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ABSTRACT

This paper deals with Game Theory. The fascination of the game theory emerges from

the fact that it shows us how we cannot simply derive conclusions about outcomes in
competitive settings from psychological facts about the competitors. The complete set
utility function, along with specifications about the extent to which the agents are privy to
one and there are utility functions, determines the equilibrium strategies available to them.

These and many more are studies in this work.
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INTRODUCTION

The Origin of games has been vaguely assigned to the inborn tendency of mankind to
amuse itself. Games have no geometrical boundaries and game playing ie found in all
parts of the world whether it be in the under developed areas of Africa or in developed

countries (Adeosun and Adetunde (2008)).

The Babylonian Tumud is the compilation of ancient law and tradition set down during
the first five centuries A.D. which serves as the basis of Jewish religious, criminal and
civil law. In 1985, it was recognized that the Talmud anticipates the modern theory of
cooperative games. Each solution corresponds to the nucleolus of an appropriately
defined game.

In a letter dated November 1713 James Waldegrave provided the first, known, minmax
mixed strategy solution to a two-person game. Waldegrave wrote the letter, about a two-
person version of the card game le Her, to Pierre-Remond de Montmort who in turn
wrote to Nicolas Bernoulli, incuding in his letter a discussion of the Waldegrave solution.
Waldegrave’s solution is minimax mixed strategy equilibrium, but he made no extension
of his result to other games, and expressed concern that a mixed strategy “does not seem

to be in the usual rules of play” of games of chance.

The first theorem of game theory asserts that chess is strictly determined, i.e chess has
only one individually rational payoff profile in pure strategies. This theorem was
published by Zermelo (1913) in his paper Uber eine Anwendung der Mengenlehre auf die

Theorie des schachspiels and hence is referred to as Zermelo’s Theorem.

Emile Borel published four notes on strategies of games and an erratum to one of them.
Borel gave the first modern formulation a mixed strategy along with finding the minimax
solution for two-person games with three or five possible strategies. Initially he
maintained that games with more possible strategies would not have minimax solution,
but by 1927, he considered this an open question as he had been unable to find a counter

example.



John Von Neumann (1928) proved the minimax theorem in his article Zur Theorie der
Gessellschaftsspiele. It states that every two-person zero-sum game with finitely many
pure strategies for each player is determined, i.e when mixed strategies are admitted, this
variety of game has precisely one individually rational payoff vector. The proof makes
use of some topology and of functional calculus. This paper also introduced the extensive

form of game.

Publication of F. Zenthen’s book (1930) “Problems of Monopoly and Economic
Warfare”. In Chapter IV he proposed a solution to the bargaining solution to the
bargaining problem which Harsanyi later showed is equivalent to Nash’s bargaining

solution.

Fisher, R.A (1934) independently discovers Waldegrave’s solution to the card game le
Her. Fisher reported his work in the paper “Randomisation and an Old Enigma of card

Play”

John Von Neumann and Oskar Morgentem publication (1944) expound two-person zero-
sum theory, this book is the senminal work in area game theory such as the notion of a
cooperative game, with transferable utility (TU), its coalitional form and its Von
Neumann-Morgenstem stable sets. It was also the account of axiomatic utility theory

given here thet led to its wide spread adoption within economics.

In January 1950 Melvin Dresher and Merrill Flood carried out, at the Rand Corporation,
the experiment which introduced the game now known as the Prisoner’s Dilemma. The
famous story associated with this game is due to A.W. Tucker, ‘A Two-person Dilemma’,
(memo, Standford University). Howard Raiffa independently conducted, unpublished,

experiments with the Prisoner’s Dilemma.

In four papers between 1950 and 1953 John Nash made seminar contributions to both
non-cooperative game theory and to bargaining theory. In two papers, “Equilibrium

Points in N-Person Games (1950) and Non-cooperative Games (1951)”, Nash prove the



existence of a strategic equilibrium for non-cooperative games — the Nash equilibrium —
and proposed the ‘“Nash program”, in which he suggested approaching the study of
cooperative games via their reduction to non-cooperative form. In his two papers on
bargaining theory, “The Bargaining problem” (1950) and “Two-person Cooperative
Games” (1953), he founded axiomatic bargaining theory, proved the existence of the

Nash bargaining solution and provided the first execution of the Nash program.

George W. Brown (1951) described and discussed a simple iterative method for
approximating solutions of discrete zero-sum games in his paper “Iterative Solutions of

Games by Fictitious Play.”

John Charles C. Mckinscy (1952) published the first textbook on game theory

“Introduction to the Theory of Games”.

The notion of the Core as a general concept was developed by Shapley, L.S and Gillies,
D.B (Some Theorems on N-Person Games). This Core is the set of allocations that cannot

be improved upon by any coalition.

Lloyd Shapley (1953) in his paper “A value for N-Person games” characterized, by a set
of axioms, a solution concept that associates with each coalitional game, v, a unique out-

come, v. This solution is now known as the Sharpley value.

Also, Lloyd Shapley (1953) in his paper “Stochastic games” showed that for the strictly
competitive case, with future payoff discounted at a fixed rate, such games are
determined and that they have optimal strategies that depend only on the game being

played, not on the history or even on the date, i.e. the strategies are stationary.

Extensive form games allow the modeler to specify the exact order in which players have
to make their decisions and to formulate the assumptions about the information possessed

by the players in all stages of the game Kuhn’s H.W (1953) paper “Extensive Games and



the problem of Information” includes the formulation of extensive form games which is

currently used, and also some basic theorems pertaining to this class of games.

Differential Games were developed by Rufus Isaacs in the early 1950s. they grew out of

the problem of forming and solving military pursuit games.

The notion of a strong Eqilibrium was introduced by R.J. Aumann (1959) in the paper

“Acceptable Points in General Cooperative N-Person Games”.

The relationship between Edgeworth’s idea of the contract curve and the Core was
pointed out by Martin Shubik (1959) in his paper “Edgeworth Market games”. One
limitation with this paper is that Shubik worked within the confines of TU games whereas

Edgeworth’s idea is more appropriately modeled as an NTU game.

One of the first books to take an explicitly non-cooperative game theoretic approach to
modeling oligopoly is the publication of Martin Shubik’s “Strategy and Market Structure:
Competition, Oligopoly, and the Theory of Games”. It also contains an early statement of

the Folk Theorem.

Near the end of this decade came the first studies of repeated games. The main result to
appear at this time was the Folk Theorem. This states that the equilibrium outcomes in an
infinitely repeated game coincide with the feasible and strongly individually rational

outcomes of the one-shot game on which it is based.

The development of NTU (non-transferable utility) games made cooperative game theory
more widely applicable. Von Neumann and Morgenstern stable sets were investigated in
the NTU context in the Aumann and Peleg (1960) paper “Von Neumann and

Morgenstern solutions to cooperative Games without side Payments”.

In Kari Borch (1962) paper “Automobile Insurance”, the article indicates how game

theory can be applied to determine premiums for different classes of insurance, when



required total premiums for all classes are given. Borch suggests that the Shapley value

will give reasonable premiums for all classes of risk.

Bondareva, O.N. (1963) established that for a TU game its core is non-empty if and only
if it is balanced. The reference, translates as some Applications of Linear Programming

Methods to the Theory of Cooperative Games.

Aumann, R.J (1964) introduced and discussed idea of the Bargaining Set in his paper
“The Bargaining Set for Cooperative Games”. The bargaining set includes the core but

unlike it, is never empty for TU games.

Carlton E. Lemke and J.T. Howson, Jr (1964) describe an algorithm for finding a Nash
equilibrium in a bimatrix game. Thereby giving a constructive proof of the existence of
an equilibrium point, in their paper “Equilibrium Points in Bimatrix Games”. The paper
also shows that, except for degenerate situations, the number of equilibra in a bimatrix

game is odd.

