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Numerical Modelling of the Competition ﬁ 24
between the Adaptive Immune System and Virus

Abstract. We present a mathematical model of the interactions be-
tween adaptive immune system and viral infection. The model is a bi-
linear system of partial integro-differential equations of Boltzmann type.
We use the capabilities of specialized software to solve complicated sys-
tem of equations, present the results of computer simulations and explain
their immunological meaning.
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1 Introduction

Over the past decades computer technologies have become a significant part of
the research in many fields. Often computer simulations are used together with
mathematical methods for analysis, management, prediction, and visualization
of various data related to phenomena and processes under investigation. The
usefulness of mathematical modelling and computer simulations might be un-
derstood through their ability to describe and predict the temporal dynamics of
interactions between entities, which may be very complicated and nonlinear {6,
28,37,42]. The use of mathematical and computational approaches in conjunc-
tion with experimental methods facilitates the understanding of the mechanisms
of the studied processes and the discovery of new phenomena [29]. Examples of
successful application of the methods of numerical simulations and mathemat-
ical modelling to applied and life sciences are works in such areas as complex
biological systems [5, 7,11, 16, 17], cancer modelling [13, 15, 35, 38}, psychological
interactions [8, 20], politics and social sciences [18, 19, 33, 34], traffic flow [21, 24],
population dynamics [3] etc.

In this paper we present an application of computational methods to im-
munology. In this field mathematical methods are extensively used for the quan-
tification of the time dynamics of interacting populations of immune cells and
pathogens, for example between lymphocytes and viruses. Many immunological
processes involve very complex interactions and dynamics. Mathematical and
computer models are powerful tools for interpretation and understanding of ex-
perimental and clinical data and allow to obtain interesting and valuable insights



into possible outcomes of interactions between foreign antigens and immune sys-
tem. The application of computational approach to immunology facilitates the
clarification of the factors that are necessary to explain experimental and clinical
observations, the determination of these factors in precise terms and the eval-
uation of the smallest number of factors needed to explain the observed data.
Moreover, computational methods can suggest new investigations for calcula-
tions of these significant factors providing in this way a basis for the design
of new experiments. This may influence the development of new directions of
immunological research. In addition, analysis and simulations of mathematical
models can reduce the amounts of experiments for development of treatment
strategies, which are usually lengthy and expensive [4, 14].

The purpose of the present paper is to analyze numerically a mathematical
model that describes the adaptive immune response to viral infection [1, 39]. The
model is a generalization of the recently proposed in [27,30] model of humoral
immune response to virus and the model describing the cellular immune response
to viruses that has been proposed in [31].

The organization of the paper is as follows. In Section 2 we present briefly
the interacting populations and describe the mathematical model. Results of
numerical simulations of the model are presented in Section 3. Finally, Section
4 includes our concluding remarks and future directions.

2 Interacting populations and mathematical model

Various viruses cause diseases, some of which like AIDS, hepatitis etc. are very
dangerous. Viruses are intracellular pathogens. In order to reproduce, they must
enter susceptible cells and use the metabolic machinery of the host cells. The
viruses can replicate inside the infected cells, thus producing new virus particles
that may leave the infected cells. The virus can destroy some of the host cells
[42, 43, 45].

The immune system can apply innate and adaptive responses against the
viruses. The adaptive immunity may be subdivided into two main types, called
cell-mediated (or cellular) immunity (CMI) and humoral immunity. The main
immune cells involved in the CMI are T lymphocytes. They include cytotoxic
T lymphocytes (CTLs) and T helper (T},) cells. The CTLs can destroy infected
cells. T helper cells produce cytokines and signals inducing the proliferation and
activation of immune cells. The humoral response is performed by immunoglob-
ulins (antibodies), which are produced by B lymphocytes. The humoral response
helps in the eradication of the free virus particles [32, 36].

