


fuzzy theory are presented. In section 4 we presented the difference between the
probability of misclassification for the fuzzy and crisp data in Bayes optimal
classifier.

2 Bayes classifier

Bayesian decision theory is a fundamental statistical approach to the problem
of pattern classification. This approach is based on quantifying the tradeoffs
between various classification decision using probability and the costs that ac-
company such decision. It makes the assumption that the decision problem is
posed in probabilistic terms, and that all of the probability values are known.

A pattern is represented by a set of d features, or attributes, viewed as a
d -dimensional feature vector x ∈ ℜd.

Let us consider a pattern recognition problem, in which the class label ω is
a random variable taking values in the set of class labels Ω = {ω1, ..., ωc}. The
priori probabilities, P (ωi), i = 1, ..., c constitute the probability mass function of
the variable ω,

∑c
i=1 P (ωi) = 1. Assume that the objects from class ωi are dis-

tributed in x ∈ ℜd according to the class-conditional probability density function

p(x|ωi), p(x|ωi) ≥ 0, ∀x ∈ ℜd, and
∫

ℜd p(x|ωi)dx = 1, i = 1, ..., c.
Given the prior probabilities and the class-conditional probability density

functions we can calculate the posterior probability that the true class label
of the measured x is ωi using the Bayes formula

P (ωi|x) =
P (ωi)p(x|ωi)

p(x)
(1)

where p(x) =
∑c

i=1 P (ωi)p(x|ωi) is the unconditional likelihood of x ∈ ℜd.
Equation (1) gives the probability mass function of the class label variable

ω for the observed x. The decision for that particular x should be made with
respect to the posterior probability.

The ”optimal” Bayes decision rule for minimizing the risk (expected value
of the loss function) can be stated as follows: Assign input pattern x to class ωi

for which the conditional risk

R∗(ωi|x) =
c

∑

j=1

L(ωi, ωj)P (ωj |x) (2)

is minimum, where L(ωi, ωj) is the loss incurred in deciding ωi when the true
class is ωj . The Bayes risk, denoted R∗, is the best performance that can be
achieved. In the case of the zero-one loss function

L(ωi, ωj) =

{

0, i = j
1, i 6= j

,

the conditional risk becomes the conditional probability of misclassification and
optimal Bayes decision rule is as follows:



R∗(ωi|x) = max
i

P (ωi|x). (3)

Let Ψ∗ be a classifier that always assigns the class label with the largest posterior
probability. The classifier based on Bayes rule is the following:

Ψ∗(x) = ωi if ωi = arg max
i

P (ωi)p(x|ωi). (4)

because the unconditional likelihood p(x) =
∑c

i=1 P (ωi)p(x|ωi) is even for every
class ωi

3 Basic notions of fuzzy theory

Fuzzy number A is a fuzzy set defined on the set of real numbers R characterized
by means of a membership function µA(x), µA : R → [0, 1]:

µA(x) =























0 for x ≤ a,
fA(x) for a ≤ x ≤ c,
1 for c ≤ x ≤ d,
gA(x) for d ≤ x ≤ b,
0 for x ≥ b,

where fA and gA are continuous functions, fA is increasing (from 0 to 1), gA

is decreasing (from 1 to 0). In special cases it may be a = −∞ and (or) b =
+∞. In this study, the special kinds of fuzzy numbers including triangular fuzzy
numbers is employed. A triangular fuzzy numbers can be defined by a triplet
A = (a1, a2, a3). The membership function is

µA(x) =















0 for x ≤ a1,
(x − a1)/(a2 − a1) for a1 ≤ x ≤ a2,
(a3 − x)/(a3 − a2) for a2 ≤ x ≤ a3,
0 for x ≥ a3.

The width wA of the fuzzy number A is defined as following value [5]:

wA =

∫ +∞

−∞

µA(x)dx. (5)

A fuzzy information Ak ∈ ℜd, k = 1, ..., d (d is the dimension of the fea-
ture vector) is a set of fuzzy events Ak = {A1

k, A2
k, ..., Ank

k } characterized by
membership functions

Ak = {µA1

k

(xk), µA2

k

(xk), ..., µA
nk

k

(xk)}. (6)

The value of index nk defines the possible number of fuzzy events for xk

(for the k-th dimension of feature vector). In addition, assume that for each



observation subspace xk the set of all available fuzzy observations (6) satisfies
the orthogonality constraint [14]:

nk
∑

l=1

µAl

k

(xk) = 1. (7)

The probability of fuzzy event assume in Zadeh’s form [18]:

P (A) =

∫

ℜd

µA(x)f(x)dx. (8)

The probability P (A) of a fuzzy event A defined by (8) represents a crisp number
in the interval [0, 1].

