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Abstract 

 
Artificial Immune Systems have been used 
successfully to build recommender systems 
for film databases. In this research, an 
attempt is made to extend this idea to web 
site recommendation. A collection of more 
than 1000 individuals’ web profiles 
(alternatively called preferences / favourites / 
bookmarks file) will be used. URLs will be 
classified using the DMOZ (Directory 
Mozilla) database of the Open Directory 
Project as our ontology. This will then be 
used as the data for the Artificial Immune 
Systems rather than the actual addresses. The 
first attempt will involve using a simple 
classification code number coupled with the 
number of pages within that classification 
code. However, this implementation does not 
make use of the hierarchical tree-like 
structure of DMOZ. Consideration will then 
be given to the construction of a similarity 
measure for web profiles that makes use of 
this hierarchical information to build a 
better-informed Artificial Immune System. 

 

1 INTRODUCTION 
This research is concerned with using Artificial 
Immune Systems as a recommender of web sites for 
new database members. Thus, a new member of the 
database system would be able to export their 
bookmark / favourites file and receive a small number 
of recommendations of web site addresses (URLs or 
Uniform Resource Locators). Unlike a search engine 
that will only return specific items a user searches for, 
our recommender system should be capable of 
providing the user with surprising items of interest. 

Artificial Immune Systems are adaptive search 
algorithms based on the biological immune system 
with the central task of pattern matching between 
antigens and antibodies. Thus in our opinion, they are 
particularly well suited to data-mining tasks that 
involve sifting through large databases and finding 
matches to other items. This has been confirmed in 
recent research by Cayzer and Aickelin [5] who used 

Artificial Immune Systems to recommend films to 
new members of a database based on their rating of at 
least five films. 

As in the research by Cayzer and Aickelin, the type of 
Artificial Immune System developed here will be 
based on Jerne’s idiotypic network ideas [13]. Hence, 
we will build an Artificial Immune System that will 
find a group of users in the database who are similar 
to the target user in their web site preferences. At the 
same time, the idiotypic effects will ensure that this 
group is as diverse as possible. Thus, we will have 
created an ideal base for predicting and 
recommending web sites. To do this successfully two 
steps are necessary: building a database that models 
individuals’ web profiles using a suitable ontology, 
and constructing a suitable measure of how similar 
two web profiles are. 

The remainder of this paper is organised as follows: 
In the next section, a very brief overview of the 
immune system is given with particular emphasis on 
those features that we intend to exploit here. Section 3 
will summarise the research into film prediction and 
explain differences and similarities to this piece of 
research. The following section describes the data and 
ontology used and gives further details about the task 
of web site recommendation. Section 5 presents a 
description of the intended Artificial Immune System 
with an emphasis on the discussion of a suitable 
similarity measure. The paper is concluded with a 
summary. 

 

2 THE IMMUNE SYSTEM 
The human body is protected against foreign invaders 
by a multi-layered immune system. The immune 
system is composed of physical barriers such as the 
skin and respiratory system; physiological barriers 
such as destructive enzymes and stomach acids; and 
the immune system, which has two complementary 
parts, the innate and adaptive immune systems. The 
innate immune system is an unchanging mechanism 
that detects and destroys certain invading organisms, 
whilst the adaptive immune system responds to 
previously unmet foreign cells and builds a response 
to them that can remain in the body over time. 



The immune system is composed of a number of 
different agents performing different functions at a 
number of different locations in the body. The precise 
interaction of these agents is still a topic for debate 
[10]. In order to present the important aspects of the 
system from a mathematical viewpoint it is necessary 
to simplify and present a selective description. 

The immune system’s job is to detect antigens, which 
are foreign molecules from a bacterium or similar 
invader. The innate immune system helps in the 
detection process but the main response is through the 
adaptive immune system. Two of the most important 
cells in this process are white blood cells, called T 
cells, and B cells. Both of these originate in the bone 
marrow but T cells pass on to the thymus to develop 
before, as with B cells, they circulate the body in the 
blood and lymphatic vessels. 

B cells are responsible for the production and 
secretion of antibodies, which are specific proteins 
that bind to the antigen. Each B cell can only produce 
one particular antibody. The antigen is found on the 
surface of the invading organism and the binding of 
an antibody to the antigen is a signal to destroy the 

invading cell. A diagram from de Castro and Von 
Zuben [4] of this process is shown in Figure 1. 

Figure 1: Some of the processes involved in the 
adaptive immune system. 