Selten, R (1965) in his article “Spielheoretische Behandlung eines Oligopolmodellsmit
Nachfragetraegheit” introduced the idea of refinements of the Nash equilibrium with the

concept of (Subgame) perfect equilibra.

Infinitely repeated game with incomplete information were born in a paper by Aumann,

R.J. and Maschler, M. in 1966 titled “Game-Theoretic Aspects of Gradual Disarmament”.

In his paper “A General Theory of Rational Behaviour in Game Situations”. John
Harsanyi (1966) gave the, now, most commonly used definition to distinguish between
cooperative and non-cooperative games. A game is cooperative if commitments —
agreements, promises, threats — are fully binding and enforceable. It is non-cooperative if

commitments are not enforceable.



In the article “The Core of a N-Person Game”, Scarf, H.E. (1967) extended the notion of
balancedness to NTU games, then showed that every balanced NTU game has a non-

empty core.

In a series of three papers, “Games with Incomplete Information Played by Bayesian
Players” Part I, II and III, John Harsanyi constructed the theory of games of incomplete
information. This laid the theoretical groundwork for information economics that has

become one of the major themes of economics and game theory.

William Lucas (1968) in his paper “A Game with no Solution” answered the long-

standing question as to whether stable sets always exist.

David Schmeidler (1969) introduced the Nucleolus in his paper “The Nucleolus of
characteristic Game”. The Nucleolus always exits, is unque, is a member of the Kermel

and for any non-empty core is always in it.

For a coalitional game to be a market game it is necessary that it and all its subgames
must have non-empty cores, i.e. that the game be totally balanced. In “Market Games”
L.S. Shapley and Martin Shubik (1969) prove that this necessary condition is also

sufficient.

In 1972, Oskar Morgenstern founded International Journal of Game Theory. John
Maynard Smith (1972) introduced the concept of an Evolutionarily stable strategy (ESS)
to evolutionary game theory in an essay ‘Game theory and the Evolution of Fighting’.
The ESS concept has since found increasing use within the economics (and biology)

literature.

In the traditional view of strategy randomization, the players use a randomizing device to
decide to their actions. John Harsanyi (1973) was the first to break away from this view
with his paper “Games with Randomly Disturbed Payoffs: A New Rationale for Mixed

Strategy Equilibrium Point”. For Harsanyi, nobody really randomizes. The appearance of



randomization is due to the payoff being exactly known to all; each player, who known
his own payoff exactly, has a unque optimal action against his estimate of what the others

will do.

Publication of Aumann R.J and Shapley L.S (1974) “values of Non-Atomic Games”
deals with values for large games in which all the players are individually insignificant
(non-atomic games). Aumann R.J. (1974) proposed the concept of a correlated

equilibrium in his paper “Subjectivity and Correlation in Randomized Strategies”.

The introduction of trembling hard perfect equilibria occurred in the paper
“Reexamination of the Perfectness Concept for Equilibrium Points in Extensive games by
Reinhard Selten (1975)”. This paper was the true catalyst for the “refinement industry”
that has developed around the Nash equilibrium.

Kalai E. and Smorodinsky M. (1975), in their article “Other Solutions to Nash’s
Bargaining Problem”, replace Nash’s independence of irrelevant alternatives axiom with

a monotonicity axiom. The resulting solution is known as the kalai-Smorodinsky solution.

Littlechild S.C and Thompson G.F (1977) are among the first to apply the nucleous to the
problem of cost allocation with article “Aircraft Landing Fees: A game Theory
Approach”. They use the nucleolus, along with the Core and Shapley value, to calculate

fair and efficient landing and take-off fees for Birmingham airport.

Aumann, R.J. (1981) published a survey of Repeated Games. This survey firstly proposed
the idea of applying the notion of an automaton to describe a player in a repeated game.
A second idea from the survey is to study the interactive behaviour of bounded players by
studying a game with appropriately restricted set of strategies. These ideas have given

birth to a large and growing literature.



Divid M. Kreps and Robert Wilson (1982) extend the idea of a subgame perfect
information. They call this extended idea of equilibrium sequential. It is detailed in their

paper “Sequential equilibria”.

Rubinstein, A (1982) considered a non-cooperative approach to bargaining in his paper
“Perfect Equilibrium in a Bargaining Model”. He considered an alternating offer game
where offers are made sequentially until one is accepted. There is no bound on the
number of offers that can be made but there is a cost to delay for each player. Rubinstein
showed that the subgame perfect equilibrium is unique when each player’s cost of time is

given by some discount factor delta.

Following the work of Gale and Shapley, A.E. Roth (1984) applied to hospitals. In his
paper “The Evolution of the Labour Market for Medical Interns and Residents: A case
Study in Game Theory” he found that American hospitals developed in 1950 a method of

assignment that is a point in the core.

For a Bayesian game the question arises as to whether or not it is possible to construct a
situation for which there is no sets of types large enough to contain all the private
information that players are supposed to have. In their paper “formulation of Bayesian
Analysis for games with Incomplete Information” J.F Mertens and Zamir, S (1985) show

that it is not possible to do so.

Following Aumann, the theory of automata is now being used to formulate the idea of
bounded rationality in repeated games. Two of the first articles to take this approach were
A. Neyman’s 1985 paper “Bounded Complexity Justifies Cooperation in the Finitely

Repeated Prisoner’s Dilemma”

A few games that have been programmed for play on digital computers are identified

below. There are rules for playing these games:



1) Tic-Tac-Toe
Many special purpose machines of today now play Tic-Tac-Toe game. TheTic-Tac-Toe
program have been written for many digital computers. CharlesBabbage conceived as far

back as 1800’s the idea of playing Tic-Tac-Toe on amachine.

2) Go

This Japanese game is a very popular game among computer people. The game isPlayed
with black and white stones on a board containing 361 intersection points. The rules of
Go are simple and no mathematical theory of the game is known. It is Estimated that
there are around 10'"* different board positions during the course of a game. It is easily
seen that it would be impossible to calculate all the various borad configurations during
the course of a game. This is one of the reasons that GO is such an interesting game to

play on a computer.

3) Pentominoes

A polyomino is a figure formed by joining unit squares along their edges. Pentominoes
are five-square polyominoes and it is possible to construct 12 different pentominoes. A
pentomino game is played by arranging the 12 pentomines into various size rectangular
boxes: 3 by 20, 4 by 15, 5 by 12, or 6 by 10. Computers have been used to generate many
solution to the pentomio game. In fact, a computer program found that there are two
solutions for the 3 by 20 configuration, 1010 for the 5 by 12 configuration and 2339 for

the most popular size, the 6 by 10 rectangular configuration.

4)  Knight’s Tour

The strange moves of the Chess Knight make his operations fascinating. We are
permitted to move two or one rows up or down and one or two columns left or right on
the Chessboard. An interesting game is to move the knight to every square on the
chessboard without landing in any square twice. There are many different tours and

digital computers have been used to determine many of them.



5)  Go-Moko

Go-Moko is a two-player game played on a by 19 lined Go board. Each player has 180
stones and places the stones, on alternate moves on an intersection of the board. The
object is to obtain five adjacent stone in a row either vertically, horizontally, or
diagonally. The player doing this wins the game. Several computer programs have been

written to play this game.

6) Puzzle

It consists of a square box containing squares with the numbers 1 to 15 and one blank
square. Any one of the numbers to the immediate right, left, top, or bottom of the blank
square can be moved into the blank space. The object of the puzzle is to start with a
specific number arrangement and finish with a different arrangement. There is one slight
catch to the Puzzle there are 10, 461, 394, 944, 000 number arrangements that are
impossible to obtain. There are also the same numbers of possible arrangements. A
computer program of around 100 machine language statements determine if a specified

number arrangement of the 15 puzzle is possible or impossible.