In this paper we generalize the models proposed in [27,30] (describing the
humoral response to virus) and [31] (that describes the interactions between
CMI and viral infection). We consider five interacting populations that play a
significant role in the interaction between the adaptive immune system and a
virus, which are denoted by the corresponding subscript ¢ and are described in
Table 1.



Table 1. Virus-acquired immune system dynamics variables.

Variable i| Abbreviation Population Activation state u € [0, 1]
1 Uninfected Th|Uninfected helper T cells not relevant
2 Infected Ty, | Infected helper T cells |virus replication, T} destruction
3 Virus Free virus particles rate of infection of T}
4 AB Antibodies destruction, deactivation of virus
5 CTLs Cytotoxic T lymphocytes destruction of infected T},

The interacting individuals are characterized by a microscopic state variable
u € [0, 1], that describes the specific biological function of each individual, which
in the kinetic theory for active particles [2,9,10,12,22,23] is called activation
state (or activity). In our model we introduce the following meaning of activity
for the populations i = 2, 3,4, 5.

The state of activity for the population ¢ = 2 of infected helper T cells denotes
the virus mediated killing rate of the infected cells as well as the rate of viral
reproduction inside the host cell. We assume that the T helper cells infected by
cytopathic viruses (i.e. viruses able to shorten the life-span of the host cells at a
higher rate [26,44]) possess higher activation states. Moreover, the infected cells
with higher states of activity are supposed to produce larger amount of virus
particles.

The activation state for the population ¢ = 3 of free virus particles denotes
their ability to infect the susceptible T}, cells. The higher the ability of a virus
to enter a cell, the higher the activity of the virus.

The activation state for the population ¢ = 4 of antibodies is supposed to
denote their ability to kill the viruses and to lower their states of activity.

We assume also that the activity for the population ¢ = 5 of the CTLs denotes
their ability to destroy the infected T}, cells.

Here, the presence of internal degree of freedom of the population i = 1 of
the uninfected helper T cells is neglected. As a simplification of the reality, we
suppose that the population ¢ = 1 is independent of their activation states.

The meaning of the activation states of the considered populations partici-
pating in the competition between virus and adaptive immunity is presented in
Table 1.

Further, we introduce the following notation. Let

fi(tau)a fiZ[O,OO)X[O,l]HRJ,_, iil,...,5,

denotes the distribution density of the i-th population with state of activity
u € [0,1] at time ¢ > 0. Moreover, we denotes by

1
n;(t) :/0 fitt,u)du, mn;:[0,00) — Ry, i=1,...,5, (1)

the concentration of the i-th population at time ¢ > 0.



Due to the supposed independency of the distribution function f; (¢, u) of the
activation state u

fit,u) =ni(t), Yuel0,1], t>0.

Our generalized mathematical model of the competition between the virus
and the adaptive immunity describes the dynamics of the distribution densi-
ties of the interacting populations. Respective gain, loss and conservative terms
corresponding to the most important processes of production, destruction and
change of activity of the individuals are included in the following system of
partial integro-differential equations.

Ay (t) = Si(t) — dina (t) — dizna(t) fol v f3(t, v)dv, (2)

8f2tu ()l—unl vfgtvdv—d25f2tu vf5tvdv
0 0

—dasufa(t,u) + coo (2 fou(u —v)fa(t,v)dv — (1 —u)? falt, u)) 7 (3)

%(tv U p22) fo UfZ t 'U)dl) - d33f3(t u) d34f3(t7 u) fol Uf4(t7 'U)dl), (4)

O (t,u)=pSy (1 — ) [y fa(t,v)dv [} fa(t,v)dv — daafa(t,u), (5)

%f"( u) = p(lg)(l —u)nq(t fo f3(t,v)dv — dss f5(t, u), (6)

with nonnegative initial conditions

n1(0) =nt”,  fi(0,u) = £V w), i=2,3,4,5.

