CHAIN MODELAS ATOOL FOR IMPROVING
QUALITY OF A RULE BASE OF AFUZZY MODEL
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Abstract

One of the most popular approaches taken in theepsoof automatic creation of a rule base
of a fuzzy model is a classic grid partitioningasf input space of the analyzed system. The
basic feature of this approach is that a rule lsesated on the basis of this grid contains a lot
of rules which can be eliminated from the modelhaiit a loss in a model precision. The
unnecessary rules exist in the model because tlasgapplied over the whole input space,
regardless of the distribution of data points. Henno case of an unequal data distribution,
some parts of the input space of the analyzed yate not covered by data points, which
means that some rules are unsupported by any data @f course rules not supported by
data points should not take part in the inferenoegss because they can produce incorrect
results in future model application. However, wtibase rules are eliminated from the rule
base, a fuzzy model becomes an incomplete onethiHwmey states that an incomplete model
either should not be used in practice at all orukhde used only in some, very precisely
defined, regions of an input space. In fact, thisreone more possibility. The model
completeness can be extorted by restoring someegiqusly discarded rules — of course after
necessary changes in their conclusions. The aithisfarticle is to present an approach to
chain systems modeling which can be used for: altmg rules, calculating new conclusions
for some of them and adding them again to the model

Keywords: fuzzy model, model completeness, rules elimination, chain model, chain
system.



. produce incorrect results in future model applmati
1 Introduction Therefore, these rules should be eliminated froen th

When a fuzzy model is created automatically on th@odel rule base. This, however, will lead to an
basis of a data set describing dependences existingncomplete rule base.

the analyzed system, some general assumptions abgig classic inference methods can be used only when
the model architecture have to be made. One of thgfk rule base of a fuzzy model is a dense ones it i
regards the partitioning of the input space of thgnen the input space is completely covered by rule
analyzed system. Although, there are many differeptemises. When this condition is not fulfilled @rc
possibilities to deal with this task (e.g. fuzzyidgr nappen that for certain observation no rule isifisad
fuzzy boxes, fuzzy clusters, fuzzy k-d tree [2])YON the inference mechanism fails [5]. Therefore, wiien
two of them are used in majority of practicalyje pase is an incomplete one, it is necessangreib
applications — grid and cluster partitioning. Bothypply other inference method or to extort the model
approac_:hes have their own benefits and draWbaCKémpleteness by restoring some of previously
and suits better for other types of systems and f@fiscarded rules. While the approach for dealinghwit
other aims. The main reason for using the firshe first issue was proposed by Koczy and Hirota in
approach — cluster partitioning — is the possipibf 6] an approach which can be used to restore tales

finding only the most significant rules of the ayrdd 5 fuzzy model will be proposed in the paper.
system behavior, that is rules situated in an input

space in regions containing the vast majority dhda The paper discusses three issues which should be
[1, 3]. On the other hand, the main drawback of thitaken into account when the quality of a fuzzy rule
approach is that the fuzzy sets are used rather Bgsed is to be improved:

individual than by all rules. Since, it is impodsito ,  f.«t - how to find out which rules are really

ensure that the local membership functions have any unnecessary ones and should be eliminated from
semantic values, a linguistic interpretation of thkes the rule base

is very difficult [4]. » second — how to find out which rules should be
While cluster partitioning produces the local fuzzy restoring to the rule base in order to extort its
sets, fuzzy sets obtained when grid partitioning is completeness,

applied are global ones. That means they are neot third — how to calculate conclusions of restored
assigned to individual rules but are used by many rules.

rules from the whole universe. This enables the
linguistic interpretation. Hence, when it is imgort
to create a fuzzy model of high linguistic
interpretability, the grid partitioning of an inpspace
should be used.

|'Fheoretically the solution of the first problem is
simple — it should be enough to reveal which rales

not supported by any data point. In practice, hakev
such straightforward approach can result in leauing

a rule base rules which conclusions were calculated
The main drawback of a fuzzy model utilizing thélgr the basis of remote data points (outliers). Assgmin
partitioning is that it is very prone to ttmurse of that outlying data points does not have any commect
dimensionality problem [1] — it is a problem of with the general law of the analyzed system, rules
exponential growth of number of rules in relatian t based on them should be also eliminated from tkee ru
growth of number of input variables and number obase. In order to deal with this task, it is tocdisl all
membership functions. Theurse of dimensionality unnecessary rules, a region containing the vast
problem is a very serious one because it signifigan majority of data points used in the model paranseter
decreases the readability of the model. Fortunately estimation process should be determined.