 
Whilst there is more than one mechanism at work (see 
[8], [10] or [15] for more details), the essential 
process for the sake of this research is the matching of 
antigen and antibody leading to increased 
concentrations of more closely matched antibodies. In 
particular, two processes, known as the ‘clonal 
selection theory’ by Burnet [3] and the ‘idiotypic 
network theory’ by Jerne [13] and [14], are important 
to us. 

The former can be explained as follows: When an 
antibody strongly matches an antigen the 
corresponding B cell is stimulated to produce clones 

of itself that then produce more antibodies. This 
selection of B cells for cloning on the basis of the 
antibody match is called the ‘clonal selection 
principle’ and will result in increasing concentrations 
of that antibody in the body. 

However, when the B cells clone themselves they do 
not do so exactly, but mutate slightly. Similarly, B 
cells may be stimulated when the antibody-antigen 
match is not perfect. By allowing mutation, the match 
could become better. However, a number of poorer 
matches will also be created, and furthermore, some 
of the newly produced antibodies could even be 
harmful to our own cells. Such cells will die out under 
what is known as the ‘negative selection principle’ 
[10]. 

The mutation, mentioned above, is quite rapid, often 
as much as de Castro and Von Zuben state in [4] “one 
mutation per cell division”. This allows a very quick 
response to the antigens. This rapid mutation, known 
as ‘somatic hypermutation’ [10], may be linked to the 
‘fitness’ of the antibody. Hence, those B cells 
producing antibodies that are a good match would be 
subject to less mutation and vice versa for those that 
are not such a good match. 

The idiotypic network theory, introduced by Jerne in 
[13] and [14], maintains that interactions in the 
immune system do not just occur between antibodies 
and antigens, but that antibodies may interact with 
each other. Hence, an antibody may be matched by 
other antibodies, which in turn may be matched by yet 
other antibodies. This activation can continue to 
spread through the population. However, this 
interaction can have positive or negative effects on a 
particular antibody-producing cell. The idiotypic 
network has been formalised by a number of 
theoretical immunologists in [15]. This theory could 
help explain how the memory of past infections is 
maintained. Furthermore, it could result in the 
suppression of similar antibodies thus encouraging 
diversity in the antibody pool. 

This last possibility was used in the research by 
Cayzer and Aickelin [5] in order to preserve diversity. 
The Artificial Immune System in their research 
produced a pool of users who were similar to the new 
entrant to the database, but dissimilar to each other. 
Whilst this method produced similar performance in 
predicting film ratings to a k-nearest neighbour 
approach, the diversity in the pool of recommenders 
was found to yield statistically significantly improved 
recommendations. Given the sparseness of the web 
site search space it may be that suppression of 
antibodies on similarity grounds might be 
unnecessary. This will be investigated. 

There are a number of successful Artificial Immune 
System implementations. However, even in the most 
complex artificial systems only a fraction of the 
functionality of the biological immune system is 
exploited. Typically, the antibody-antigen interaction 
coupled with somatic hypermutation, form the basis 
for many Artificial Immune System applications. 
Examples are Timmis et al [18], who used an 
Artificial Immune System for clustering multivariate 



data, and Hajela and Yoo [11], who combined a 
genetic algorithm and an Artificial Immune System to 
optimise the design of a 10 bar truss. The research by 
Timmis et al also applied the idiotypic network theory 
and were successful in both classifying data and 
“generalising to cover a larger region of the input 
space”. However, the article does not comment on the 
effect of modelling a suppression factor between 
antibodies. Some of the most promising research to 
date has been conducted in the area of computer 
security, for instance by Hofmeyr and Forrest in 
computer network security [12] and by Kim and 
Bentley for fraud detection [15] and [16]. 

 

3 ARTIFICIAL IMMUNE SYSTEMS 
AS RECOMMENDERS 
Whilst most of the applications described above 
involve somatic hypermutation, Cayzer and Aickelin 
[5] had only identical cloning, not mutation, in their 
algorithm. This was because the potential antibodies 
were actual users of the film database (EachMovie 
database provided by the Compaq Research Centre 
[6]). There the task was to find users that were similar 
to new entrants to the database. Somatic 
hypermutation was not used, since it is not 
immediately obvious how to mutate users sensibly 
such that these artificial entities still represent 
plausible profiles. 

