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Abstract  

One of the most popular approaches taken in the process of automatic creation of a rule base 
of a fuzzy model is a classic grid partitioning of an input space of the analyzed system. The 
basic feature of this approach is that a rule base created on the basis of this grid contains a lot 
of rules which can be eliminated from the model without a loss in a model precision. The 
unnecessary rules exist in the model because the grid is applied over the whole input space, 
regardless of the distribution of data points. Hence, in case of an unequal data distribution, 
some parts of the input space of the analyzed system are not covered by data points, which 
means that some rules are unsupported by any data point. Of course rules not supported by 
data points should not take part in the inference process because they can produce incorrect 
results in future model application. However, when these rules are eliminated from the rule 
base, a fuzzy model becomes an incomplete one. The theory states that an incomplete model 
either should not be used in practice at all or should be used only in some, very precisely 
defined, regions of an input space. In fact, there is one more possibility. The model 
completeness can be extorted by restoring some of previously discarded rules – of course after 
necessary changes in their conclusions. The aim of this article is to present an approach to 
chain systems modeling which can be used for: eliminating rules, calculating new conclusions 
for some of them and adding them again to the model.  

Keywords: fuzzy model, model completeness, rules elimination, chain model, chain 
system. 



1 Introduction 

When a fuzzy model is created automatically on the 
basis of a data set describing dependences existing in 
the analyzed system, some general assumptions about 
the model architecture have to be made. One of them 
regards the partitioning of the input space of the 
analyzed system. Although, there are many different 
possibilities to deal with this task (e.g. fuzzy grid, 
fuzzy boxes, fuzzy clusters, fuzzy k-d tree [2]) only 
two of them are used in majority of practical 
applications – grid and cluster partitioning. Both 
approaches have their own benefits and drawbacks 
and suits better for other types of systems and for 
other aims. The main reason for using the first 
approach – cluster partitioning – is the possibility of 
finding only the most significant rules of the analyzed 
system behavior, that is rules situated in an input 
space in regions containing the vast majority of data 
[1, 3]. On the other hand, the main drawback of this 
approach is that the fuzzy sets are used rather by 
individual than by all rules. Since, it is impossible to 
ensure that the local membership functions have any 
semantic values, a linguistic interpretation of the rules 
is very difficult [4].  

While cluster partitioning produces the local fuzzy 
sets, fuzzy sets obtained when grid partitioning is 
applied are global ones. That means they are not 
assigned to individual rules but are used by many 
rules from the whole universe. This enables their 
linguistic interpretation. Hence, when it is important 
to create a fuzzy model of high linguistic 
interpretability, the grid partitioning of an input space 
should be used. 

The main drawback of a fuzzy model utilizing the grid 
partitioning is that it is very prone to the curse of 
dimensionality problem [1] – it is a problem of 
exponential growth of number of rules in relation to 
growth of number of input variables and number of 
membership functions. The curse of dimensionality 
problem is a very serious one because it significantly 
decreases the readability of the model. Fortunately, it 
can be overcome in case of most real systems. The 
fact is that most rule bases created on the basis of the 
grid partitioning of an input space contain a lot of 
unnecessary rules, it is rules which can be eliminated 
from them without the loss in the model precision. 
The unnecessary rules exist in the model because the 
grid is applied over the whole input space, regardless 
of the distribution of data points. Hence, in case of an 
irregular data distribution, some parts of the input 
space of the analyzed system are not covered by data 
points, which means that some rules are unsupported 
by any data point. Conclusions of these rules take in 
the process of model parameters estimation incidental 
values – in most cases values which were assigned to 
them at the beginning of the estimation process. Of 
course rules not supported by data points should not 
take part in the inference process because they can 

produce incorrect results in future model application. 
Therefore, these rules should be eliminated from the 
model rule base. This, however, will lead to an 
incomplete rule base.  

The classic inference methods can be used only when 
the rule base of a fuzzy model is a dense one, it is 
when the input space is completely covered by rule 
premises. When this condition is not fulfilled it can 
happen that for certain observation no rule is fired and 
the inference mechanism fails [5]. Therefore, when the 
rule base is an incomplete one, it is necessary either to 
apply other inference method or to extort the model 
completeness by restoring some of previously 
discarded rules. While the approach for dealing with 
the first issue was proposed by Koczy and Hirota in 
[6], an approach which can be used to restore rules to 
a fuzzy model will be proposed in the paper.   