All parameters denoted by pl(-f), d;; and ¢;; are supposed to be nonnegative

and p%) = 2d13.

The function S;(t) denotes the proliferation rate of uninfected T helper cells.
The parameter di; describes the natural death of the uninfected cells. They
become infected by the virus with a rate proportional to their concentration
as well as to the activation state of the virus. The temporal evolution of the
population i = 1 of the uninfected cells is described by equation (2).

The equation (3) of the system model the dynamics of the distribution func-
tion of the population of the infected cells. The factor (1 — u) in its gain term
describes our assumption that the activity of the newly infected T helper cells
is low. This is connected with the experimental observations demonstrating that
the virus needs some time to replicate after entering the host cell. During this
period the virus particle uncoats and the viral genome is exposed. Subsequently,
the viral genome is replicated and viral proteins are made. New virus particles
are produced after the association of the newly generated viral proteins with



the viral genomes [42]. The rate of killing of the infected cells by the virus is
assumed to be higher for cells with higher activitation states. It is described by
the loss term

d22 Ufg (t, U) .

The parameter ds5 characterizes the rate of destruction of infected cells by CTLs
which is assumed to be proportional to the state of activity of CTLs. The repli-
cation of the virus particles inside the infected cells leads to an increase in the
probability of the destruction of the infected cells by the virus. This is described
by the conservative term

’ — 0 v)dv — *U22 u
022<2/0 (u =) fa(t,v)dv — (1 — u)* fa(t, ))

which corresponds to an increase in the activation states of the infected cells (cf.
equation (3)).

The equation (4) describes the temporal evolution of the distribution function
of the population of the viral particles. The parameter pé?;) characterizes the
rate of replication of the virus inside the host cells, which is supposed to be
proportional to the activation state of the infected cells. The parameter ds3
characterizes the natural death of viruses. The parameter dss describes the rate
of killing of free viruses by antibodies.

The equation (5) of the system model the dynamics of the distribution func-
tion of the population of the antibodies. The parameter pgi) describes the rate
of production of AB, while the parameter d44 characterizes the natural death of
AB.

There is experimental evidence that the newly produced AB and CTLs need
time for their development and activation [32]. The factor (1 — u) in the gain
terms of equation (5) and equation (6) describes our assumption that the activity
of the newly generated ABs and CTLs is low.

The equation (6) describes the temporal evolution of the distribution function
of the population of CTLs. The production rate of the CTLs is supposed to be
proportional to the concentrations of the uninfected helper T cells and of the
virus, both of which stimulate the proliferation of cytotoxic T lymphocytes [36].
The parameter ds5 characterizes the natural death of CTLs.

3 Numerical simulations

The initial value problem corresponding to the model (2)-(6) consisting of 5
nonlinear partial integro-differential equations is solved numerically. In the first
step, we discretize the system (2)-(6) in the activation state variable u € [0, 1]
by constructing a uniform grid

u; =1Au, i=0,1,...,N, (7)



where Au and N are chosen in such a way that NAu = 1 and N is a positive
integer. This yields a system of 4N + 4 ordinary differential equations allowing
to find approximate solutions to the model (2)-(6).

This system of ordinary differential equations corresponding to the discretized
model (2)-(6) is solved by using the code ode1bs from the Matlab ODE suite
[40] with RelTol = 1073 and AbsTol = 10~*. The participating integrals are
approximated by the use of the composite Simpson’s rule [25,41]. The obtained
numerical solutions of the discretized system are then used to compute the ap-
proximations to the functions na(t), nsg(t), na(t) and ns(t) by the use of (1).

The aim of our numerical experiments is to analyze the role of cellular and
humoral immunity against viral infection.

The values of the parameters of the model are set as follows:

Sy(t) =100, t>0,
dy = do5 = 50, co2 = 10,

diy = dz3 = py) = pi3 = 100.