;:;Cr; iks)eth(;\':er;(::srtn?ullg l;::sseesfrerg?esé (r)enalhseyzfstni::zb Tﬂgdressing the second issue, it should be undérline

rid partitioning of an input space contain a Idt othat a fuzzy model can be applied in practical
gna p 9 P P applications only in this region of the whole syste

unnecessary rules, it is rules which can be elitesha : o . .
. . ._.__domain which is covered by data points used in the
from them without the loss in the model precision, . .
timation process. Hence, the model completeness

The unnecessary rules exist in the model becawse {e S . . .
S ; . can be extorted only inside this region which means
grid is applied over the whole input space, regasl| . . .
R . ! that only rules which antecedents are situatediénsi
of the distribution of data points. Hence, in caan ; ;
) S this region can be restored to the rule base.
irregular data distribution, some parts of the inpu
space of the analyzed system are not covered fay dats it can be noticed, in order to deal with twasfiof
points, which means that some rules are unsupportég aforementioned issues, an interpolation regfam
by any data point. Conclusions of these rules iake fuzzy model should be determined. In order to deal
the process of model parameters estimation incdlentvith this task some classic method can be applied,
values — in most cases values which were assignedhypercube or convex hull [7]. Unfortunately, the
them at the beginning of the estimation process. @fassic methods of determining the interpolation
course rules not supported by data points shoutd n@gion work properly only in case of systems of a
take part in the inference process because they caurface data distribution. When a data distributiba



system is a non-surface but a chain one these dethdias a chain nature (Fig. 1d). On the other hanty, on
are unable to produce a correct interpolation regib two out of three variables from the second figuageh

a fuzzy model. a chain data distribution (Fig. 2b,c), the thircedras a
surface characteristic (Fig. 2b). This means that t
whole system cannot be regarded as a chain one (Fig
2d).

The aim of this paper is to present an approaclehwhi
can be used for determining the interpolation negib
a fuzzy model of a system of a chain data distiglout
The paper presents also the algorithms for both
eliminating and restoring rules to and from a e
of a fuzzy model.

a . T b ..

The paper is organized as follows. Section Il piesi  :.:
general information on systems of a chain dat ng -
distribution and their models. Section Il gives ar !/ R
overview of methods of determining the interpolatio = * # = # # & = =
region of a surface model and presents an apptoactc ..
deal with this task in case of systems of a chainne, o
first proposed by Rejer and Mikotajczyk in [8]. & ™
Section IV describes algorithms for eliminating anc -
restoring rules from and to a rule base of a fuzz
model based on a chain model of the analyzed syste s
Finally, Section V presents the practical applmatof SRR
the discussed algorithms in a neuro-fuzzy mode of

real economic problem — a problem of unemployment ~ Fig- 1 System of unemployment rate; a, b, c)
in Poland in years 1992-1999. dependences between system variableg and

parameter, b) input-output dependency

2 System of achain data distribution
2.1 Chain system
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The main feature of a multi-dimensional system of
chain data distribution is that its decompositian t SRR =
one-dimensional subsystems (describing the behavi .| - - G e
of each system variable in regard to parameéter e P : BRI i PO O g
indicating the approximated data sequence) givesta
of tight chain dependences. Therefore, in order € -
verify whether a system is of a chain profile, the :
reverse analysis should be performed. Tight chai ™
dependencies, visible on two-dimensional graph
presenting the behavior of all system variables i
regard tat parameter, will indicate the chain profile of
the system in the whole multi-dimensional space.