The paper discusses three issues which should be 
taken into account when the quality of a fuzzy rule 
based is to be improved:  

• first - how to find out which rules are really 
unnecessary ones and should be eliminated from 
the rule base,  

• second – how to find out which rules should be 
restoring to the rule base in order to extort its 
completeness, 

• third – how to calculate conclusions of restored 
rules. 

Theoretically the solution of the first problem is 
simple – it should be enough to reveal which rules are 
not supported by any data point. In practice, however, 
such straightforward approach can result in leaving in 
a rule base rules which conclusions were calculated on 
the basis of remote data points (outliers). Assuming 
that outlying data points does not have any connection 
with the general law of the analyzed system, rules 
based on them should be also eliminated from the rule 
base. In order to deal with this task, it is to discard all 
unnecessary rules, a region containing the vast 
majority of data points used in the model parameters 
estimation process should be determined. 

Addressing the second issue, it should be underlined 
that a fuzzy model can be applied in practical 
applications only in this region of the whole system 
domain which is covered by data points used in the 
estimation process. Hence, the model completeness 
can be extorted only inside this region which means 
that only rules which antecedents are situated inside 
this region can be restored to the rule base.  

As it can be noticed, in order to deal with two first of 
the aforementioned issues, an interpolation region of a 
fuzzy model should be determined. In order to deal 
with this task some classic method can be applied, e.g. 
hypercube or convex hull [7]. Unfortunately, the 
classic methods of determining the interpolation 
region work properly only in case of systems of a 
surface data distribution. When a data distribution of a 



system is a non-surface but a chain one these methods 
are unable to produce a correct interpolation region of 
a fuzzy model.  

The aim of this paper is to present an approach which 
can be used for determining the interpolation region of 
a fuzzy model of a system of a chain data distribution. 
The paper presents also the algorithms for both - 
eliminating and restoring rules to and from a rule base 
of a fuzzy model.  

The paper is organized as follows. Section II provides 
general information on systems of a chain data 
distribution and their models. Section III gives an 
overview of methods of determining the interpolation 
region of a surface model and presents an approach to 
deal with this task in case of systems of a chain nature, 
first proposed by Rejer and Mikołajczyk in [8]. 
Section IV describes algorithms for eliminating and 
restoring rules from and to a rule base of a fuzzy 
model based on a chain model of the analyzed system. 
Finally, Section V presents the practical application of 
the discussed algorithms in a neuro-fuzzy model of a 
real economic problem – a problem of unemployment 
in Poland in years 1992-1999. 

2 System of a chain data distribution 

2.1 Chain system 

The main feature of a multi-dimensional system of a 
chain data distribution is that its decomposition to 
one-dimensional subsystems (describing the behavior 
of each system variable in regard to parameter t - 
indicating the approximated data sequence) gives a set 
of tight chain dependences. Therefore, in order to 
verify whether a system is of a chain profile, the 
reverse analysis should be performed. Tight chain 
dependencies, visible on two-dimensional graphs 
presenting the behavior of all system variables in 
regard to t parameter, will indicate the chain profile of 
the system in the whole multi-dimensional space.  

An important fact here is that in order to regard a 
system as a chain one all of its input variables should 
have a chain data distribution. Even one variable of a 
non-chain data distribution indicates that the whole 
system has a surface, not chain, nature. Fig. 1 and 2 
present two sets of graphs describing the same real 
economic factor – unemployment rate in years 1992-
1999 but in respect to different variables. Each graph 
shows the behavior of one system variable in regard to 
t parameter. Since the whole system is an example of 
time series, t parameter can be interpreted as a time 
variable. The first figure (Fig. 1) presents the 
dependency between unemployment rate and money 
supply and number of inhabitants and the second one 
(Fig. 2) presents the dependency between 
unemployment rate and money supply and export. 