7) NIM

This is an ancient mathematical game. It is played by two people or one person and
computer playing alternately. Before the play starts, an arbitrary number of objects is put
in an arbitrary number of piles, in no specific order. Then each player in his turn removes
as many objects as he wishes from any pile (but from only one pile) and at least one

object. The player who takes the test chip is the winner of the game.

8) Slot Machines

A computer is used to simulate the operation of a slot machine. Instead of pulling the
handle as one would do on a real Slot Machine, the action was started by pointing alight
pen at a start position on the display console. The computer generated a three-symbol
combination composed of the following symbols: chaerries, oranges, melons, bars, bells,
lemons and plums. This symbol combination, along with an indicated payoff, was

displayed on the cathode ray tube of the display console.



The computer system provides a printed listing of the Slot’s identification, the money
invested in the machine by slot enthusiasts and the amount of payoff. The computer can

easily keep track of the operation several hundred Slot Machines.

9) Prime Numbers

An integer greater than one is called a Prime Number if and only if the only positive
integers that exactly divide it are itself and the number one. How does one determine if
anumber is prime? One way is to write down a large number of integers and simply cross
off the composite numbers (numbners that are divisible by numbers other than
themselves and the number 1). This simple procedure is relatively easy to use when one
wants to determine only a few Prime Numbers; however, it would be a rather lengthy
operation to determine all the prime less than 200,000 or to determine if 209267 is a
prime number. A computer can easily determine if a number is prime by using a method
similar to that of Eratostheness. A computer was used to determine a 961 — digit prime

121
number (2"

- 1) was a 3376 — digit Prime number.

10) Magic Squares

Magic squares were known to the ancients and were thought to possess mystic and
magical powers because of their unsual nature. These magical squares have little practical
value; however, they provide stimulating problems for programmer training. Other games
that have been programmed for play on digital computers are: War Games, Checkers,

Chess, Blackjack, Roulette, etc.

2. TYPES OF GAMES

There are various types of gaming activities. The simplest type of game is one which has
only two players, and where the gain of one is the loss of the other. Such a game is called
a zero-sum two-person game.

2.1 Two-Person Game

A game that involves only two players is called a two-person game. A player cannot play
it and the number of players must not exceed two that is, two player are required to play

this type of game at a time.



2.1.1 Zero-Sum Game

This is the type of game whereby the sum of the gains together with the losses equal to
zero. Here, the gains (payoffs) equal the losses (payoffs). If the gains are represented as
positive values, the loss will be represented as negative values; they both have the same

magnitude.

2.1.2 Zero-Person Two-Person Game
This is a game involving only two players. In this type of game, there is just a play and
the game is over. A player will lose and the other will gain if both use their best strategies

thus, resulting in zero-sum when the payoffs to both are added together.

2.1.3 N-Person Game

This is a game involving more than two players. This type of game does not give a zero-
sum game that is, the magnitude of gains or losses to each player is not equal. In fact,
individual player is rated according to his or her performance and at the end the results
are computed. The chance of playing the game is more than one before results are

computed as against the two-person game.

2.1.4 Non Zero-Sum Game
Any game that has its result not equal to zero is called non zero-sum game. The payoffs
of the players when added together give no zero-sum. That is, game and losses when

added together give no zero-sum result.

2.2 COMPETITIVE SITUATION
A competitive situation is called a game if it has, for example, the following properties:
a) There are a finite number of participants, called players.
b) Each player has a finite number of possible courses of action.
c) A play occurs when each player chooses one of his courses of action (The choices
are assumed to be made simultaneously, i.e., no player knows the choice of another

until he has decided on his own).



d) Every combination of courses of action determines an outcome which results in a

gain to each player. (A loss is considered a negative gain).

2.3 SOLUTION OF A GAME
The solution of a game involves finding:
a) The best strategies for both players.
b) The value of the game.
In this situation, both players use their best strategies that are stable in the sense that
neither player can increase his gain by deviating from his initial strategy once he becomes

aware of his opponent’s.

2.4 STRATEGY OF A PLAYER
The strategy of a player is the decision rule he uses to decide which course of action he

should employ. This strategy may be pure strategy or mixed strategy.

2.4.1 Pure Strategy

A pure strategy is a decision always to select the same course of action.

2.4.2 Mixed Strategy

A mixed strategy is a decision to choose at least two of his courses of action with fixed
probabilities, i.e. if a player decides to use just two courses of action with equal
probability, he might spin a coin to decide which one to choose. The advantage of a
mixed strategy is that an opponent is always kept guessing as to which course of action is

to be selected on any particular occasion.

2.5 BEST STRATEGY

We define “best strategy” on the basis of the minimax criterion of optimality explained
below. This states that if a player lists all his possible payoffs of all his potential courses
of action he will choose that course of action which corresponds to the best of his
outcome. The implication of this criterion is that the opponent is an extremely shrewd
player who will ensure that, whatever any course of action picked, our gain is kept to a

minimum.



2.6 VALUE OF A GAME
The value of a game is the expected gain of player A if both players use their best

strategies.

2.6.1 Minimax Criterion of Optimality

Best strategy is defined on the basis of the minimax criterion of optimality. This states
that if a player lists the worst possible outcomes of all his potential strategies, he will
choose that strategy which corresponds to the best of these worst outcomes. The
implication of this criterion is that the opponent is an extremely shrewd player who will

ensure that, whatever our strategy, our gain is kept to a minimum.

2.7 STABLE SOLUTION

A stable solution can only exit in terms of pure strategies when the payoff matrix has a
saddle point.

If there is no such saddle point the strategies are mixed strategies and the problem
becomes one of evaluating the probabilities with which each course of action should be
selected.

Consider the following game of matching Pennies. Two players, A and B each put down
a penny. If the coins match, i.e. both are heads or both are tail. A collects them both;

otherwise B collects them both. The payoff matrix for this game is given below:

Player B
I I
(Heads) (Tails)
I (Heads) 1 -1
Il (Tails) {—1 1}

Intuitively, it can be seen that it is not a good plan for either player to decide in advance

Player A

to play either of his pure strategies. Success in this game lies in attempting to anticipate
the opposing player’s course of action. A player could score over his opponent if he
detected any pattern in his opponent’s strategy or noticed that his opponent had a

preference for either heads or tails. The opponent may only obviate such detection by



selecting his courses of action at random such that the probability of choosing either

heads or tails is - Such a strategy may be represented as (yz%) A player may employ

this strategy, for example by tossing the coin. If player A used his strategy he would win,
on average, as often as he would lose, and his average or expected gain would be zero.
This would be true whatever strategy player B adopted, whether he played heads
throughout, tails throughout, or used the same strategy as A. if player A uses the strategy

(%%) he cannot lose whatever B decide to do. Similar reasoning also hold for player B.

as there is no strategy for either player which will ensure a positive gain, the strategy

(%%) is the optimal strategy for both players according to the minimax criterion. The

situation where both players use this strategy is stable in the sense that when either player
realizes the other’s strategy he has no incentive to change his own. This intuitive analysis

affords s clue to the solution of games which do not have saddle points.