0 ® @ & @ @ m @ @ m
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Fig. 2 System of unemployment rate; a, b, c)
dependences between system variableg and
parameter, b) input-output dependency

An important fact here is that in order to regard a
system as a chain one all of its input variablesukh
have a chain data distribution. Even one varialfla o
non-chain data distribution indicates that the wholit should be noted here that while the conclusibn o
system has a surface, not chain, nature. Fig. 12andhe surface nature of the analyzed system can be
present two sets of graphs describing the same rgabpagated onto the whole space of system variables
economic factor — unemployment rate in years 1992ke conclusion of the system chain nature is vatily
1999 but in respect to different variables. Eacpdr in a space limited to analyzed variables. It is thuthe
shows the behavior of one system variable in retmrd fact that it is impossible to analyze the systertpou

t parameter. Since the whole system is an example wdriable in regard to all variables influencing That
time seriest parameter can be interpreted as a timmeans that always variables can exist which have no
variable. The first figure (Fig. 1) presents thebeen considered in the analysis and which can have
dependency betweemnemployment rat@and money surface nature.

supplyandnumber of inhabitantand the second one .

(Fig. 2) presents the dependency betweefy2 Chain model

unemployment ratandmoney supplandexport The main benefit of the chain system is that it ban
described not only by a surface model but also by a
6parametric curve [9]. The main idea of the paraimetr
curve modeling method is to build a set of two-

As it can be noticed in Fig. 1a,b,c all system alales
are characterized by very tight chain dat
distributions. This indicates that also the whaglstem



dimensional models, where each model describe
behavior of one variable (inpor output) in regard t
the known parametert. These tw-dimensional
models can be created with many different mather
techniques e.g. ndmear neural network:
polynomial regression, splines, etc. T-dimensional
models, built with one of the meoned techniques,
are then assembled together in order to createlta-
dimensional model describing the in-output
mapping in the whole space [12]:

% = (1)
X = 1,(0)

1)

y = falt)

where:x;...% — input variablesy — output variablet -
parameter indicating the approximated data seqt

3 Interpolation region of a fuzzy model

Interpolation and extrapolation are terms used wa
new data point is constructed on the basis of erelis
set of known data points. The term interpolatic

used when this new data point is situated in agaf
known data points and the term extrapolation isd!
when the new data point is situated outside thigez
Both terms can be referred to the modeling prodes
this sense interpolation means wlating a model
output for input values situated inside the regadt
data points used in the model parameters estim
process and extrapolatiorcalculating a model outp!
for input values situated outside this region. Wha
properly trained neuradzzy model should giv
correct results in an interpolation case, a qaesi

whether it can be successfully used in an extraipol:
case.

According to Niederlinski “there seems to be
engineering justification whatever for extrapolgt
any model, b it polynomial or be it neural, beyo
the region of fit used in the identification expeent.
On the contrary, there are plenty of counterexas
showing that systems described by models estadl
for some region of fit may break down when dri
beyond this region” [11]. Niederlinski words refeisa
to fuzzy model utilizing the grid partitioning ofni
input space. It is due to the fact that this mc
produces the same type of surface as a neura
polynomial model —t is a surface spread ovehe
whole input space.

Since the application of a fuzzy model is justifay
in case of data points located in a range of tnai
data (an interpolation case), a very importantdsisi
to determine properly the interpolation region ¢
fuzzy model. Wiile determining this region for a t-
dimensional model is a relatively easy task (it ba
done on the basis of visual analysis of -
dimensional graphs), it can be very hard in a -
dimensional case.

3.1 Hypercube and convex hull

The most popular approach used to determine a n
interpolation region is to build a hypercube cong:
all data points used in a model parameters estim
process. The hypercube edges are established ¢
basis of minimal and maximal values of siteding
input variables. Fig. 3a presents an example bfex-
dimensional hypercube built over a given data $¢
one thousand points.

The approach based on the hypercube is very et
implement, however, it generates a very br
interpolation region,only partially covered by da
points. A more strict approach to establish boraxi
the model interpolation region is to build a con
hull spread over all data points in a m-dimensional
input space.

A convex hull of a set of poiniSin n dimensions is
the intersection of all convex sets containS. For N
pointsp;...p., the convex hulC is given by [12]:

Cs{ikjpi ‘A; 20 forall j, andZN:xj =1} @)
j=1 =1

An example of a convex hull built over the sameade
one thousand points is presented in Fig. 3b. Thex
a lot methods which can be applied in the proces
building the convex hull of a given data set
Graham algorithm [13], divide and conquer algorit
[14], greedy algorithm [15], Bene#Beyond
algorithm [16], etc.