As it can be noticed in Fig. 1a,b,c all system variables 
are characterized by very tight chain data 
distributions. This indicates that also the whole system 

has a chain nature (Fig. 1d). On the other hand, only 
two out of three variables from the second figure have 
a chain data distribution (Fig. 2b,c), the third one has a 
surface characteristic (Fig. 2b). This means that the 
whole system cannot be regarded as a chain one (Fig 
2d).  

 

 

 

 

 

 

 

 

 

 

Fig. 1 System of unemployment rate; a, b, c) 
dependences between system variables and t 

parameter, b) input-output dependency 

  

  

Fig. 2 System of unemployment rate; a, b, c) 
dependences between system variables and t 

parameter, b) input-output dependency 

It should be noted here that while the conclusion of 
the surface nature of the analyzed system can be 
propagated onto the whole space of system variables, 
the conclusion of the system chain nature is valid only 
in a space limited to analyzed variables. It is due to the 
fact that it is impossible to analyze the system output 
variable in regard to all variables influencing it. That 
means that always variables can exist which have not 
been considered in the analysis and which can have a 
surface nature.  

2.2 Chain model 

The main benefit of the chain system is that it can be 
described not only by a surface model but also by a 
parametric curve [9]. The main idea of the parametric 
curve modeling method is to build a set of two-
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dimensional models, where each model describes the 
behavior of one variable (input or output) in regard to 
the known parameter t. These two
models can be created with many different mathematic 
techniques e.g. non-linear neural networks, 
polynomial regression, splines, etc. Two
models, built with one of the menti
are then assembled together in order to create a multi
dimensional model describing the input
mapping in the whole space [12]: 
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where: x1…xk – input variables, y – 
parameter indicating the approximated data sequence.

3 Interpolation region of a fuzzy model

Interpolation and extrapolation are terms used when a 
new data point is constructed on the basis of a discrete 
set of known data points. The term interpolation is
used when this new data point is situated in a range of 
known data points and the term extrapolation is used 
when the new data point is situated outside this range. 
Both terms can be referred to the modeling process. In 
this sense interpolation means calc
output for input values situated inside the region of 
data points used in the model parameters estimation 
process and extrapolation – calculating a model output 
for input values situated outside this region. While a 
properly trained neuro-fuzzy model should give 
correct results in an interpolation case,  a question is 
whether it can be successfully used in an extrapolation 
case.  

According to Niederlinski “there seems to be no 
engineering justification whatever for extrapolating 
any model, be it polynomial or be it neural, beyond 
the region of fit used in the identification experiment. 
On the contrary, there are plenty of counterexamples 
showing that systems described by models established 
for some region of  fit may break down when driven 
beyond this region” [11]. Niederlinski words refer also 
to fuzzy model utilizing the grid partitioning of an 
input space. It is due to the fact that this model 
produces the same type of surface as a neural and 
polynomial model – it is a surface spread over t
whole input space.  

Since the application of a fuzzy model is justified only 
in case of data points located in a range of training 
data (an interpolation case), a very important issue is 
to determine properly the interpolation region of a 
fuzzy model. While determining this region for a two
dimensional model is a relatively easy task (it can be 
done on the basis of visual analysis of two
dimensional graphs), it can be very hard in a multi
dimensional case.  

dimensional models, where each model describes the 
t or output) in regard to 
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Since the application of a fuzzy model is justified only 
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data (an interpolation case), a very important issue is 
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hile determining this region for a two-
dimensional model is a relatively easy task (it can be 
done on the basis of visual analysis of two-
dimensional graphs), it can be very hard in a multi-

3.1 Hypercube and convex hull

The most popular approach used to determine a model 
interpolation region is to build a hypercube covering 
all data points used in a model parameters estimation 
process. The hypercube edges are established on the 
basis of minimal and maximal values of succe
input variables. Fig. 3a presents an example of a three
dimensional hypercube built over a given data set of 
one thousand points.  

The approach based on the hypercube is very easy to 
implement, however, it generates a very broad 
interpolation region, only partially covered by data 
points. A more strict approach to establish borders of 
the model interpolation region is to build a convex 
hull spread over all data points in a multi
input space. 