2.8 WEIGHTED AVERAGE OF THE POSSIBLE OUTCOMES

Consider the game with the following payoff matrix

Player B
I I
| |a b
Player A
I|c d

If this game is to have no saddle point the two largest elements of the matrix must
constitute one of the diagonals. We assume that this is so and, therefore both players use
mixed strategies. Our task is to determine the probabilities with which both players
choose their course of action. Let player A use his first course of action with probability x
and, therefore his second course of action with probability (1-x). Let player B’s strategy,
similarly, be (y, 1-y). The expected gain to A if B plays his course of action | throughout
is ax + c¢(1-x). Similarly, the expected gain to A if B plays his course of action Il
throughout is bx + d(1-x). Thus A’s expected gain if B plays (y, 1-y) is
y[ax + c(1—x)]+ 1= y)[ox + d(1-x)]



2.9 Informal Definition

A game is a set of acts by 1 to n rational Dennettian agents and possibly an a rational
Dennettian agent (a random mechanism) called nature where at least one Dennettian
agent has control over the outcome of the set of acts and where the Dennettian agents are
potentially in conflict, in the sense that one Dennettian agent could rank outcomes
differently from the others. A strategy for a particular Dennettian agent i is a vector that
specifies the acts that i will take in response to all possible act by other agents. A
Dennettian agent i is rational if and only if for given strategies of other agents the set of
acts specified by I’s strategy is such that it secures the available consequence which is
most highly ranked by i. Nature is a generator of probabilistic influences on outcomes:
technically it is the unique Dennettian agent in a game that is not rational.

Dennettian Agents: A Dennettian agent is a unit acts, where an act is any move that
potentially influences future allocations.

Game may be represented either ion extensive form, that is, using a “tree” structure of the
sort that is familiar to decision theorists, where each player’s strategy is a path through

the tree, or in strategic form. A game in strategic form is a list: G = {N ,S ,(S)}

Where

¢ N is the set of players and the index I designates a particular agent i.
N ={0,1,2,3,....,n}

¢ S s the strategy space for the agents S = Xni = OSi
Where
Si is the set of possible strategies for i.

¢ (s) is a vector of payoff function one for each agent, excluding player O. each
payoff function specifies the consequence for the agent in question of the

strategies specified for all agents. (S) = (1(S),....,N(S))

2.10 APPLICATIONS

Game theory has of course, been extensively used in microeconomic analysis where its
record of accurate predictions has been impressive in areas such as industrial organization
theory, the theory of the firm, and auction theory. In macroeconomics and political

science its use has been more controversial, since in such applications it is often difficult



to establish that the specified game is in fact an accurate representation of the empirical
phenomenon being modeled. For example, it has been common place to suggest that the
nuclear standoff between the United States and the Soviet Union during the cold war was
a case of the Prisoner’s Dilemma. However it is far from obvious that the leaderships in
either country in fact attached the necessary payoffs in their utility functions — preferring
the destination of the world to their own unique destination. Game Theory has also been
fruitfully applied in evolutionary biology, where species and/or genes are treated as

players.

3.0 SOLUTION STRATEGIES
3.1 PAYOFF DETERMINATION/CALCULATION
One play of the game consists of a simultaneous selection of one A, by player A and one
B, by player B. thus is the end of the game and the payoff is then determined

Player A's Payoff =¢;

Player B's Payoff = —«;

Or

Player A's Payoff = -q;

Player B's Payoff =¢;
The above results are obtained from zero-sum property of two-person zero-sum games
which means that the payoft to B together sum up to zero.

(o )+ (- )=0

Or

(_ ajj )+ (“ij ): 0

Therefore in any two-person zero-sum game A’s gain is B’s loss and vice versa.

3.2 nXm POSSIBLE PAYOFFS REPRESENTATIONS
From the example given above, there are nXm possible payoffs, represented by table 1

below:



Table 1: nXm Possible Payoffs

B, B, B; B;
Ay a, ap A3 Aipy
A; Q,, Ay, U3 A,
A s as, [e2%: A3,
Am aml amZ am3 amn

Let us assume the payoffs to player A and player B in two-person-zero-sum game are

shown in table 2 below:

Table 2: Payoffs to player A and player B in two-person-zero-sum game.
B; |B, |Bs | By

A; |28 |22 |18 |21

Ay |26 |23 |24 |25

A; |16 |21 |25 |26

We are supposed to use two tables, one to represent the payoffs to player A and the other
to represent payoffs to player B but the convention is to show the payoff to A knowing
that it is also the loss to B. This does not imply, however, that A “always wins” and B
“always loses”

We assume that both players know the whole payoff table shown in table 2 above. They
know not only the possible payoffs to themselves but equally well they know those of
their opponents.

In table 2 above, player B has n = 4 courses of action while player A has m = 3 course of
action. The payoffs to A happen to be all positive numbers. The table shows that A will
gain something between a minimum of 16 and a maximum of 28. Player B will lose the
corresponding quantity. However, the exact size of this transfer of value from B to A is

determined by the decisions of both players.



3.3 NATURE OF A SOLUTION
Game theory answers two questions:

1) How will the players behave?

ii) How should the players behave?
These two questions must be answered simultaneously. Let us consider the viewpoint of
one decision maker. Player A must decide how he should behave. In doing this, player A
set his objectives as the maximisation of his expected gain. But player A’S gain is
determined not only by his choice of action but also by that of player B. Therefore, player
A cannot decide how he should behave without simultaneously deciding how player B
will behave.
Main problem of game theory is to determine what the opponent will do. Decision maker
A needs a model of his opponent, decision maker B. We now have two choices:
a) modeling his opponent as a chance mechanism and assigning probabilities to the

possible action B.
b) modeling the opponent as an intelligent, knowledgeable individual acting in pursuit
of his own interests, a “rational” opponent.

The first choice will lead to a problem of decision under uncertainty while the other one
is a more reasonable assumption. Also, it will be seen that the assumption of a rational
opponent is a conservative assumption in the sense that a rational opponent is the hardest
to play against. An opponent who is simple a chance mechanism could not give a lower
expected gain to decision maker A.
It is easier to predict the behaviour of a rational opponent than that of an irrational one
therefore, a rational opponenet is the most demanding upon A’s expected gain, he is also
easier to understand. There is just one way to be rational whereas there are many ways of
being irrational. It is a key result of game theory that it is possible to predict, either
deterministically or probabilistically what the rational opponent will do and therefore to

decide what decision maker A should do to maximize his expected payoff.



34 GAME WITH A SADDLE POINT

This type of game has the property that you can predict with certainty what the
opponent’s course of action will be that is the optimal solution to the game. It is worth
noting that not all games possess such a solution.

3.4.1 Nonsecret Strategy

3.4.1.1 A’s Best Nonsecret Strategy

The first step in solving a game problem is to find A’s best solution assuming that B
would know it in advance and counter it. This is called A’s best nonsecret strategy. The
reasoning is simple and is represented by rows in table 3 shown below for the game

specified above.

If A Selects B would select A would Receive
Ay B 18
Ay B, 23
As B, 16

Table 3: A’s Best Non Secret Strategy
The first row in table 3 shows that if A selects his first course of action and B knows this
choice in advance, B would select this third course of action Bs, to limit his loss to 18.
After repeating this reasoning for A, and again for Az, B would select second and first
course of action, By, B4, to limit his loss to 23 and 16 respectively. A can finally select his
best non secret strategy. From table 3 above, it is A because A; has the greatest payoff for

A. he knows that B will select B, and the payoff will be 23.

34.1.2 B’s Best Nonsecret Strategy

Table 4 is used to illustrate B’s Best Nonsecret Strategy. The first row in table 4 shows
that if B selects his first course of action B; and A knows this choice in advance, A would
select this first course of action, Aj, to maximize his gain to 28. After repeating this
reasoning for B,, B3 and again for B4, A would select second course and third course two
times for corresponding actions to maximize his gain to 23, 25 and 26 respectively. B can
finally select his best nonsecret strategy. From table 4, it is B, because B, has the greatest
payoff for B. He knows that A will select A, and the payoff to will be 23. therefore 23 is

the smallest loss attainable from a non secret strategy and it is B’s best nonsecret strategy.



Table 4: B’s Best Nonsecret Strategy
If B Selects A would select B would lose

Bi A 28
B, Ay 23
B; As 25
B4 Ay 26

3.4.2  Deterministic Solution
Selection of courses of action mentioned above between player A and player B is in fact
made without knowledge of the opponent’s choice.
34.2.1 Compelling Reason for Deterministic Solution
If game theory can tell player A how he should behave, it must also tell player B how
player A will behave i.e. if a solution of this type exists it must be a nonsecret solution.
Therefore the best nonsecret solutions, if they coincide, are the best solutions to the game.