Fig. 3Hypercube (a) and convex hull (b) in a tt-
dimensional spa

The approach based on the convex hull genera
much more narrow interpolation region of
analyzed model than the approach based on
hypercube. However, when systems of a chain
distribution are analyzed, this region is still taoge.
This is due to the fact that the data distributior
chain systems is very often a -convex one, which
means that these systems should not be describ
the convex hull. Fig. 4resents a hyycube and a
convex hull builtover a data set given in Fic.




Fig. 4Hypercube (a) and convex hull) of a data set
given in Fig. 1

3.2 Hypertube

In order to determine the interpolation region c
model built over a data set of a chdata distribution,
an approach reflecting the chain characteristithisf
distribution should be used. The best tool wt
allows to deal with this task is a chemodel — it is a
parametric curve built over a given data

The parametric curve can be used in the proce
establishing the interpolation region of a fuzzydak
because it shows the very center of the
distribution in a multidimensional spac Obviously,
the knowledge of the center of data points is
sufficient to establish the modgiterpolation region
The second point which has to be addressed isth
of this region in a multdimensional space. Assumi
that the width of this regions the same in eac
direction, it can be calculated as a radius ¢
hypertube surrounding the chain model in a r-
dimensional input space.

Theoretically, the distance between the most rei
data point and the model seems to be appropria
establghing the radius of the hypertube. In fa
however, this measure is a proper one only v
artificially generated data setd normal distributior
are considered. In case of real systems of an umk
data distribution, the distance between the r
remde data point and the model cannot be used &
hypertube radius because of the outliers prob
often met in real systems3]L Hence, instead of tt
greatest distance, the distances between all tig
data points and the chain model, calculatec multi-
dimensional input space should be conside

Taking into account above considerati, the general
equation of the hypertubadius can be formulated «
the basis of three first quartiles of the abso
distances between training data and the chain m

R, =Q3+min(Q1,Q2-Q1.Q3-Q2),  (3)

where: Q1 - first quartile indicating the regic
surrounding the chain model covered by 25f data
points, Q2 - second quartile indicating the regi
surrounding the chain model covered by 50% of
points, Q3 — third quartile indicating the regic
surrounding the chain model covered by 75% of
points, R, - radius of the hypertube surroung the
chain model in a multiimensional input spac

Formula (3) is valid for bothrtificial and real systems
because the statemenmin(Ql, Q-Ql, Q3-Q2)
produces a value which covers the whole input s
in case ofrtificially generated data seand preserves
the outliers problem in case of real systems. Qfsg
formula (3) is a general on&/hen the characterist
of the modeling system is well known and it
possible to determine the rough amount of outlie!
the data set, this equation canddopted to the syste

characteristic by applying values of other perdes
of the absolute distances between training datalar
chain model.

Summing up, the interpolation region of a fu:
model can be determined % intersection of a fuzzy
modeland the hypertube of the radius given(3) in
an input space. Hence, the interpolation regian set
of points (x5, ... %) satisfying the following set ¢
equations:

A0 x+.+ X x0)=0,
(=% +..+(x,~x,0) =R’

Fig. 5 presents &zzy model and ¢ypertube built
over a data set given in Fig. 1
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Fig. 5SHypertube built over a data set given in f1

4 Eliminating and adding rulesto and
from arulebase

4.1 Algorithm for ruleselimination

The basic idea of the proposed algorithm for s
elimination is to identify all rules overlapping tt
hypertube in the input space. It is of no impor&
whether a rule covers a large or a small part

hypertube -t is essential to find out all appropric
rules. At the end of the search process en rules
remain in the model and thest of them i discarded.

In order to find out whether a rule overlaps
hypertube, the absolute distances between
boundaries of a rule hypercube and the chain nr
(which shows the center of the hypertube) il input
dimensions have to be calculated. If all distaremes
smaller than the hypertube radius (given(3)), that
means the rule overlaps the hypertube and st
remain in the model. Obviously, only one of tv
possible hypercube boundaries (this sed closer to
the hypertube) is taken into account in each i
dimension.