A convex hull of a set of points 
the intersection of all convex sets containing 
points p1…pn, the convex hull C
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An example of a convex hull built over the same set of 
one thousand points is presented in Fig. 3b. There are 
a lot methods which can be applied in the process of 
building the convex hull of a given data set e.g. 
Graham algorithm [13], divide and conquer algorithm 
[14], greedy algorithm [15], Beneath
algorithm [16], etc. 

Fig. 3 Hypercube (a) and convex hull (b) in a three
dimensional space

The approach based on the convex hull generates a 
much more narrow interpolation region of the 
analyzed model than the approach based on the 
hypercube. However, when systems of a chain data 
distribution are analyzed, this region is still too large. 
This is due to the fact that the data distribution in 
chain systems is very often a non
means that these systems should not be described by 
the convex hull. Fig. 4 presents a hype
convex hull built over a data set given in Fig. 1
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Fig. 4 Hypercube (a) and convex hull (b
given in Fig. 1 

3.2 Hypertube 

In order to determine the interpolation region of a 
model built over a data set of a chain 
an approach reflecting the chain characteristic of this 
distribution should be used. The best tool which 
allows to deal with this task is a chain 
parametric curve built over a given data set. 

The parametric curve can be used in the process of 
establishing the interpolation region of a fuzzy model 
because it shows the very center of the data 
distribution in a multi-dimensional space.
the knowledge of the center of data points is not 
sufficient to establish the model interpolation region. 
The second point which has to be addressed is a width 
of this region in a multi-dimensional space. Assuming 
that the width of this region is the same in each 
direction, it can be calculated as a radius of a 
hypertube surrounding the chain model in a multi
dimensional input space.  

Theoretically, the distance between the most remote 
data point and the model seems to be appropriate for 
establishing the radius of the hypertube. In fact,  
however, this measure is a proper one only when 
artificially generated data sets of normal distribution 
are considered. In case of real systems of an unknown 
data distribution, the distance between the most 
remote data point and the model cannot be used as the 
hypertube radius because of the outliers problem, 
often met in real systems [13]. Hence, instead of the 
greatest distance, the distances between all training 
data points and the chain model, calculated in a
dimensional input space should be considered. 

Taking into account above considerations
equation of the hypertube radius can be formulated on 
the basis of three first quartiles of the absolute 
distances between training data and the chain model: 

 Q1,-Q2min(Q1,Q3Rh +=

where: Q1 - first quartile indicating the region 
surrounding the chain model covered by 25% o
points, Q2 - second quartile indicating the region 
surrounding the chain model covered by 50% of data 
points, Q3 – third quartile indicating the region 
surrounding the chain model covered by 75% of data 
points, Rh - radius of the hypertube surroundi
chain model in a multi-dimensional input space.

Formula (3) is valid for both artificial
because the statement: min(Q1, Q2
produces a value which covers the whole input space 
in case of artificially generated data sets 
the outliers problem in case of real systems. Of course 
formula (3) is a general one. When the characteristic 
of the modeling system is well known and it is 
possible to determine the rough amount of outliers in 
the data set, this equation can be adopted to the system 
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Summing up, the interpolation region of a fuzzy 
model can be determined as the
model and the hypertube of the radius given by 
an input space. Hence, the interpolation region is a set 
of points (x1, ... xn) satisfying the following set of 
equations: 
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Fig. 5 Hypertube built over a data set given in Fig. 

4 Eliminating and adding rules to and 
from a rule base 

4.1 Algorithm for rules elimination

The basic idea of the proposed algorithm for rule
elimination is to identify all rules overlapping the 
hypertube in the input space. It is of no importance 
whether a rule covers a large or a small part of a 
hypertube – it is essential to find out all appropriate 
rules. At the end of the search process chos
remain in the model and the rest of them is

In order to find out whether a rule overlaps a 
hypertube, the absolute distances between the 
boundaries of a rule hypercube and the chain model 
(which shows the center of the hypertube) in all
dimensions have to be calculated. If all distances are 
smaller than the hypertube radius (given by 
means the rule overlaps the hypertube and should 
remain in the model. Obviously, only one of two 
possible hypercube boundaries (this situat
the hypertube) is taken into account in each input 
dimension.  