For the example given above, the best nonsecret strategies do coincide:

A’s Best Nonsecret Strategy is Ay;

expecting B to select B,.
B’s Best Nonsecret Strategy is Bo;
expecting A to select A.

Each player expects the other to do what is in fact his best nonsecret strategy. When these
coincide, the game is said to have a saddle-point or deterministic solution. Deterministic
in the sense thst player A can predict with certainty that B will select B, if he is confident
that the assumptions of the game model are true (that B is rational, that the payoffs in the
table are perceived by B to be the correct payoffs, and so forth). If there is no point where
the two best nonsecret strategies coincided, then there does not exist a deterministic
solution.
A saddle-point or deterministic solution exists if one cell in the table is the smallest entry
in its row and simultaneously the largest entry in its column. The efficient method of
finding saddle-point solution is
1)  Find the smallest entry for each row and mark it with a B because it is B’s best

countermove if B knew that A would select that row. It is possible for smallest



entry not to be unique in row considered therefore, all the entries that are the
smallest entry must be marked with B.

i1) In each column, find the largest entry and mark it with an A because it is A’s best
countermove if A knew that B would select that column. If the largest entry is not
unique, mark all equal ones with A.

iii)  if at least one entry has been marked with both an A and a B, it is a sddle-point or
deterministic solution. If no entry is marked twice, there exists no saddle-point
solution. It means that player A cannot predict with certainty what B will select and
he is not confident that the assumptions of the game model are true. Table below

illustrate the above in details.

B B, B; | Bs

A, | 280 | 22 188 | 21

A, 26 | A238 | 24 25

A; | 162 | 21 | 25% | 26"

Table 5: Calculations for Saddle-Point or Deterministic Solution.
In table 5, there is a saddle-point (deterministic) solution. A will select A, and B will
select B, and the payoff will be a transfer of 23 units from B to A. This model accurately

describes the problem and can confidently predict the outcome and the value of the game.

3.4.2.2 Communication Between the Players Before the Game

Some communication allowed prior to the final decision and determination of outcome.
Each player attempts to test the rationality of his opponent by bluffing. For example,
player B may lead off with the statement that “I plan to select B;”. He reasons that if A
believed him, A would plan to select A;. If B believes that A believes his statement, he
will pick Bj to reduce his loss to 18. However, it is in A’S interest to pretend to believe
B’s statement because, if he appears to believe it, he can expect B to select Bs. Meanwhile
A can plan to select Az and expect a payoff of 35. There is no equilibrium to this chain of
reasoning. Neither player can be confident’s that his opponent will do as he says, because

it would be against that opponent’s self-interest. The only credible communication that B



could make is “I plan to select B,”. However, that communication is unnecessary because
A already known that a rational opponent will select B;. Thus it appears that the
possibility of communication has no effect upon the solution of the game if each player

believes in the rationality of his opponent.

3.5 CHANCE MECHANISM
Consider the following game in table * below in which both decision-makers A and B

have two possible courses of action.

B1 B,

A Al 5A

A, 2 1B

Table 6: Game against a chance

The search for a saddle-point in table 6 reveals that the best nonsecret strategy of each
player to select his first course of action.
Let us assume that decision maker A wishes to model his opponent as a chance

mechanism rather than a rational opponent. This means he will specify a probability y,
that the chance mechanism will select course of action B;. Let Yy, represent the
probability that the chance mechanism will select B,. These two events are mutually
exclusive and are the only possible outcomes. Therefore the probabilities must obey
yit+y, =1 or y,=1-y,
Considering table 6 obove:
The expected payoff of this game against chance, if A selects Ay, is
4y, +5(1-y,).
If A selects A,, his expected payoff is
2y, +(1-y)).
For example, if decision maker A believes that chance is equally likely to select By or By,
the expected values are 4.5 for A; and 1.5 for A;. He would select A; and expect to gain

4.5



From the above, if B is a rational opponent then A can expect the payoff of 4, whereas he

can expect a payoff of 4.5 if his opponent is a chance mechanism having y, = %

Apparently it is worse to play against a rational opponent. The chance mechanism cannot

be a worse opponent then a rational opponent for any value of y,. This is true because
4y, +5(1-y,)>2y,+(1-y,) for any 0<y, <1

and therefore A would select A, for any value of y,. Also, the smallest possible value of
4y, +5(1-y,)

is the value 4, chance mechanism has y, =1. Thus, the worst possible chance mechanism

has y, =1 and therefore behaves just like a rational opponent who would also select B,

with probability 1. Thus a rational opponent is like the least favorable chance mechanism

all other chance mechanism y, <1, would be a more desirable opponent.

To find the least favourable chance mechanism for this game is a two-variable linear
program. Let v represent the expected payoff to player A (and expected loss to player B).
Then

Minimize v
Subject to
4y, +5(1-y,)<v
2y, +(1-y,) v
y, <1
and
y, =20

3.6  GAMES WITHOUT A SADDLE POINT
Many games do not have a saddle-point solution. However, they still have a solution. Let

us consider the game in table 7 below:

B, | B,
A | 55 | 6
A, | 40 | 3B

Table 7: Game without a Saddle Point



A search for a saddle point quickly shows that there is none. Considering decision maker
A’s viewpoint, if game theory told him to select A, it would also tell his opponent that
he will select A;. Then B would select By, the least favourable outcome to A. if it told
him to select A, then B would know to select B,. There would be no way for A to obtain
the favourable outcomes of this game because the information it would give to B about
A’s decision can always be used to B’s advantage.
If there is to be a solution to this game, it must tell A how to decide without
simultaneously telling B what A will decide. A solution must have the property that it is a
procedure to make a decision while protecting the information about what the decision
will be. The only way to accomplish this is by chance mechanism called a random
strategy.
3.6.1 Random Strategy
Game Theory can tell decision maker A to select A; with probability X; and select A, with
probability X, (such that x; + X = 1). This tells A how to decide without telling B what
decision will be made.
This can be implemented operationally by using any standard chance mechanism such as
a random number table. A random number between zero and 1 will be drawn by chance
from the table. If the number is less than x;, then A, is selected. This is a superior
solution compared to any deterministic solution because it gives decision maker A a
higher expected payoff. Player B can know these probabilities but is denied perfect
predictability of decision maker A’s action.
3.6.1.1 Best Nonsecret Random Strategy
Game Theory determines the best values of X; and X, A’S best nonsecret random strategy.
When A has just two possible courses of action, as in this example, there is just one
unknown to be determined X;. Since the two probabilities must sum to 1. X, can be found
by X2 = 1 — X;. The method of solution is to consider the expected payoff to A of each of
B’s possible courses of action as function of X;, which is the decision variable of this
problem. If B picks B, the expected payoff to A is

=5X, +4(1-x,)
If B picks B,, the expected payoff to A is

6x, —3(1-x,)



Player B will know the x; value in advance and select B, or B, depending upon which of
these expected payoffs to A is smaller for the given x; value. Figure 1 shows the graph of
these two functions of x;. The line marked B, in figure 1 is the expected payoff to A if B
selects B;. Similarly B, is the expected payoff to A if B selects Bo. it is worth nothing that
for any particular value of x;, one line is lower than the other. There is one point where
both lines have the same height. This is found by equating the expected payoffs of the
courses of action and solving for x;.
=5%, +4(1-x,) = 6%, =3(1-Xx,)
4-9x, =-3+9x,

_7/ _
X, = J{g=0.388

For x; < 0.388, the line B, is lower and so B would select B, for all such x; values. For
x; > 0.388, the line B; is lower and so B would select B; for all such x; values The
expected payoffs to A from B’s for best counterstrategy is the line B, for 0 < x;< 0.388
and the line B; for 0.388 < x; < 1. Clearly 0,388 is the best value for x; and it is the
greatest expected payoff to A. thus A’s best nonsecret random strategy is x; = 0.388 and
x;=1-0.388=0.612
3.6.1.1.1 Optimum Nonsecret Random Strategy
From example given in table 7 and analysed above, let v denote the expected payoff to A
of the optimum nonsecret random strategy. This is found from the height of either line at
X, =0.388
—5X, +4%, =V
= v =-5(0.388) +4(0.612) = 0.50
And
6X, —3X, =V
= Vv =6(0.388)-3(0.612) = 0.50
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Figure 3.1: Expected Payoffto A

If there had been no intersection of the two curves for an x; value in (0.1), one of B’s

courses of action would have been best for all x; = 0 or x; =1 (or, if the line is level, at

both). This implies that a saddle-point solution exists.