For the same reasons, cloning in our intended 
Artificial Immune System will make exact copies, 
too. Future work might include making inexact copies 
to create novel profiles once appropriate rules for 
doing so have been established. This could be 
particularly beneficial when data gathering is 
expensive or data is otherwise sparse, perhaps due to 
its sensitive nature, leading to few users being willing 
to share their information with others. 

The main loop of the recommender algorithm is 
shown in Figure 2 below and is the core of our 
Artificial Immune System. The aim of this algorithm 
is to increase the concentrations of those antibodies 
(database users) that are similar to the antigen (target 
user). This process is subject to the suppression of 
similar antibodies following Jerne’s idiotypic ideas 
mentioned above. Thus, over time the Artificial 
Immune System contains high concentrations of a 
diverse set of users who have similar film preferences 
to the target user. 

 
Initialise AIS 
Encode user for whom to make predictions as antigen Ag 
WHILE (AIS not stabilised) & (More data available) DO 

Add next user as an antibody Ab 
Calculate matching score between Ab and Ag 
Calculate matching scores between Ab and antibodies 
WHILE (AIS at full size) & (AIS not stable) DO 

Iterate AIS 
OD 

OD 

Figure 2: Main loop of the Artificial Immune 
System’s (AIS) algorithm for recommendation. 

The diagrams in Figure 3 show the idiotypic effect. In 
the top diagram, antibodies Ab1 and Ab3 are very 
similar and they would have their concentrations 
reduced in the ’Iterate AIS’ stage of the algorithm 
above. However, in the lower diagram, the four 
antibodies are well separated from each other as well 
as being close to the antigen and so would have their 
concentrations increased. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Illustration of the idiotypic effect. 

 
At each iteration of the film recommendation 
Artificial Immune System the concentration of the 
antibodies changes according to the formula given 
below. This will increase the concentration of 
antibodies that are similar to the antigen and can 
allow either the stimulation, suppression, or both, of 
antibody-antibody interactions to have an effect on 
the antibody concentration. More detailed discussion 
of these effects on recommendation problems are 
contained within Cayzer and Aickelin’s paper [5]. 

The following is a formal equation for the idiotypic 
effect adapted from Equation 3 in Farmer [8]: 
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Where: 

N is the number of antibodies 
xi is the concentration of antibody i 
mi is the antibody i and the antigen correlation 
mij is the correlation between antibodies i and j 
y is the concentration of the antigen 
k1 is suppression, k2 stimulation and k3 death rate 
k0 is set to zero in our system, i.e. we do not reward 
antibody - antibody recognition. 
 
The algorithm is terminated, when the Artificial 
Immune System is said to have stabilised, i.e. if it has 
not changed in consistency for more than ten 
iterations. The concentrations and correlations of the 
users in the final neighbourhood, i.e. final immune 
system iteration, are then used to calculate a weighted 
sum of the ratings of web sites. This would be either a 
specific unseen web site by the target user in order to 
predict its ratings, or general top 10 recommendations 
of new web sites that the target user might enjoy. 

 

4 THE CHALLENGE OF WEB SITE 
RECOMMENDATION 
There are a number of algorithms that recommend 
items to users. One of the best-known examples is 
Amazon.com’s [1] book recommender based on 
similar items bought. Generally, these recommenders 
use what is termed “collaborative filtering“ or “social 
filtering” by Billsus and Pazzani [2]. With the 
exponential growth of available information on the 
internet, the need for automated techniques to winnow 
down the possibilities has also grown but “only a few 
different algorithms have been proposed in the 
literature thus far” [2]. 

Many of the current collaborative filtering techniques 
use the Pearson correlation coefficient to compare the 
item ratings of different users. This suffers from 
several limitations. For example, due to the extremely 
large amount of information to be rated, two users 
may only have a very small number of items in 
common causing the correlation measure to be unduly 
influenced by those items. Further, there is potentially 
no difference between the correlation between two 
users with three items in common and the measure for 
two users with 30 items in common, in terms of their 
“influence on the final prediction” [2]. 

The sparseness of the information space also implies 
that two users might have no items in common. Can 
we therefore conclude that they have completely 
dissimilar tastes, or does the fact that they have not 
rated particular items imply a similar view of the 
importance of those items? For these reasons, 
alternative approaches to both current collaborative 
filtering algorithms and to the use of the Pearson 
correlation coefficient should be investigated. More 
information about traditional and enhanced 
collaborative filtering is provided by Gokhale [9]. The 
Artificial Immune System presented here is another 
example. 