A detailed algorithm for rule reduction can be 
described as follows: 

1. The chain model is equally sampled in a large 
number of points. 

2. For each sample and for each input dimension:

characteristic by applying values of other percentiles 
of the absolute distances between training data and the 

Summing up, the interpolation region of a fuzzy 
the intersection of a fuzzy 

and the hypertube of the radius given by (3) in 
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2.1. two new points are created – by adding and 
subtracting a hypertube radius to/from the 
sample,  

2.2. the universe of membership functions is 
searched and two membership functions are 
chosen - these which supports contain one of 
two previously created points, 

2.3. all membership functions situated between 
two previously established functions are 
chosen. 

3. The whole universe of rules is searched and the 
rules which all premises contain any of the 
membership functions chosen for succeeding 
dimensions are selected. 

4. Remaining rules are eliminated from the model 
rule base. 

4.2 Algorithm for changing rules conclusions   

After application of the algorithm presented in the 
previous section, the rule base of a fuzzy model 
contains all rules lying inside or at the borders of the 
hypertube. Since the algorithm does not check 
whether rules left in the model are covered by data 
points, some of these rules can have random 
conclusions – conclusions which were assigned to 
them at the beginning of the model parameters 
estimation process. Of course, rules of random 
conclusions should not take part in the inference 
process because they can produce incorrect results in 
future model application. Therefore, either these rules 
should be discarded from the model or their 
conclusions should be changed. Since discarding rules 
would lead to a sparse rule base, the second possibility 
– it is evaluating conclusions of rules not covered by 
data points – is proposed to apply.  

The most straightforward approach to deal with 
mentioned issue is to calculate rules conclusions on 
the basis of conclusions of neighboring rules. Hence, 
in order to establish a conclusion of an individual rule, 
all rules which antecedents are situated next to the 
antecedents of the analyzed rule in the whole multi-
dimensional input space have to be revealed. Then, the 
conclusions of all rules are gathered together and a 
conclusion of the analyzed rule is calculated as a 
simple or weighted average.  

The solution mentioned above seems to be an easy 
and a quick one but in fact, when multi-input systems 
are under consideration, the task of finding 
neighboring rules of all rules which conclusions 
should be calculated becomes a very challenging one. 
Therefore, other approaches to deal with this task are 
needed. 

In case of systems of a chain data distribution a chain 
model of the analyzed system can be used to calculate 
conclusions of rules unsupported by data points. Since 
the chain model presents the behavior of the whole 
system for succeeding values of t parameter, in order 
to calculate rule conclusion, cores of fuzzy sets used 
in rule premises should be projected onto this model. 

A detailed algorithm for calculating conclusions of 
rules (left in the model after applying algorithm from 
Sect. 4.1) unsupported by data points consists of five 
following steps:  

1. Find a rule unsupported by any data point. 
2. Find a point in an input space which fully 

supports premises of the rule found in the first 
step (it is a point which succeeding coordinates 
are cores of fuzzy sets contained in succeeding 
premises of the rule).  

3. Project this point onto the chain model (it is – find 
a point of the chain model which lies at the 
closest distance from the point which was found 
in the second step),  

4. Calculate t value of the point lying on the chain 
model using formula (1).  

5. Calculate the conclusion of the rule by 
introducing t value obtained in the fourth step to 
the two-dimensional equation describing the 
behavior of the output variable of the analyzed 
system in regard to the parameter t. 

All five steps of the algorithm should be performed 
for each rule unsupported by data points, left in the 
model after applying algorithm from Sect. 4.1. That 
means that the number of iterations of the algorithm is 
equal to the number of rules which conclusions are to 
be calculated.  

The assumption that only conclusions of rules not 
supported by any data point should be changed is a 
general one. In case of some real systems it can occur 
that this assumption is too weak and not only rules 
unsupported by any data point but also rules supported 
by one, two or more data points should be taken into 
account in the process of changing conclusions. 
Obviously, in such case the first step of the algorithm 
should be changed. This, however, does not change 
the general idea of the proposed algorithm. 