To solve for B’s best nonsecrete random strategy while preventing his opponent from
knowing his actual decision in advance. His strategy will be represented by y;, the
probability that he will select course of action B;. Then the probability that he will select
B, is y»= 1 —y;. the easiest, most direct way to find y; comes from the most direct way to

find y, comes from the knowledge that the expected loss to B if A picks A is

_Syl +6y2
= _5y1 +6(1_ y1)

Now the expected loss to B is also the expected gain to A; which is known to be 0.50.

Therefore y; can be determined from
-5y, +6(1-y,)=0.50

5.5=1.1y,

y, =0.50



Expected loss to B
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Figure 3.2: Expected Loss to B -5

From figure 2 above, B’s Best nonsecret random strategy is y, =50, y, =50 and his
expected loss is 50.
To emphasize the symmetry of the problem, the expected loss to B is
-5y, +6(1-y,) if A selects A,
and
4y, =3(1-vy,) if A selects A,.
These are graphed as a function of y, in figure 2 above. The two expressions are equated

to solve for the y, point where the lines cross:
=5y, +6(1-y) =4y, =30-y,)
The solution is
y, =0.50
The expected loss to B is also v
v =-5(0.50)+ 6(0.50) = 0.50
3.7 REDUCTION OF THE SIZE OF A GAME
If one course of action is better than or as good as another for all possible courses of
action of the opponent, then the first is said to “dominate” the second course of action.

The dominated course of action can be simply discarded because it is of no value. This



idea can be used to reduce the size of a game. However, this useful only when the game
does not have a saddle point because a saddle point, when present, is easy to find. When
there is no saddle point present it is important to try to reduce the size of the game by
dominance. Let us consider the game in table 8a below:

B, | B | B3| B4 | Bs
Al 442|468
Ay | 8 [ 68|84 |-4P] 0

As [ 104 2B | 4 | 10%] 128

Table 8a: Demonstration of Dominance
A search has shown that no saddle point is present. A search for dominance shows that B,

dominates B; and so B; can be discarded. The new table is shown below in table 8b.

B, B; B4 B;s

A | 40| 22| 4 | 6°

A, 6 g8 | 4B | o

A; | 2B 4 10 | 124

Table 8b: A search for Dominance (B; and B, compared)
A search of table 8b reveals that A, dominates A;. A; can be discarded to give table 8c

below:

B, | B; B4 Bs
A, 6 8 -4 0

Az 2 4 10 12

Table 8c: A search for Dominance (A; and A, compared)
There may be new dominance relationships in table 8c above. These relationships were
not present before. For example, B, now dominates B3 whereas it did do so in table 8a.

Similarly, B4 now dominates Bs. Both B; and Bs are discarded to give table 8d below:

B, | B4
A, 6 -4
As 2 10

Table 8d: Final dominance relationship



Expected payoffto A

A

10
\ B, B, — 6

v

X5

X,
-4

Figure 3.3: Expected payoff to A (dominance)

Thus dominance has reduced a 3x5 game to a 3x3 game that can be solved by the method
used under game without saddle point above. Using the method, it is known already that

X, = 0. Therefore X, + X, =1. It remains to solve for X,, A’s best nonsecret random
strategy. It can be found as follows. If B selects B,, the expected payoff to A is

6X, +2(1-Xx,)
If B selects By, it is

—4x, +10(1-x,)
The graph is shown in figure 3 above. The equation that determines the best X, is

6X, +2(1-X,) =—4x, +10(1-X,)
The solution is

% =%

Therefore X, = % from (X, =1-X,)

The expected payoffto A is
6X, +2X, = 6(%)+ 2(%)
- 3%

= 3.78



The best nonsecret random strategy for B has y, =0, y,=0,y,=0and y, +y, =1.

The value of y, can be obtained from 6y, —4(1-Yy,) = 3%

The solution 1s y, = % Therefore y, = % . The graph is shown in figure 4 below:

Expected payoff to B
A
10 P~ A
\
e
— | ,
0 > Y
Y2
4

Figure 3.4: Expected payoff to B (dominance)

The equation that determines the best Y, in the figure 4 above is
6y, —4(1-y,) =2y, +10(1-y,)
The solution is
6y, —4+4y, =2y, +10-10y,
10y, —4=10-8y,
18y, =14

y, =14/.=7¢ (QED)
Therefore

y4:%

The expected loss to B is

6y, —4y, = 6(%)—4(%)= 6% ‘3%
- 2% =2.56



3.8 2Xn GAMES
The difficulty in solving a game that has no saddle — point solution is determined by the

smaller of the game’s two dimensions. If A has only two courses of action, the statement
implies that B also will use no more than two. This implies that all 2Xn games can be
easily solved by the methods of games without a saddle point solution. Considering the

following table:

B, B, B; By Bs

Ay 4 -2 10 -4 12

A, -4 8 -6 2 0

Table 9: 2Xn Game
A’s best nonsecret random strategy (x;,Xz) is described by one number, x;. B’s best
nonsecret random strategy is describe by four numbers, yi1,y2,y3, and ys, where ys is
determined by

Ys=1=Y, =Y, =YV,
To determine x; it is necessary to consider all of B’s possible choices. The expected
payoffto A is

4x, —4(1-x,) If B selects B,
-2x,+8(1-x%,) If B selects B,
10x, —6(1—X,) If B selects B,
—4x,+2(1-x,) If B selects B,
12x, =0(1-x,) If B selects B

These can be graphed as a function of x; as shown in figure 5 below.
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Figure 3.5: Expected Payoff to A

When the graph is drawn into scale, it is immediately clear that for x; values near zero, B
would select Bs, for intermediate values he would select B, and for values near 1 he
would select Bs. He would never selected B, or Bs. This could have been determined by
the use of dominance as earlier explained. By dominance method B, is dominated by B4
and Bs is dominated by B3 as shown in table 9. Therefore they can be discarded and both
y» and ys can be set to zero.

The next observation from figure 5 is that the intersection of B; with By is higher than the

intersection of B; with Bs. Therefore it is the intersection of B; with B, that determines

X1-
4%, —4(1—X,) =—4x, +2(1-x,)
x =3
And so

X, =4

The expected payoffto A is

i34 )-447)-4



A further conclusion is that B will never use Bs. his best random strategy will use only B
and Ba.

To find B’s best random strategy is now easy. It is known that B, B3, and Bs will not be
used. Therefore y,, y3, and ys are zero. That leaves y; and ys to be determined.

Since y, +y, =1, there remains only y; to be determined. If A selects A;, the expected

loss to B is 4y, —4(1—y,) and this must equal the expected payoff to A, which is — % .

Therefore 4y, —4(1-vy,) = —%

The solution fory; is y, = % . Therefore y, = % and the solution is complete.