As initial conditions we assume the presence of uninfected T helper cells, free
virus particles, and CTL as well as the absence of infected T helper cells setting
fort=0:

n1(0) =1, f2(0)=0, f3(0)=0.1, f5(0)=0.1

In the first part of our simulation we study the interactions between viral
particles and adaptive immunity when only the cellular response is activated.
We model this case assuming the absence of AB at t = 0 and set additionally

d3q = dys = p;(gi) =0, f1(0)=0

This particular case of adaptive immunity when only cellular response is
active and humoral response is passive is analyzed numerically in [31]. There,
the role of the parameter dy3 for the dynamics of the solutions to the system (2)-
(6) is studied. This parameter describes the rate of viral infectivity, which is very
important for the reproduction of the viruses because they need the metabolic
machinery of the susceptible cells in order to replicate [42]. The computational
experiments presented in [31] show that for lower values of the parameter dy3 (e.g.
dq13 = 100) an effective, sustained cellular immune response becomes established.
In such cases virus load is contained at low levels. For higher values of the
parameter describing the viral infectivity (e.g. di3 = 108) the viral load is at high
levels and an effective, sustained cellular immune response is not established.

In the second part of our computer simulations we study the problem whether
an additional humoral response is able to change the outcome of the competition
between the viral infection and the adaptive immune system in cases when the
cellular immunity alone is not able to control the infection, and set d;3 = 108.



We consider additionally an initial presence of AB and change the following
parameters related to the functions of the AB (population i = 4):

dsq = 1000, dgyy =1, f4(0)=0.1

The results of the numerical simulations show that humoral response can
be helpful to the adaptive immunity, especially when the rate of production of
antibodies (described by the parameter pgi)) and their ability to destroy viruses
(described by the parameter dz4) is high enough. In such cases immunoglobulins

destroy large amounts of free viral particles and limit the growth of the infection.
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Fig. 1. Dynamics of the infected cells in cases of ”cellular-only” and
”cellular-and-humoral” responses.
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Fig. 2. Dynamics of the uninfected cells in cases of ”cellular-only” and
”cellular-and-humoral” responses.

The computational results for the case when only cellular response is func-
tioning as well as two cases of cooperative response of cellular and humoral



immunity are presented in Fig.1, Fig.2, Fig.3 and Fig.4. Fig.1 illustrates the
dynamics of the infected cells, Fig.2 - of the uninfected cells, Fig.3 - the viral
dynamics, and Fig.4 - the temporal evolution of CTLs. The curves labeled by
pgi) = 0 describe the case when only cellular response is functioning, while the
other two curves on each figure correspond to cases when humoral immunity is

also active, with péi) = 100 and péi) = 1000.
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Fig. 3. Dynamics of the free viral particles in cases of ”cellular-only” and
”cellular-and-humoral” responses.
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Fig. 4. Dynamics of the CTLs in cases of ”cellular-only” and
”cellular-and-humoral” responses.

The computer simulations show that while the cellular-only response is un-
able to fight off the infection in cases when the rate of infectivity of uninfected
cells is very high, the humoral immunity leads to an additional destruction of
free viral particles and allows the immune system to control the viral load at suf-
ficiently low levels. Thus, the close collaboration between cellular and humoral



immunity can be very important in the fight against aggressive viruses and lead
to a successful eradication of the infection.

4 Concluding remarks and future directions

In the present paper, a generalized mathematical model of the competition be-
tween the adaptive immune system and the viruses is analyzed. It describes
both the humoral and the cell-mediated immune mechanisms. The results of
the numerical simulations confirm the importance of both parts of the adaptive
immunity for clearance of the virus.

Numerical simulations utilizing mathematical models may lead to a reduction
in the quantity of experimental studies performed in virology. Our future work
will address the influence of other parameters of the model (2)-(6) on the outcome
of the competition between the viral infections and the adaptive immunity. It
may lead to a better understanding of the mechanisms of these complex and
highly nonlinear interactions.
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