5 Case study 

The practical application of the approaches described 
in Sect. 3 and 4 will be presented via a neuro-fuzzy 
model of a real economic system of an unemployment 
rate in Poland in years 1992-1999 (output variable - 
unemployment rate, input variables - money supply 
and number of inhabitants). Data for the case study 
were provided by Polish Statistic Department. To 
prepare data from the training set for estimating model 
parameters, all variables (input and output) were 
normalized to the interval <0, 1>. The basic model 
parameters were as follows:  

• model type – Larsen model, given by (5) [18],  
• input membership functions - asymmetrical 

triangular functions (5 functions per each input 
variable),  

• output membership functions – 25 singleton 
functions, 



• training algorithm – backpropagation algorithm 
with momentum rate, 

• training time – 1000 epochs. 
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where: �� - output variable, �̅�- input variable j 
(j=1,...,s), ���- center of fuzzy set Bi, it is a point in 
which ���(���) is maximal, ���(���) - degree of 
activation of j premise of a rule which conclusion is 
equal to ���. 

Figure 6 illustrates the model surface (fig. 6a) and its 
rule net in the input space (fig. 6b). The mean absolute 
model error (MAE), given by (6) was equal to 3.90%. 

 

 

 

 

 

 

Fig. 6 Neuro-fuzzy model of unemployment rate: a) 
model surface, b) rule net 
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where: yk*  - real values, yk – theoretical values. 

5.1 Chain model of an unemployment rate 

The first step taken to improve the quality of the rule 
base of the analyzed fuzzy model was to build a chain 
model containing its input variables. In order to deal 
with this task two two-dimensional models describing 
the behavior of each input variable of the analyzed 
system in regard to t parameter were created. As a 
modeling tool neural networks of the following 
parameters were used [13]: 

• flow of signals – one-way,  
• architecture of connections between layers – all to 

all,  
• hidden layers – 1 hidden layer with suitable 

number of sigmoid neurons (5 for variable 
number of inhabitants, 3 for variable money 
supply),  

• output layer – 1 linear neuron,  
• training method – backpropagation algorithm 

with momentum rate,  
• training time – 20000 epochs.  

By assembling together neural models built for both 
variables (Fig. 7a,b) the parametric curve model 
(chain model) was created (Fig. 7c). 

Next step was to determine the interpolation region of 
the fuzzy model. In order to deal with this task, a 

radius of the hypertube covering the majority of data 
points was calculated according to formula (3). It was 
equal to 0.0387. Fig. 7d presents the hypertube 
surrounding the chain model in the input space over 
the rule net of the fuzzy model. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Chain model of unemployment rate: a, b) two-
dimensional time series models, c) three-dimensional 

parametric curve model, d) hypertube 

5.2 Eliminating rules 

The interpolation region of the fuzzy model was 
established in order to find out which rules can be 
eliminated from the fuzzy model without loss in the 
model precision. The rule elimination was performed 
according to the algorithm presented in Sect. 4.1. 
Hence, first, the chain model was equally sampled in 
1000 points. Then, the value of the hypertube radius 
was added and subtracted to and from all samples in 
all dimensions and appropriate set of border 
membership functions per each dimension was 
established. Numbers of chosen membership functions 
are presented in tab. 1.  

Tab. 1 Numbers of border membership functions in 
both input dimensions 

Number of inhabitants Money supply 
1st border 
function 

2nd border 
function 

1st border 
function 

2nd border 
function 

1 5 1 2 
4 5 1 5 

 
Next, the set of chosen membership functions was 
expanded by adding (for each input dimension) 
membership functions situated between the functions 
from tab. 1. And finally, the universe of rules was 
searched and rules which premises (in all dimensions) 
contain any of the membership functions chosen for 
succeeding dimensions were determined. Fig. 8 
presents the set of rules which were left in the model 
after applying the proposed algorithm and Tab. 2 

a b 

a b 

c d 



presents the numbers of membership functions used in 
both rule premises in succeeding rules. 

