


1 Introduction

Animal models prove useful to researchers in the manipulation of specific
aspects of cancerogenic systems and for the testing of experimental therapies
[12]. On the other hand, mathematical models demonstrate potential to
provide alternatives to animal models and decrease the numbers of laboratory
experiments and partially replace them by numerical experiments, which
describe the behaviour of simulated tumours.

The purpose of the paper is to use the laboratory data [7] and compute pa-
rameter values for the mathematical model of cancer invasion of tissue, which
includes differential equations for kinetics of urokinase receptor and uroki-
nase plasminogen activator cycle, and incorporates haptotaxis, chemotaxis,
and proliferation and degradation rates for cancer cells and the extracellu-
lar matrix [9]. We estimate the parameter values for the model equations
by minimizing the error between the computed solutions and the available
laboratory data.

In [13], the laboratory data [7] were successfully applied to estimate
parameter values for the kinetic model [14], which is composed of partial
integro-differential equations. The application of models of this type to tu-
mour growth has been initiated by Bellomo and Forni [4] and developed later
in a series of papers e.g., [3, 5, 10, 11]. Recently, Lachowicz [16] has proved
that, for certain parameter ranges, a particular kinetic model considered on
infinite domains is equivalent to the macroscopic model [8]. The result by
Lachowicz [16] was a motivation for the parameter estimation in [15] for the
model by Chaplain and Anderson [8]. Since the model [8] does not include
differential equations describing kinetics of urokinase receptor and urokinase
plasminogen activator cycle, in this paper, we apply the laboratory data [7]
to the macroscopic model [9], which is different than the models in [8] and
[14]. The parameter values for the macroscopic model [9], with differential
equations describing kinetics of urokinase receptor and urokinase plasmino-
gen activator cycle, were not yet estimated according to laboratory data.

For the estimation of the parameter values for the model [9], we con-
struct a numerical algorithm based on spectrally accurate approximations.
The approximations allow to use low-dimensional vectors of data for solving
the model and save computational time for each solution computed for the
selection of the parameter values.

The paper is organized as follows. A mathematical description of the
model equations is provided in Section 2. In Section 3, we introduce the nu-
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merical algorithm and present numerical experiments that lead to parameter
estimation for the model equations and comparison of the resulting numerical
solutions with the laboratory data. Finally, Section 4 includes our concluding
remarks and future directions.

2 Oscillatory behaviour in the cancer cells

and extracellular matrix proliferation terms

In this paper, we apply laboratory data and find parameter values for the
mathematical model, which was introduced by Chaplain and Lolas [9]. For
the cancer cell motion, they considered the following partial differential equa-
tion:
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where the tumour cell density n depends on time t and the spatial variable
x from the scaled domain [0, 1]. Moreover, dn is the random motility coef-
ficient, µ1 is the proliferation rate of the tumour cells, and χ and γ are the
chemotactic and haptotactic coefficients, respectively. The proliferation of
tumour cells is modelled by the term µ1pn(1 − n − f), which because of p,
the concentration of the urokinase plasminogen activator (uPA) bound to the
uPA receptor (uPAR), allows to incorporate the oscillatory behaviour in the
cancer cells, cf. [9]. The unknown functions f and m represent the density
of the extracellular matrix (ECM) and uPA concentration, respectively.

The extracellular matrix is a complex meshwork of proteins and pro-
teoglycans that isolates tissue compartments, within which solid organs are
placed [17]. The equation governing the processes of the ECM degradation
and production is the following ordinary differential equation:

∂f

∂t
= − ηmf

︸ ︷︷ ︸

proteolysis

+ µ2fp(1 − n − f)
︸ ︷︷ ︸

renewal

, (2.2)

where η and µ2 are the rate constants for the degradation and growth, respec-
tively. Motivated by the information on clinical observations of the increased
production (re-establishment) of ECM in case of prostate cancer [17], we
consider the model with µ2 6= 0.
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Proteases such as metalloproteases and serine proteases are enzymes that
are released from tumours. They play very significant role in the degradation
of ECM thus allowing the migration of cancer cells and their metastasis.
The serine proteases of the plasminogen activation system includes urokinase
uPA, which uses a specific uPA receptor (uPAR) to migrate through the ECM
[1, 2]. The uPA is produced by the tumour cells, diffuses throughout the
tissue, and undergoes decay. Therefore, the equation governing the evolution
of uPA concentration is given by