A detailed algorithm for rule reduction can
described as follows:

1. The chain model is equally sampled in a le
number of points.
2. For each sample and for each input dimen



2.1. two new points are created — by adding ané detailed algorithm for calculating conclusions of
subtracting a hypertube radius to/from theules (left in the model after applying algorithnorh
sample, Sect. 4.1) unsupported by data points consistsvef f

2.2. the universe of membership functions isfollowing steps:

searched and two membership functions ar(’; Find a rule unsupported by any data point,

Find a point in an input space which fully
supports premises of the rule found in the first
step (it is a point which succeeding coordinates
are cores of fuzzy sets contained in succeeding
premises of the rule).

Project this point onto the chain model (it is rdfi

a point of the chain model which lies at the
closest distance from the point which was found
in the second step),

Calculatet value of the point lying on the chain
model using formula (1).

4.2 Algorithm for changing rules conclusions 5. Calculate the conclusion of the rule by
introducingt value obtained in the fourth step to
the two-dimensional equation describing the
behavior of the output variable of the analyzed
system in regard to the parameter

chosen - these which supports contain one
two previously created points,

2.3. all membership functions situated between
two previously established functions are
chosen.

3. The whole universe of rules is searched and tf?
rules which all premises contain any of the™
membership functions chosen for succeeding
dimensions are selected.

4. Remaining rules are eliminated from the modeJl
rule base. '

After application of the algorithm presented in the
previous section, the rule base of a fuzzy model
contains all rules lying inside or at the bordefshe
hypertube. Since the algorithm does not check
whether rules left in the model are covered by datall five steps of the algorithm should be performed
points, some of these rules can have randofor each rule unsupported by data points, lefthe t
conclusions — conclusions which were assigned tmodel after applying algorithm from Sect. 4.1. That
them at the beginning of the model parametemnieans that the number of iterations of the algoriih
estimation process. Of course, rules of randomqual to the number of rules which conclusionstare
conclusions should not take part in the inferencke calculated.

process because .the.y can produce in_correct rEiE’u“s‘The assumption that only conclusions of rules not
future model application. Therefore, either thades

should be discarded from the model or thei;upported by any data point should be changed is a

. . . . eneral one. In case of some real systems it caur oc
conclusions should be changed. Since dlscardlmg;rulg y

would lead to a sparse rule base, the second figsib that this assumption is too_weak and not only rules
o . . unsupported by any data point but also rules supgor
— it is evaluating conclusions of rules not covebsd

d : . by one, two or more data points should be takem int

ata points — is proposed to apply. . . .
account in the process of changing conclusions.

The most straightforward approach to deal witlDbviously, in such case the first step of the atbor

mentioned issue is to calculate rules conclusiams hould be changed. This, however, does not change

the basis of conclusions of neighboring rules. Hencthe general idea of the proposed algorithm.

in order to establish a conclusion of an individuwggé,

all rules which antecedents are situated next @ t  Case study

antecedents of the analyzed rule in the whole multi _ o )

dimensional input space have to be revealed. Then, The practical application of the approaches deedrib

conclusions of all rules are gathered together andin Sect. 3 and 4 will be presented via a neuroyfuzz

conclusion of the analyzed rule is calculated as ®odel of a real economic system of an unemployment
simple or weighted average. rate in Poland in years 1992-1999 (output variable

) _ unemployment rateinput variables -money supply
The solution mentioned above seems to be an eagyd number of inhabitan)s Data for the case study
and a quick one but in fact, when multi-input syste \vere provided by Polish Statistic Department. To
are under consideration, the task of findingyrepare data from the training set for estimatirugien
neighboring rules of all rules which ConC|US'0n3parameters, all variables (input and output) were

should be calculated becomes a very challenging ongyrmalized to the interval <0, 1>. The basic model
Therefore, other approaches to deal with this task parameters were as follows:

needed.