In conclusion, when A has only two course of action an optimum solution for x; is
always at the intersection at one point, only two of them would be used. A similar
reasoning would apply to 3Xn games. However, the graphic method used so far is
convenient only far two courses of action. For games whose smallest dimension is greater
than 2 and cannot be reduced by dominance, a new method must be considered that is
generally useful for any dimensions.
39 SOLUTION OF GAMES BY LINEAR PROGRAMMING (MANUAL

METHOD)
A two-person-zero-sum game generally implies that a has m courses of action (Aj, A, ...,
Ay and B has n courses of action (B, By, ...., B,) where m and n are not necessarily
equal. If player A selects Ajand player B selects B;, also «;; and the loss to B is also «;;.
From this example given, A’s best random strategy is specified by X, X,,:--, X, while
B’s best random strategy is Y,,Y,, ", Y,. Determining A’s best random strategy can be
formulated as a their program with m+1 decision variables (X,,X,,--,X,, ) and v, where
v is the expected payoff to A:

Maximize v

Subject to

O X oy X, +ay X+ +o, X, 2V

mlm =

Op X+ 05Xy 0 X+t o, X, 2V

m2-m =

X o, Xy o X+t o X, 2V

mn®'m —



And Xp+ X, + X+ X, =1
Xps X0 X550, X, 20
or
0<x <1

There are n equality constraints in the above illustration. The j™ constraint states that the
expected payoff to A if B selects B; cannot be less than v because B will pick his best
counterstrategy. The last constraint is an equality constraint: The probabilities must sum
to 1. The x’s must be nonnegative because they are probabilities. However, the variable v
is not restricted to be nonnegative standard simplex method given above constraints all

variables to be nonnegative. It is not a problem when all «;; are nonnegative because v

cannot then be negative. Therefore the nonnegative problem can be prevented by adding

a constant ¢ to all cells in the ¢; table such that the resulting table contains all

nonnegative entries. This ¢ would be subtracted from the final v value as a last step to
recover the true v, which may be negative. The equality constraint can be used for
substitution to eliminate one variable if the nonnegative of the eliminated variable is
enforced by a constraint.

The solution for X,X,, -+, X, and v can be used to obtain the solution fory,,y,,---,Y,.

Suppose that the first r < m of the x’s are greater than zero and others are zero. Then the
y’s can be determined as the solution of simultaneous linear equations. If the j"™ constraint

is satisfied as equality in the optimal solution, theny; > 0, this means that B may use Bj.
If the j™ constraint is satisfied as equality in the optimal solution, then y ;=0 and B

would never use B;. this reasoning determines which r of the n. the y values must be

solved for also. To solve for B’s best random strategy as a linear programming problem:

Minimize v
Subject to

X +oy, X, tag Xy o+ o, X, 2V

mlm =

m2-m =

AR X X, + X+, X, 2V

A X 0 X+ X+ o X, 2V

mn°'m —



And X, + X, + X+ X, =1

m

Xps Xy0 X550, X, 20

1>7%2> m

or
0<x <1

From the above, the j™ inequality represents the expected loss to B if A select A; It is
worth noting that of the game because the value of the game is determined by A’s
selection of the best minimize v, his expected loss. This linear program is used to find the

probabilities y,,Y,,--, Y, that are least favourable to player A. this linear program is

solved first, then its results, knowledge of which variables are positive and which
constraints hold as equalities, are used to solve for A’s best random strategy as a set of

linear equations rather than by solving A’s linear program.

3.9.1 Formulation of Linear Program for a Specific Problem

Consider the following example. The two players A and B must select a number out of 1,
2, or 3. If both have chosen the same number, A will pay B the amount of the chosen
number. Otherwise A receives the amount of his own number from B. The payoff table

for this game is shown in table 10 below.

B
1 2 3
A 1 -1g 1 1
2 2 2B 24
3 34 3A -38

Table 10: Payoff Table for Linear Programming

A search indicates that there is no saddle-point solution. The linear program for A’s best
random strategy, X,,X,,X; is



Maximize v
Subject to

=X, +2X, +3X; =2V
X, —2X, +3X; =2V
X, +2X, =3%X; =2V
X, +X, +X =1

and

X5 Xy, X3 =20

In this case, the optimal v could be negative because the payoff table does contain
negative payoffs. However, if the number 3 is added to all ;;'s, then all will be
nonnegative. Then definev' =v+3 = v =V'—3. The problem can be rewritten with all
nonnegative variables as
Maximize V' -3

Subject to

2X, + 5%, + 6%, >V

4%, + X, +6X; 2V’

4X, + 5X, >V

X, +X, + X =1
It is best with hand calculation to eliminate the equality constraint by substituting
X, =1—-X, — X, and replacing the nonnegative condition X; >0 by X, + X, <1.
The resulting problem is

Maximize v' -3

Subject to

4%, + X, +V' <6

2%, +5%, +V'<6

4%, +5%, —=Vv'20

X, +X, <1
and
X5 X,,V 20

Slack variables are then used to convert the four inequality constraints to equalities. The
problem becomes
Maximize V' —3

Subject to

4%, +X, +V'+5, =6

2X, + 5%, +V'+5s, =6

4%, + 5%, —-v'—=s, =0

X, +X, +s, =1



The initial Basic Feasible Solution (BFS) will have basic variables S;, S,, S3, S4 and zero
variables X, X,,V’. This corner point is degenerate because the third constraint passes
through the origin.

This first tableau of the simplex method is

Pivot
Const. X, X, V' Ratio
-3 0 0 1
6 4 -1 -1 -6
6 -2 -5 -1 -6
0 4 5 -1 0
1 -1 -1 0 a

The next tableau shows no gain in objective because of the degeneracy

Const. X X, S; Ratio
E -3 +4 +5 -1
Sy 6 -8 -6 +1 -1
S, 6 -6 -10 +1 -6/10 | Pivot
v/ 0 +4 +5 -1 0
S4 1 -1 -1 0 -1




The next tableau is

Const X S, S; Ratio
E 0 1 % -
S, 22/10 —44/10 | +6/10 +4/10 | —24/44 | Pivot
X, +6/10 -6/10 -1/10 +1/10 -1
V' 3 1 —% —% +3
S, +4/10 —-4/10 +1/10 -1/10 -1
The next tableau gives the optimal solution
Const Si S S3 Ratio
E 6/11 —-10/44 —4/11 -9/22
X, 6/11 -10/44 6/44 1/11 -1
X, 3/11 +6/44 -2/11 1/22 6/10
v/ 39/11 -10/44 —4/11 -9/22 0
S, 2/11 +4/44 A —-7/110 -1
The result is
X, =6/11
X, =3/11
X, =2/11
and
v=6/11

The above result shows that the first three constants hold as equalities in the optimal
solution. Therefore it is known that B uses all three of his courses of action. The best
random strategy for B can be found from these results by solving three simultaneous
equations in three unknowns. The i equation represents the expected loss to B if A uses

Ai. All these must equal the expected gain to A that is known. The equations are:



Y t+tY,+Y; :6/11
2y, =2y, +2y, =6/11
3y, +3y, -3y, =6/11

The solution is

y, =5/22
y, =4/11
y; =9/22

This completes the solution to the game problem.

3.9.1.1 Analysis of the Game
First find B’s optimal strategy. The linear program is
Minimize v
Subject to
=Y, +Y,+Y; <v
2y, =2y, +2y; <V
3y, +3y, =3y, <v
Yit+Y,+Y;=1
and

VY2, Y320

Again v could be negative because some «;; are negative. This problem is circumvented
by adding 3 to all payoffs and defining v’ =Vv+3. Also the substitution y, =1-y, -, is

made and the constraint y, +Yy, <1 is added to ensure the non-negativity of the

substituted variable. The problem becomes:

Minimize v' -3

Subject to
2y, +V' >4
6y, +V'>5
6y, +6y, +V' <0
yi+Y, <1
and

Y, Y5,V 20.