4 Estimations of the Bayes classifier error

4.1 Estimation of the Bayes classifier error with crisp observations

The error of Ψ∗ is the smallest possible error, called the Bayes error. The overall
probability of error of Ψ∗ is the sum of the errors of the individual xs weighted
by their likelihood values p(x),

Pe(Ψ∗) =

∫

ℜd

[1 − P (ω∗
i |x)]p(x)dx. (9)

It is convenient to split the integral into c integrals, one on each classification
region. For this case class ω∗

i will be specified by the regions label. Then

Pe(Ψ∗) =
c

∑

i=1

∫

ℜ∗

i

[1 − P (ωi|x)]p(x)dx (10)

where ℜ∗
i is the classification region for class ωi, ℜ

∗
i ∩ ℜ∗

j = 0 for any i 6= j and
⋃c

i=1 ℜ
∗
i = ℜd. Substituting (1) into (10) we have [8]:

Pe(Ψ∗) = 1 −

c
∑

i=1

∫

ℜ∗

i

P (ωi)p(x|ωi)dx. (11)

In Fig. 1 the Bayes error is presented for the simple case of x ∈ ℜ, Ω = {ω1, ω2}
and P (ω1|x) = 1−P (ω2|x). According to (10) the Bayes error is the area under
P (ω2)p(x|ω2) in ℜ∗

1 plus the area under P (ω1)p(x|ω1) in ℜ∗
2. The total area

corresponding to the Bayes error is marked in black.

4.2 Estimation of the Bayes classifier error with fuzzy observations

When we have non-fuzzy observation of object features in Bayes classifier then
recognition algorithm for zero-one loss function is given by (3) and probability
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Fig. 1. The probability of error for Bayes optimal classifier when object features are
non-fuzzy

of error is given by (10). Similarly, if (7) holds and we use probability of fuzzy
event given by (8) the Bayes recognition algorithm for fuzzy observations Ã is
the following:

Ψ∗
F (Ã) = ωi if (12)

ωi = arg max
i

P (ωi)

∫

ℜd

µÃ(x)p(x|ωi).

The probability of error Pe(Ψ∗
F ) for fuzzy data is the following:

Pe(Ψ∗
F ) = 1 −

c
∑

i=1

∑

Ã∈i

P (ωi)

∫

ℜ∗

i

µÃ(x)p(x|ωi)dx, (13)

where Ã ∈ i denote the fuzzy observations belongs to the i-th classification
region.

When we use fuzzy information on object features instead of exact infor-
mation we deteriorate the classification accuracy. The difference between the
probability of misclassification for the fuzzy Pe(Ψ∗

F ) and crisp data Pe(Ψ∗) in
Bayes optimal classifier is the following:

Pe(Ψ∗
F ) − Pe(Ψ∗) = (14)

=
∑

Ã∈ℜd

(

∫

ℜd

µÃ(x) max
i

{P (ωi)p(x|ωi)} dx −

−max
i







∫

ℜd

µÃ(x)P (ωi)p(x|ωi)dx









 .



similarly as in [4].
The element of

∑

Ã∈ℜd

equals to 0 if and only if, for the support of fuzzy obser-

vation Ã, one of the i discriminant functions [P (ω1)p(x|ω1), . . . , P (ωi)p(x|ωi)]
is uniformly larger than the others. Another interpretation is that the value
of equation (14) depends only from these the observation, in whose supports
intersect the discriminant functions.

4.3 Error bounds in terms of information energy for fuzzy

observations

Some studies pertaining to bound on the probability of error in fuzzy concepts
are presented in [13], [11]. They are based on information energy for fuzzy
events. The information energy contained in the fuzzy event A is defined by [12]:

W (A) = P (A)2 + P (Ā)2, (15)

where P (Ā) is the complement set of A.
The information energy contained in the fuzzy information A is defined

by [12]:

W (A) =

k
∑

l=1

P (Al)
2. (16)

The marginal probability distribution on fuzzy information A of the fuzzy
event A is given by:

Pm(A) =

∫

ℜd

µA(x)p(x)dx, (17)

where p(x) is is the unconditional likelihood like in (1).
The conditional information energy of Ω given by the fuzzy event A is as

follows:

E(P (Ω|A)) =

c
∑

i=1

(P (ωi|A))2, (18)

where P (ωi|A) =
P (ωi)

∫

ℜd

µA(x)p(x|ωi)dx

Pm(A) .