) o , * model type — Larsen model, given by (5) [18],
In case of systems of a chain data distributioharc input membership functions - asymmetrical

model of the analyzed system can be used to cédcula

. ) X triangular functions (5 functions per each input
conclusions of rules unsupported by data pointsceSi variable)
the chain model pr_esents the behavior of_the whole output membership functions — 25 singleton
system for succeeding valuestgbarameter, in order functions

to calculate rule conclusion, cores of fuzzy setsdu
in rule premises should be projected onto this rhode



» training algorithm — backpropagation algorithmradius of the hypertube covering the majority ofada
with momentum rate, points was calculated according to formula (3)véis

e training time — 1000 epochs. equal to 0.0387. Fig. 7d presents the hypertube

surrounding the chain model in the input space over

the rule net of the fuzzy model.

b

T, Vilui(F) l_l§=1 raj(x)
3 (uBi(F) [Tjq maj (X))

y= (5)
where: y - output variable,X;- input variable |
(=1,...,s), y;- center of fuzzy seB, it is a point in
which pg;(¥;) is maximal, u,;(%) degree of .~ 7/
activation ofj premise of a rule which conclusion is !
equal tay;. ey W/

ol f
Figure 6 illustrates the model surface (fig. 6a) #8 m//
rule net in the input space (fig. 6b). The mearohlte S o s
model error (MAE), given by (6) was equal to 3.90%. ¢
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_ Fig. 7 Chain model of unemployment rate: a, b) two-
Fig. 6 Neuro-fuzzy model of unemployment rate: a) dimensional time series models, c) three-dimensiona
model surface, b) rule net parametric curve model, d) hypertube
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5.2 Eliminating rules

(6) The interpolation region of the fuzzy model was
established in order to find out which rules can be
eliminated from the fuzzy model without loss in the
model precision. The rule elimination was performed

according to the algorithm presented in Sect. 4.1.
The first step taken to improve the quality of thke  Hence, first, the chain model was equally sampted i
base of the analyzed fuzzy model was to build anchal000 points. Then, the value of the hypertube mdiu
model containing its input variables. In order tad Was added and subtracted to and from all samples in
with this task two two-dimensional models descripin @l dimensions and appropriate set of border
the behavior of each input variable of the analyze®embership functions per each dimension was
system in regard td parameter were created. As sestablished. Numbers of chosen membership functions
modeling tool neural networks of the followingare presented in tab. 1.

parameters were used [13]: Tab. 1 Numbers of border membership functions in
both input dimensions

where:y* - real valuesyy — theoretical values.

5.1 Chain model of an unemployment rate

« flow of signals — one-way,

» architecture of connections between layers — all tp Number of inhabitants Money supply
a!l, ) _ ) 1st border| 2nd border| 1st border | 2nd border

+ hidden layers — 1 hidden layer with suitablel fynction | function | function | function
number of sigmoid neurons (5 for variable 1 5 1 2
number of inhabitants 3 for variable money 4 5 1 5

supply,
* outputlayer — 1 linear neuron, _ ~ Next, the set of chosen membership functions was
* training method — backpropagation algorithmexpanded by adding (for each input dimension)

with momentum rate, membership functions situated between the functions
+ training time — 20000 epochs. from tab. 1. And finally, the universe of rules was

By assembling together neural models built for botﬁearc_hed and rules which premises (in all dimessgion
variables (Fig. 7a,b) the parametric curve moddiontain any of the membership functions chosen for
(chain model) was created (Fig. 7c). succeeding dimensions were determined. Fig. 8

_ _ _ ~ presents the set of rules which were left in theleho
Next step was to determine the interpolation re@bn after applying the proposed algorithm and Tab. 2
the fuzzy model. In order to deal with this task, a



presents the numbers of membership functions usedrules unsupported by data points, some data fram th
both rule premises in succeeding rules. whole data set were removed and a second fuzzy
. model of the unemployment rate was created. This
fime the data set was composed of data points from
the first and the last 36 months of the analyzed 96
Rule Premise 1 Premise 2 months period. Remaining 24 data points (coming
number| Number of inhabitant§ Money supply from the middle part of the set) were left for the
verification process. Such supervised allotmertdaif
set was necessary because in order to check thigyqua
of the proposed approach a large (continuous)qfart
fuzzy model had to be deprived of data points.