3.10 SOLUTION OF GAMES BY LINEAR PROGRAMMING (COMPUTERIZED
METHOD)

A computerized solution to two-person-zero-sum game problem that has a general

statement of course of actions for player A and different course of actions for player A

and different course of actions for player B is designed and implemented in Conflict

Resolution System (CRS). Here, computer is used to get courses of action of each player

and it manipulates them to get solution to the problem. It does this with high speed and

accuracy. A and B best random strategies are formulated as linear programs with decision

variables. From the linear equations got, tableaus are formed and final result computed

and printed on the screen.

3.10.1 Information Requirements for the System

Here, we address two important issues of the practical implementation of the system.

First, the basic concept of the Information Structure Perspective (I. S. P) will be

discussed. Secondly, the Information Usage Perspective (I. U. P) is also going to be

discussed.

3.10.1.1 The Information Structure Perspective (I. S. P)

It describes the natural and conceptual relationships among the operational data. However,

the state of a perception of the real world can be regarded as a series of distinct but some

times related phenomena. These phenomena are described by data. Data correspond to

discrete fact about phenomena from which one gains information about the real world.

The payoffs to player A and payoffs to player B are the operational data used. The

integrated view of the operational data is described as well.

3.10.1.1.1 The Operational Data

The operational data is described by using the relational database model. The relational

database model is based on a foundation of theory from relational algebra. Consequently,

it is a high level abstraction of a universe of discourse. It consists of a group of concepts

that are particularly related to any programming language.

A relation is a matrix or two-dimensional table of related data that has several properties.

In this case, it is a two dimensional table of numerical data showing payoffs to both

players.

The general form of a relation is given by: R[Al ALAL A LGAGALL AL An]



Where R represents a strategy of a player, the set {Aj }, j=1,2,3,4,---,n represents

the payoffs to the player. In the case of players, A and B, it is noted that where the
payoffs to A equals the expected loss by B is called saddle-point. The payoff tables
described above are identified with the computer aided system.

3.10.1.1.2 The Integrated View of the Operational Data

The integrated view of the payoffs is shown in figure 7 below:

Player A
Y
v
B’s Best nonsecret .| Playoff Table .| A’s Best nonsecret
random strategy < — < ~| random strategy
A
A 4
Player B

Figure 3.6: Integrated View of the Operational Data.

The entity types in the above figure functionally or logically dependent on each other.
3.10.1.1.3 The Data Constraints
The database model defines the rates which bind the logical relationships and constraint
among the payoffs. It gives adequate interpretation of the meaning of payoff and how
they are being used. In the real sense, the constraints binding on the system can be
classified into two categories namely:

a) Integrity Constraint

b) Semantic Constraint
The integrity constraints are concerned with the areas of the system, which are applied to
individual payoff. They are also concerned with the rules that bind the values of payoffs.
A semantic constraint is concerned with the rules, which bind the meaning of payoff with

a view to reflecting the naturalness of payoff representation.



Database rules provide the mechanism, which enforced standard and central control.
The semantic constraints of the operational data of game theory are spelt out below:

1) Repetition is not allowed.

ii) Just one play and then the problem is over.

1i1) Decisions of both players are made individually, prior to the play.

v) No communication between the players.

V) Decisions are made simultaneously so that neither player has an advantage

resulting from direct knowledge of the other’s decision.

Transaction
The game involves only two players. It also involves direct conflicts between the two
players. The game is played once and the problem is over. At the end of the game one of
the players will gain while the other loses. The gain and the loss equal in magnitude. It
means that the payoffs to both when sum together give zero-sum. Some of the
transactions involved before arriving at the solution to the game are

1) Construction of payoff table.

ii) Finding saddle point solution.

i) Finding the best nonsecret random strategy for each player.

v) Reduction mechanism.

V) Formulation of linear program
3.11 EXPLOITING AN OPPONENT’S MISTAKES
The definition of ‘best strategy’ implies that the game is played against a rational
opponent whose object is to maximise his own gain. It is possible for player A to take
advantage of the knowledge that player B is not using his best strategy.
For example, if player A’s strategy is (% %) in the game of head or tail, and is optimal

against a shrewd opponent in that it protects him against loss. If, however, B is observed
to play ‘heads’ more frequently than ‘tails’, A can increase his gain by also playing
‘heads’ more frequently than ‘tail’. If, for example, B plays ‘heads’ twice as often as

‘tails’, i.e. a strategy of (2/ 3,1/ 3), A increases his gain by also choosing for his strategy
(2/3,1/3). The gain to A under these circumstances is 2/3(1/3)+1/3(~1/3), i.e. 1/9,

player A winning, on average, 5 games out of 9. it can be shown that if the opponent’s



strategy is known in advance, a player achieves his maximum gain to 1/3 by playing

heads through out. Unfortunately, if A did this, B would almost certainly notice and be
led t modify his own strategy.

3.12 GAMES AGAINST NATURE

We have shown in the previous section how a player may take advantages of knowledge
of his opponent’s strategy. Many decision-making situations can be viewed as zero-sum
two-person games where the opponent is nature . such a situation differs from a game in
that Nature is not actively engaged in trying to outwit her opponent. Her behaviour is
independent of her opponent’s and may well be to some extent predictable. The being so,
a player against nature should be able to select that pure strategy which maximizes his
expected gain.

In everyday life we are constantly making decisions; some trivial, some not so trivial.
Although we rarely, if ever, formulate the decision in detail, we may nevertheless
unconsciously carry out a similar exercise. There are decisions, however, where the
issues are of such importance as to demand time for quantitative analysis. It is in such
situation that game theory is valuable. Its ultimate usefulness in practice depends on how
exhaustively the courses of action may be determined and how accurately the possible
outcomes may be measured. Game theory does at least provide a framework with which

the relevant factors involved in a decision may be isolated.

CONCLUSION

Having examined the manual/traditional and electronic approaches to games and game
theory, the introduction of CRS developed into game theory to aid efficiency and to
increase the accuracy in analyzing games related problems or finding solution to them
will help a long way to eradicate some of the listed problems facing selection of best
nonsecret strategies by players, selection of course of actions between players and chance
mechanism for decision making between two players. The provision of computer with

on-line and real-time processing will help to eradicate these problems in game theory.



CRS (Conflicts Resolution System) has been able to effectively perform the specified
software functions as earlier stated. It is able to acquire data, make the necessary
manipulations and statistical computation based on the chosen statistical design and
generate the necessary and relevant report either by printing the file created or by

graphical display or by graphical printout.

The package is multifunctional, flexible and capable of representing solutions to game
theory problem in graphical form: It is able to draw Line Graphs for Expected gains to
player A and Expected loss to player B, and line graphs for solutions to the game theory
by linear program. Also, it can determine saddle point solution from the payoftf table if
there is any. In addition, it can perform alternative functions to determine solution to the

problem if there is no saddle point solution.

The system developed helps to eradicate some of the problems/limitations of manual
approach. It is important to emphasize that the areas of applications of this system cannot
be exhausted in this dissertation. Much achievement has been made in the areas of data

security, integrity, confidentiality, constraints and restrictions.

Much effort and time has been put into the development of this system and the logic
involved allows for the achievement of the aims and objectives of this project work as

well as provision for systems flexibility.

The Contributions of CRS

The implementation of the system will improve the existing manual approach to
resolving conflicts among opposing interests by reducing the time of operation.
The contributions of the system include the following:
¢ Proper keeping of the various games data.
¢ Reduction in the long time of processing result of conflicts among opposing
interests.
¢ Provision of data integrity and reliability through data validation.

¢ Itis a tool for the intensive training to teach people how to resolve conflicts.



¢ For proper file maintenance and provision of accurate reports.
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