In our problem of web site recommendation, the 
original data consists of sets of web site addresses or 
URLs taken from bookmark collections such as 
http://www.cs.ucl.ac.uk/staff/Kim/ComputerImmune. 
It is extremely unlikely that many people will have 
many exact addresses in common within their web 
profiles. Because of this, it is necessary to transform 
or translate the addresses into a different form. To do 
this a number of steps are necessary and a widely 
used web site classification tree ontology will be used 
called DMOZ [7]. 

Let us look at the issues involved in the classification 
of URLs systematically. Typically, an individual web 
profile in raw form might consist of a list of 
bookmarks as shown in Figure 4 (in this case taken 
from the Opera browser – only a small section is 
shown). 

 

#URL 
 NAME=ODP - Open Directory Project 
 URL=http://dmoz.org/ 
 CREATED=1017158736 
 VISITED=1023875733 
#URL 
 NAME=Open Directory RDF Dump 
 URL=http://dmoz.org/rdf.html 
 CREATED=1017159133 
 VISITED=1023875759 

Figure 4: Part of a raw web profile taken from the 
Opera browser. 

 
This data has to be pre-processed in order to remove 
unwanted information and superfluous characters. 
This also includes removing any categories the user 
might have assigned to some of the bookmarks. 
Unfortunately, such categorisation of information 
cannot be kept, as it is arbitrary and individual to the 
person that owns the bookmarks. For instance, 
www.bbc.co.uk could be classified under ‘media’ by 
one person and under ‘news’ by another. In addition, 
misclassifications and duplications might be present 
in the raw data. Hence, this filtering typically yields a 
file such as the one partially shown in Figure 5. 

 
www.bbc.co.uk/weather/ 
www.bbc.co.uk/ 
www.bbc.co.uk/sport /english/football/default.stm 
www.guardian.co.uk/ 
football.guardian.co.uk/ 

Figure 5: Part processed data with superfluous 
information deleted. 

 
As can be seen from the third line in Figure 5, some 
of the URLs will have long addresses. Another web 
profile might contain a very similar address such as 
www.bbc.co.uk/sport/english/football/en/default.stm. 
If we were to use the raw addresses within the 
Artificial Immune System, these two would be 



considered different. However, it is clear that the two 
users have bookmarked different pages within the 
same part of the same site, i.e. ‘BBC online - 
football’, and thus have very similar interests. 

Therefore, it is still necessary to process the data 
before it can be used. This presents considerable 
problems. A program will need to be devised which 
will truncate the URLs in such a way so that the two 
addresses discussed above would be considered the 
same. However, looking again at Figure 4, a simple 
truncation of the addresses would lead to the first 
three items occupying the same category. At the same 
time, it might not lead to the last two being picked 
together despite the fact that both the addresses refer 
to pages from the same site. Furthermore, it might not 
put items 3 and 5 together despite the fact that they 
are both concerned with football. 

To overcome these difficulties, two strategies are used 
within the DMOZ ontology: Normalisation and 
reverse partial look-up. First, all URLs undergo a kind 
of normalisation when pre-formatting the data, as well 
as when doing look-ups. The protocol and host part 
are mapped to lowercase characters and host only 
URLs are always terminated with a “/”. During the 
actual look-up, the category information is gained 
from DMOZ by employing a reverse truncation 
search. That is, at first, we try to match the full URL, 
and then we try to match up to the last “/”, then to the 
last but one “/” etc. 

For instance, we would first try to match item three 
from above by looking for the full URL in DMOZ. If 
we cannot find that, we would look for 
www.bbc.co.uk/sport/english/football/; if this fails, 
we would search for www.bbc.co.uk/sport/english/ 
etc. Alternatively, we could try to find the closest 
match in DMOZ defined by the number of 
consecutive characters that are identical counted from 
the beginning of the URL. 

These normalisation and intelligent matching together 
should overcome the first problem mentioned above. 
To overcome problems of misclassification and to 
have a common standard we decided to use the 
DMOZ open directory ontology as a classification 
system [7]. Figure 6 shows part of the structure of this 
directory. 