∂m

∂t
= dm

∂2m

∂x2
︸ ︷︷ ︸

diffusion

+ αn
︸︷︷︸

production

− βm
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decay

, (2.3)

with constant diffusion coefficient dm, production rate α, and decay rate β.
As in [9], we choose the following system of ordinary differential equations

for the uPAR kinetics:

dp

dt
= q − 3

dq

dt
= (q − 3)

(

1 − (p − 2.1)2
)

− (p − 2.1),

(2.4)

where q represents the concentration of the uPAR. Figure 18, [9], illustrates
the limit cycle kinetics of the system (2.4). The combined system (2.1)-
(2.4) overcomes the weakness of the models, which incorporate only constant
reduction terms for cancer cells.

The system (2.1)-(2.4) is not complete and has to be closed by initial and
boundary conditions. As in [8] and [9], we assume that at time t = 0, the
initial small lump of cancer cells is centered around x = 0 and the function
n has the initial distribution

n(x, 0) = exp ( − x2/ǫ), (2.5)

with a positive constant ǫ. For the initial distribution of ECM and uPA we
choose

f(x, 0) = 1 − 0.5n(x, 0), m(x, 0) = 0.5n(x, 0), (2.6)

where x ∈ [0, 1], cf. [8], and we choose p(0) and q(0) according to numerical
experiments and laboratory data. For the boundary conditions we choose
the zero-flux conditions

∂n
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χ
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(0, t) = 0 (2.7)
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at the left edge x = 0 and the Dirichlet conditions

n(1, t) = 0, m(1, t) = 0, (2.8)

at the right edge x = 1 of the considered part of the tissue, which abuts a
healthy part of the organism at x = 1.

The purpose of this paper is to apply the experimental data from [7] to
the model (2.1)-(2.8) and demonstrate that its solutions correlate with the
in vivo growths of prostate tumours tested in five nude mice [7]. In the next
section, we construct a numerical algorithm for the model (2.1)-(2.8) and
compute its parameters µ1, µ2, α, β, γ, η, χ, dn, dm by minimizing the error
between its numerical solutions and the experimental data from [7]. Since the
solutions have to be computed for many different sets of the parameters, we
construct the algorithm by using spectrally accurate approximations so that
the resulting schemes are based on small amounts of spatial grid-points and
low-dimensional vectors, which saves computational time for each solution
corresponding to one combination of the parameters.

3 Numerical algorithm

Consider the Chebyshev-Gauss-Lobatto points
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and similar notations for f and m. For the first order derivatives, we obtain
the following approximations
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other rows as in D(1), w is an N +1 by 1 column vector including the entries
of the last column of D except the last entry dN+1,N+1, e1 is the unit N + 1
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for the chemotaxis term in (2.1). Here, ⊙ stands for the component-wise
multiplication between two vectors. From (3.3) we obtain
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for the haptotactic term. Considering the general case with the random
motility coefficient dn = dn(f, m), which may be a function of ECM or/and
uPA, for the dispersion term in (2.1), from (3.2), we obtain the approximation
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From (2.1) and the above three approximations, for the chemotaxis, hap-
totaxis, and dispersion terms, we obtain the following ordinary differential
equation
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The discrete form for (2.2) is written in the following way
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Figure 1: Laboratory versus numerical data.

The diffusion of the uPA can be approximated by

mxx(t) ≈ D(1)mx(t) + sm
N+1(t)w,

which, from (3.4), gives

mxx(t) ≈ D(1)D
(1)
0 m(t) + sm

N+1(t)w

and results in the following discrete form for (2.3)

dm

dt
(t) = dmD(1)D

(1)
0 m(t) + dmsm

N+1(t)w + αn(t) − βm(t). (3.7)

The system of ordinary differential equations (3.5), (3.6), (3.7), and (2.4)
is not completed and has to be closed by initial conditions. From (2.5)-(2.6)
we obtain
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(3.8)

and the starting vectors for the ECM and uPA are

f(0) = 1 − 0.5n(0), m(0) = 0.5n(0), (3.9)
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respectively. The initial conditions

p(0) = 1, q(0) = 1

are chosen according to the numerical experiments with the semi-discrete
scheme (3.5), (3.6), (3.7), (2.4), (3.8), and (3.9) and comparison of the nu-
merical results with the laboratory data [7].