Tab. 2 Numbers of membership functions used in the 
premises of rules left in the two-input fuzzy model 

Rule 
number 

Premise 1 
Number of inhabitants 

Premise 2 
Money supply 

1 1 1 
2 1 2 
3 2 1 
4 2 2 
5 3 1 
6 3 2 
7 4 1 
8 4 2 
9 4 3 
10 4 4 
11 4 5 
12 5 1 
13 5 2 
14 5 3 
15 5 4 
16 5 5 

 

 

 

 

 

 

 

 

Fig. 8 Rules left in the rule base of the two-input fuzzy 
model 

The application of the proposed method for rule 
reduction allowed to simplify the rule base of the 
unemployment rate model by eliminating 9 out of 25 
rules. That means 36% of rules were identified as 
unnecessary ones and eliminated from the model. The 
MAE of the fuzzy model containing the reduced rule 
base was equal to 3.90%. Since this error value is 
exactly equal to the value of the original model, it can 
be said that the proposed method correctly identifies 
unnecessary rules.  

5.3 Calculating rules conclusions 

For further improvement of the rules base of the 
analyzed fuzzy model, the conclusions of rules 
unsupported by data points should be calculated. 
However, since data from the data set used in the 
survey covered all rules situated inside the 
interpolation region of the fuzzy model, rules 
conclusions recalculation was unnecessary.  

Hence, in order to verify the practical applicability of 
the proposed approach for calculating conclusions of 

rules unsupported by data points, some data from the 
whole data set were removed and a second fuzzy 
model of the unemployment rate was created. This 
time the data set was composed of data points from 
the first and the last 36 months of the analyzed 96-
months period. Remaining 24 data points (coming 
from the middle part of the set) were left for the 
verification process. Such supervised allotment of data 
set was necessary because in order to check the quality 
of the proposed approach a large (continuous) part of a 
fuzzy model had to be deprived of data points.  

The experiment was composed of three steps. In the 
first step the limited set of data points was used to 
build two models of the analyzed system – a fuzzy 
model and a chain model. All parameters of both 
models were exactly the same as presented in Sect. 5 
and 5.1, respectively. MAE of the fuzzy model 
calculated over the limited data set (72 data points) 
was equal to 3.71% and MAE of the same model 
calculated over the whole data set (96 data points - 24 
of them not used in the model parameters estimation 
process) was equal to 5.68%. 

In the second step of the experiment, the interpolation 
region of the fuzzy model was created (Rh=0.099) and 
9 rules situated outside this region were eliminated. 
The eliminated rules were the same as in the model 
from Sect. 5.2.  

Finally, in the last step, two rules situated inside the 
interpolation region, not-supported by any data point 
were discovered. The conclusions of these rules were 
calculated according to the algorithm presented in 
Sect. 4.2. MAE of the corrected fuzzy model 
calculated over the limited data set (72 data points) 
was of course equal to MAE of not-corrected fuzzy 
model (3.71%) and MAE of the same model 
calculated over the whole data set (96 data points) was 
equal to 4.6%.  

The results of the experiment described above confirm 
the practical usefulness of the proposed method for 
calculating rules conclusions. The comparison of 
errors of fuzzy models with old and new values of two 
rules conclusions calculated on the basis of the whole 
data set (MAE equal to 5,68% and 4,6%, 
respectively), shows that after the application of the 
proposed method, the precision of the fuzzy model 
had been increased. That means the proposed method 
correctly calculated conclusions of rules unsupported 
by data points.  

6 Conclusion 

The aim of this article was to present methods which 
can be used for improving quality of a fuzzy model, 
mainly by reducing unnecessary rules from its rule 
base. The main advantages of the proposed methods 
are as follows: 

• The reduction rate is a significant one (in 
presented application it was equal to 36%) which 



is very important not only when a model is used 
in its software version as a tool supporting a 
human but also when a model is a base for a 
hardware implementation. 

• The reduced model has the same rate of precision 
as the non-reduced ones. That means the 
algorithm eliminates rules which are really 
unnecessary and do not take part in the inference 
process. 

• The model obtained after applying the proposed 
methods is a continuous ones. 

The methods were presented via a chain system. 
However, since both of them are based on the 
interpolation region of a fuzzy model, their main idea 
can be applied also to improve quality of a fuzzy 
model built for a system of a surface data distribution 
which interpolation region can be established with the 
classic techniques. 
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