform mutation and the Gaussiautation
are employed randomly in the proposed GA-RBF albori

Objective function of the GA-RBF algorithm: The Roo
Mean Square Error (RMSE) which is most widely u$ed
modelling problem is employed as the objective fiamc of
the GA-RBF algorithm.

Stop criteria of the GA-RBF algorithm: The evolutio
process will repeat for a fixed number of generstior being
ended when the objective function satisfies a gi@ecuracy
performance. In the proposed approach, the indalglevolve
for a predefined generations, and the neural nétweath
minimum testing error is selected for each genanatAt the
end of evolution, the neural network with minimuesting
error will be selected as the optimal neural nekwor

In order to accelerate the speed of convergence and
improve the effectiveness of the GA-RBF algoriththe
collected data are scaled between zero and one

Xiscal — X~ Xnin
Xmax - Xmin
where X;, Xmax andXyin are the original, the maximum and the
minimum values respectivelys™ is the value which has
been pre-processed.
In order to weigh the performance of different med#

the ADCES, the Root Mean Square ErBMESE) is applied
to measure the precision of the obtained model

RMS(Y, Ym) = \/%Zi“il(y(i) ~Ym()?

wherey is the target value of displacemew, is the output
of the obtained modeN is the number of data.

The number of hidden units greatly influences the
performance of an RBF neural network. If the numbketoo
low, the precision of the network will be deterim@d. On the
other hand, if the network employs too many hiddaits, it

The proposed GA-RBF algorithm used to evolve th&RB Will trend to overfit the data and increases thengatational

neural network can be summarized in the followitgps.

1)

number of individuals. Each individual associates t
centers of an RBF neural network.

burden. In this paper, the method to determinentiraber of

Randomly choose an initial population with a fixed hidden units is described as follows: firstly, anmher range of

hidden units is determined empirically; secondlgetof RBF
neural networks are construed with different nunmifdridden

Compute the widths and weights of RBFNN. Theunits; then the number of hidden units of the REfwork

outputs of RBFNN can be obtained, and the fitnesgvith minimum testing error is selected as optimwmber.

In order to stand out the advantages of the prapGs%e
RBF algorithm, the conventional K-Means (KM-RBF)
training algorithm is also used for comparison.

In the GA-RBF algorithm, the population size is sbo

compute the fitness function of each offspringas 40, and the selection rate is 0.8, the crossateis 0.8 and

the mutation probability is 0.05, the maximum geatien is

2)
functions of initial population can also be calt¢ath

3) Apply three genetic operators to the parent indizld,
and the offspring individuals are generated.

4) Calculate the widths and weights of RBFNN, and
individual.

5) If the number of generation is equal to the given300.

threshold, then stop, otherwise go to step 3.

V.

This section presents the application of the pre@dSA-
RBF algorithm to evolve the radial basis functioaural
network for modelling of the Automatic Depth Corntro
Electrohydraulic System (ADCES) of a certain typé o
weapon.

EXPERIMENTS AND RESULTS

In the ADECS, the input signal is the control vghkaof
servo valve in the range of [-8 8] volt, and thépat signal is
the displacement of the piston in the range of fbDmeter.
Although the ADECS is a high-order nonlinear systanwill
not be vibrated within the normal input allowed. 8w
experiment to gather data is conducted without eleged
loop controller. With 100ms sampling time, 1000Gadare
collected, as illustrated in Fig.3: (a) presents ihput data,
and (b) shows the output data. The first 600 dedauged to
train the model, while the other 400 data are egguoto
validate the obtained model.

The KM-RBF algorithm and GA-RBF algorithm are both
employed to determine the number of hidden units.
Empirically, the minimum number of hidden unitsGs and
the maximum number of hidden units is 50. The numije
hidden unit increases incrementally from 6 to 5@hwan
increment of 2, thus total 23 RBF neural netwoekehtained.
The performance of the neural networks with differimitial
conditions may be varied, so the training algorithuns 10
times and the average precision values of the & ane used
to measure the performance of the RBF neural néswvor

Fig. 4 shows the results obtained for the RBF rleura
networks with different number of hidden units fayth KM-
RBF algorithm and GA-RBF algorithm. The trainingaes of
neural networks are illustrated in Fig.5 (a), ahd testing
errors of neural networks are showed in Fig.5 Qf)viously,
for KM-RBF algorithm, the neural network with 34ddien
units yields the minimum amount of testing error04®6),
and an over-training was caused for the testing ddien the
number of hidden units more than 34. It is alscngbeat, for
GA-RBF algorithm, the testing errors continue rexweith
increased number of hidden units, however, thengsrror
performance of RBF neural networks only improve2%67
(from 0.0430 to 0.0414) when the number of hiddeitsu



increases from 34 to 50. So taken into account MfRBF

algorithm and GA-RBF algorithm, the best numbehifden (10]
units of the RBF neural networks is chosen as &hteally.
Fig.5 shows the evolution of the RMSE on both iran [11]

data and testing data. In 288 generation, the ninirRMSE
on testing data is obtained (0.466) correspondirthe RMSE
of 0.0413 on training data.

Fig.6 (a) shows the outputs of the obtained RBFaleu
network with 34 hidden nodes by the proposed GA RBF
algorithm as compared to the target outputs fortthaing
data, and Fig.6 (b) shows the target outputs amatitputs of
the obtained RBF neural network for the testingdttcan be
seen that the predicted outputs of GA-RBFNN follow
reasonably close to the target outputs for bothitrg data
and testing data.

V. CONCLUSIONS

In this paper, we present a hybrid learning algonitnamed
GA-RBF, to construct accurate radial basis functieural
network for the ADCES of a certain mine-sweepingpan.
The simulation results and comparisons with othgorghm
demonstrate its effectiveness and validity.

The next step of our work will be the design of thig
performance controller of the ADCES based on thiined
neural network.
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