The parameter values µ1, µ2, α, β, γ, η, χ, dn, and dm used in the model
equations (2.1)-(2.3) and in the construction of the numerical scheme (3.5),
(3.6), (3.7) are unknown and have to be estimated in order to find the ap-
proximations to the tumour cell density n, the ECM density f , and the uPA
concentration m. In this paper, we apply the laboratory data [7] to estimate
the parameter values for the model (2.1)-(2.3).

The laboratory data [7] are displayed in Figure 1 by ⊲, ⋄, +, ◦, and ∗

for the in vivo tumour growth rates from the five prostate Pr14C1, Pr14C2,
Pr117, Pr14, and Pr111 cell lines, respectively. For comparison, the numerical
data are displayed by the solid curves. The laboratory data [7] are compared
with numerical data computed from the model equations (2.1)-(2.4) with var-
ious sets of values assigned for the constants µ1, µ2, α, β, γ, η, χ, dn, and dm.
Each set of the constants gives a different solution n and among many solu-
tions, for each prostate cell line, only the solutions which capture the main
characteristic features of the in vivo tumour growth rates are chosen. This
selection of solutions of the model equations (2.1)-(2.4) and their correspond-
ing parameter values is computationally expensive and thus the design of the
numerical algorithm is crucial in the estimations of the unknown parameters.
Since our algorithm is based on spectrally accurate approximations for the
partial derivatives with respect to x, instead of using large dimensional vec-
tors, like e.g. in finite difference schemes, we use low dimensional vectors and
save computational time for each solution computed for the selection of the
parameter values.

For each cell line, the parameter values are chosen according to the min-

imal error between the data and the computed values v(t) =
4

3
πr3(t), where

r(t) = k
∫ 1

0
n(x, t)dx,

and k is a constant of proportionality approximated by using the vertical
scale in Fig. 1I, [7]. Here,

∫ 1

0
n(x, t)dx ∈ [0, 1]
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corresponds with a mass of cells along a line segment scaled to the x-domain
[0, 1], which is shifted in such a way that the tumours are centered around
x = 0. The resulting parameter values are listed for each cell line in Table
1 and the solutions that correspond to these parameter values are presented
in Figure 1.

Param. Pr111 Pr117 Pr14 Pr14C2 Pr14C1

µ1 5.1 · 10−1 1.4 · 101 4.6 · 102 1.3 · 105 9.0

µ2 2.9 · 10−4 7.7 · 10−9 1.3 · 10−14 8.9 · 101 2.9 · 10−3

α 2.9 7.8 · 10−1 2.9 1.1 5.8

β 3.5 · 10−3 8.4 · 10−6 3.7 · 10−5 9.1 · 10−9 3.8 · 10−10

γ 7.8 · 10−3 3.2 · 10−9 1.7 · 10−9 1.6 · 101 3.7 · 10−10

χ 8.2 · 10−11 2.2 · 10−3 1.0 · 10−7 1.0 · 10−4 6.6 · 10−4

η 4.9 · 10−2 5.4 · 10−1 2.4 · 10−1 3.6 · 10−1 2.0

dn 6.4 · 10−3 6.5 · 10−2 7.0 · 10−2 1.2 · 102 2.8 · 10−1

dm 8.7 · 10−8 1.9 · 10−16 3.2 · 10−12 2.2 · 10−15 1.5 · 10−10

Table 1: Parameter values for in vivo cell growth in C3(1)Tag Mice.

4 Concluding remarks and future directions

In this paper, we have applied the laboratory data [7] and have estimated
parameter values for the mathematical model of cancer cell invasion of tissue,
which includes the chemotaxis, haptotaxis, and proliferation terms [9]. The
ability of the model to fit well the experimental data demonstrated in our
paper confirms the usefulness of the mathematical modeling approach and
the computational simulations in cancer research. In our future work we
plan to develop the model for further investigations of mechanisms of cancer
invasion and metastasis, which could be used for the design and improvement
of treatment strategies.
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