 
<Topic r:ID="Top/Arts"> 
<tag catid="2"/> 
<d:Title>Arts</d:Title> 
<narrow r:resource="Top/Arts/Books"/> 
<narrow r:resource="Top/Arts/Music"/> 
<narrow r:resource="Top/Arts/Television"/> 
[…] 
<Topic r:ID="Top/Kids_and_Teens/Pre-School"> 
<catid>468769</catid> 
<link r:resource="http://www.coolplays.com/"/> 
<link r:resource="http://kayleigh.tierranet.com/"/> 
<link r:resource="http://www.megafile.com.br/"/> 
<ExternalPage about="http://www.coolplays.com/"> 
<d:Title>Coolplay's Cool for Kids</d:Title> 
<d:Description>Includes animated nursery rhymes, crafts, 
alphabet and spelling games, and colouring book. 

Figure 6: Part of the DMOZ open directory structure. 

The first half of Figure 6 shows part of the ‘Arts’ 
category, which is located immediately below the root 
of the tree (called Top). Each category has a unique 
identifier number (2 in this case). This category has a 
number of sub categories that in turn have several sub 
categories of their own. In total, there are some 5 
million URLs in 428,590 categories spread over 16 
levels in the directory. Categories can also be referred 
to using an address showing the parent categories in a 
way that preserves the tree structure information. For 
example, a category address might read ‘1.3.9’ 
meaning that it is the ninth sub category of category 
3, which is the third sub category of category 1. 

The second half of Figure 6 shows how URLs are 
represented in DMOZ and gives an example of a 
more detailed description of one URL as provided by 
an anonymous referee. The complete DMOZ database 
is roughly one GB in size and updated regularly. All 
specifications in this paper refer to DMOZ as of 1 
June 2002. Overall, the version of DMOZ that we use 
has the following tree structure with deepest branch 
being 16 levels below the top: 

 
  1  
  18 / 
 621 // 
 6675 /// 
 30754 //// 
 61042 ///// 
 68901 ////// 
 101567 /////// 
 82802 //////// 
 51454 ///////// 
 20592 ////////// 
 3467 /////////// 
 616 //////////// 
  69 ///////////// 
  8 ////////////// 
  2 /////////////// 
  1 //////////////// 

Figure 7: Full DMOZ structural tree. 

 
The final stage of processing the data is to turn each 
of the URLs, shown in Figure 7, into a file containing 
either the category identification numbers or the 
category addresses, coupled with the number of items 
in each category. The choice about which version to 
use will be discussed in the next section. 

There are a number of possible pitfalls with this 
process. For example, many profiles will contain a set 
of URLs, which are created by the browser program 
that they use. Few users are likely to delete all of 
these links, reasoning that they may be useful at some 
stage. This may create a situation of artificial 
similarity between users, which would prevent the 
Artificial Immune System from functioning 
effectively. 

Secondly, the process of placing URLs into categories 
is likely to involve some truncation if at first there is 



no clear category involved. This could lead to several 
subtly different addresses being classified into the 
same category due to the truncation look-up. 
Depending on whether the truncated sites are from 
genuinely different URLs or not this could be good or 
bad. In the first case, the category may appear to be 
more popular than it should be whereas in the second 
case the number in the category is a clear indication 
of interest in that category. Until the data is fully 
assembled and individual examp les are checked, it 
will not be possible to judge how critical some of 
these problems will be. 

 

5 BUILDING THE ARTIFICIAL 
IMMUNE SYSTEM RECOMMENDER 
In the film recommender research described in Cayzer 
and Aickelin [5], each user was coded as a user 
identification number followed by pairs of film 
identification numbers with the corresponding rating 
of the film. The target user became the antigen, whilst 
the current database members were potential 
antibodies. In each iteration, antibodies were added to 
the Artificial Immune System. Those judged to be 
more similar to the antigen in their film ratings had 
their concentration increased. 

A unique feature of that particular approach was the 
application of the idiotypic network theory by Jerne 
[13]. This was implemented such that antibodies that 
were very similar to each other had their 
concentration reduced. This has the effect of creating 
a set of users who are similar to the new user but quite 
different to each other and thus enhancing the 
recommendation accuracy of the system. We intend to 
use the same mechanism for our web site 
recommender to build an Artificial Immune System 
as described in section 3. 

In order to do this, we also have to decide on the 
encoding of a user’s web profile for which there are 
two possibilities. In both cases, a user is encoded as a 
list of category IDs and the number of bookmarks 
within each category. The difference is in the 
category IDs; they can be either an integer or a 
reference to the tree structure. To illustrate the 
difference, Figure 8 shows the same user’s bookmarks 
for both encodings. The figures in bold indicate how 
many bookmarks fall into a particular category: 

 
Encoding with the Tree structure: 
1.13.12.1.5:5; 
1.13.12.1.6:3; 
1.16.3.2.11.5:1; 
1.18.1.2:1; 
 
Encoding with integer category IDs: 
22343:5; 
495771:3; 
334921:1; 
3409:1; 

Figure 8: Integer versus Tree Encoding. 