The conditional information energy of Ω given the fuzzy information A is as
follows:

E(A, Ω) =
∑

A∈A

E(P (Ω|A))Pm(A). (19)

For such definition of conditional information energy the upper and lower
bounds on probability of error, similarly as in [11], are given by:

1

2
(1 − E(A, Ω)) ≤ Pe(Ψ∗

F ) ≤ (1 − E(A, Ω)). (20)



4.4 Numerical example

The aim of the experiment is to compare the estimation error of Bayesian clas-
sifiers calculated from (14) with the bounds of error classification obtained in
terms of the information energy of fuzzy sets. Additionally, relationship between
the estimation error (14) and information energy of fuzzy events (16) is intro-
duced. These results are calculated for a full probabilistic information.

Let us consider the binary classifier with a priori probabilities P (ω1) =
P (ω2) = 0.5. The class-conditional probability density functions are normal
distributions in ℜ1 p(x|ω1) = N(5.5, 1) and p(x|ω2) = N(6.5, 1). In experiments,
the following sets of fuzzy numbers were used:
case A

A = {A1 = (−2, 0, 2) , A2 = (0, 2, 4) , . . . , A8 = (14, 16, 18)},

case B

A = {B1 = (−1, 0, 1) , B2 = (0, 1, 2) , . . . , B16 = (14, 15, 16)},

Tab. 1 shows the difference between the probability of misclassification for
fuzzy and non fuzzy data in the Bayes optimal classification calculated from
(14) and information energy of fuzzy information (16) for case A. The difference
(1−E(A, Ω))−Pe(Ψ∗) for this case is equal 0.126. The change of this difference
in dependence from the parameter k is the poses the precision 0.0001. The Tab. 2
shows suitable results for the case B. The information energy of fuzzy information
W (B) is equal 0.2358 and the difference (1−E(B, Ω))−Pe(Ψ∗) is equal 0.4105
with the precision 0.0001.

Table 1. The difference between the probability of misclassification Pe(Ψ∗

F )−Pe(Ψ∗)
and information energy of fuzzy information W (A) for case A

p((x − k)|ω1), p((x − k)|ω2), k =
0 0.5 1 1.5 2 2.5 3

W (A) 0.4093 0.4046 0.4000 0.4046 0.4093 0.4046 0.4000
Pe(Ψ∗

F ) − Pe(Ψ∗) 0.0732 0.0390 0.0257 0.0390 0.0732 0.0390 0.0257

Table 2. The difference between the probability of misclassification Pe(Ψ∗

F )−Pe(Ψ∗)
for case B

p((x − k)|ω1), p((x − k)|ω2), k =
0 0.25 0.5 0.75 1 1.25 1.5

Pe(Ψ∗

F ) − Pe(Ψ∗) 0.0257 0.0120 0.0070 0.0120 0.0257 0.0120 0.0070



The parameter k shifts the discriminant functions P (ω1)p((x − k)|ω1) and
P (ω2)p((x− k)|ω2). Fuzzy observations are represented by adequate fuzzy num-
bers. The following conclusions could be drawn from the experiment:

– the difference in the misclassification for fuzzy and crisp data does not de-
pend only on the width fuzzy number,

– the position of the class-conditional pdf’s in relation to the observed fuzzy
features is the essential influence for the difference Pe(Ψ∗

F ) − Pe(Ψ∗),
– this difference is periodical, the period is equal a half of the width fuzzy

number,
– the information energy of fuzzy events is periodical too, the period is equal

a half of the width fuzzy number,
– the differences Pe(Ψ∗

F )−Pe(Ψ∗) is exact, the difference based on information
energy (1−E(A, Ω))−Pe(Ψ∗) is quite inaccurate estimation of the difference
of error for fuzzy and crisp data.

5 Conclusion

In the present paper we have concentrated on the Bayes optimal classifier. As-
suming a full probabilistic information we have presented the difference between
the probability of misclassification for fuzzy and crisp data. Additionally, the
received results are compared with the bound on the probability of error based
on information energy.
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