premises of rules left in the two-input fuzzy model

The experiment was composed of three steps. In the
first step the limited set of data points was used
build two models of the analyzed system — a fuzzy
model and a chain model. All parameters of both
models were exactly the same as presented in Sect.
and 5.1, respectively. MAE of the fuzzy model
calculated over the limited data set (72 data gdint
was equal to 3.71% and MAE of the same model
calculated over the whole data set (96 data peigts

of them not used in the model parameters estimation
process) was equal to 5.68%.
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In the second step of the experiment, the intetjooia

region of the fuzzy model was created<£8&099) and

t ® ® 9 rules situated outside this region were elimidate

o8 g The eliminated rules were the same as in the model
from Sect. 5.2.

o5 : I Finally, in the last step, two rules situated iesitie
es interpolation region, not-supported by any datanpoi
Fy were discovered. The conclusions of these ruleg wer
’ / calculated according to the algorithm presented in
N Sect. 4.2. MAE of the corrected fuzzy model
o= iy S S— calculated over the limited data set (72 data gpint
e of bt was of course equal to MAE of not-corrected fuzzy
model (3.71%) and MAE of the same model
calculated over the whole data set (96 data powas)
equal to 4.6%.

The application of the proposed method for rul . . .
reduction allowed to simplify the rule base of theeThe results of the experiment described above wanfi

unemployment rate model by eliminating 9 out of 25§he praptical usefulness O.f the proposed mgthod for
rules. That means 36% of rules were identified a%alculatmg rules concll_JS|ons. The comparison of
unnecessary ones and eliminated from the model. Tﬁqors of fuzzy models with old and new.valuesvvzﬁt
MAE of the fuzzy model containing the reduced ruidules conclusions calculated on the basis of thelevh

base was equal to 3.90%. Since this error value ta  set (MAE equal to 5,68% _anql 4,6%,
exactly equal to the value of the original modetdn respectively), shows that after the applicationthod

: : .. proposed method, the precision of the fuzzy model
Bﬁnse?:lgsg;?; tr?;leesp roposed method correctly idestii had been increased. That means the proposed method

correctly calculated conclusions of rules unsupgubrt
5.3 Calculating rules conclusions by data points.

Fig. 8 Rules left in the rule base of the two-infurzy
model

For further improvement of the rules base of thg .

analyzed fuzzy model, the conclusions of rule® Conclusion

unsupported by data points should be calculateghe aim of this article was to present methods Whic
However, since data from the Qata set _usgd in then pe used for improving quality of a fuzzy model,
survey covered all rules situated inside thenainly by reducing unnecessary rules from its rule

interpolation region of the fuzzy model, rulesyase The main advantages of the proposed methods
conclusions recalculation was unnecessary. are as follows:

Hence, in order to verify the practic_al applicalyi!d)f - The reduction rate is a significant one (in
the proposed approach for calculating conclusidns o presented application it was equal to 36%) which



is very important not only when a model is used ICAISC 2006 - Lectures Notes in Artificial
in its software version as a tool supporting a Intelligence, Springer-Verlag, Berlin (2006)

human but also when a model is a base for ﬁO]Bronsztejn I.N., Siemiendiajew K.A., Musiol G.,

. ?ﬁfﬁ%reclgjp:ﬁ?deeqtﬁggr;he same rate of precision Muhlig H.: Modern Compendium of Mathematic,
u precisi Polish Science Publisher Warsaw (2004)

as the non-reduced ones. That means the
algorithm eliminates rules which are really[11]Niederlinski A.: Polynomial and Neural Input-
unnecessary and do not take part in the inference Output Models for Control — a Comparison,
process. MMAR'97, Poland (1997)

« The mod_el obtain_ed after applying the prOposeFLZ]Weisstein, E. W.: Convex hull, Published by
methods is a continuous ones. Wolfram Research. From Math World,

The methods were presented via a chain system. http://mathworld.wolfram.com/ConvexHull.html

However, since both of them are based on the (2006)

interpolation region of a fuzzy model, their maitea 13]

can be applied also to improve quality of a fuzzJ

model built for a system of a surface data distitu

which interpolation region can be established whin [14]Graham, R.L.. An Efficient Algorithm for

Masters T.: Practical Neural Networks Recipes in
C++. Academic Press Inc. (1993)

classic techniques. Determining the Convex Hull of a Finit Planar
Set, Information Processing Letters 1, pp. 132-133
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