 
If the second encoding is used together with the 
number of sites within each category as a rating of the 
popularity of that category then the problem becomes 
similar to the film recommendation problem. 

However, here we have a considerably sparser search 
space. In the film database, there were approximately 
20,000 entries whereas in the DMOZ directory there 
are over 400,000 categories. This sparseness may 
prevent the system from working since many users 
might have nothing in common, or, at best some 
categories that are common to the vast majority of the 
data. Furthermore, many users will have only one 
entry in a number of categories, leading to increased 
similarity since the ‘rating’ of that category will be 
the same. These problems may prevent an Artificial 
Immune System based on this encoding being 
successful in identifying a group of similar users. 

There is another problem with using integer category 
IDs. Because DMOZ is an evolving classification 
system, new categories are added and removed 
regularly. This can have the effect that two very 
similar categories end up with very different integer 
IDs as these are handed out consecutively. For 
instance, Star Wars part four might have ID 20,004 
when it was classified years ago, but Star Wars part 
two might end up with ID 420,012 because it has only 
recently entered the DMOZ system. A similar effect 
can be seen in Figure 8 for the first two bookmarks. 
Figure 8 also shows how the tree structure IDs might 
prevent some of these problems as similar categories 
still end up near each other in the tree. 

The alternative to the integer encoding is to use an 
encoding that includes the tree structure in the form of 
a category address. What is required then is  a 
similarity measure that carefully recognises categories 
that are ‘close’ within the structure of the tree. For 
example, it would need to judge the parent / child or 
the sibling relationship as being more similar than a 
first cousin or grandparent type relationship. 
However, constructing such a measure is far from 
simple. Consider the two trees in Figure 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C

D E F

G H I J K L

User 1: 

C

D E F

G H I J K L

User 2: 



Figure 9: Simple tree structure showing two web 
profiles. 

User 1 has entries at categories G, E, J and L, whilst 
user 2 has entries at D, I, J and F. Clearly, matches 
should be scored more highly the lower down the tree 
they are because this indicates a more precise match. 
Additionally, ‘close’ relationships within the tree 
structure should count more towards the match than 
ones separated by several ‘generations’ (to continue 
the family tree metaphor). 

Whilst it is easy to see that these users should have 
their similarity measure increased, since both have an 
entry in category J, a question remains what to do 
with J afterwards. Should this match be discarded 
once it has been counted by the measure or should the 
entries at I and J for user 2 be counted as two entries 
at the parent branch (E) for comparison with user 1? 
The danger with discarding matches once counted is 
that two users might have ‘perfect’ matches for all of 
the 10 categories that the first user has in their profile, 
whilst the second user has another 100 entries. 

However, if one does not discard categories that have 
already been matched with another category then it is 
possible that one quite high level category might be 
‘matched’ with all the different entries at sub-
categories for another user. This might not matter 
since the ‘strength’ of the match would have been 
reduced by the generational distance and the 
weakness of the high-level category’s contribution. 

 

6 SIMILARITY MEASURES 
Let us now construct a suitable similarity measure for 
the Artificial Immune System that will produce a 
value on a 0–1 scale with answers closer to 1 
indicating a closer match. Following the discussion in 
the previous section, the measure will be built 
according to the following five principles. 

1. Matching at categories lower down the tree 
structure should contribute more to the measure 
than matching higher up. 

2. Matches at the top level of the tree (i.e. the 
‘Top’ category in the DMOZ database should 
have a contribution of zero. 

3. Matching contribution should be reduced for 
‘imperfect matches’ i.e. those not in exactly the 
same category. The reduction in contribution 
should be proportional to the generational 
distance (i.e. a grandparent child relationship has 
a generational distance of two.) 

4. The matching metric should be scaled 
(averaged) so that it ranges from 0 to 1. 

5. The matching metric should take into account all 
possible matches between the entries in each 
web profile, i.e. if there are 10 entries in 1 and 
20 in the other then all 10 × 20 = 200 potential 
matches should contribute to the measure. 

 

Suppose that we wish to calculate the matching 
coefficient for the category addresses 1.3.1.1 and 1.3 
in the sample tree diagram in Figure 10 below. We 
need to define an ‘edge distance’ as the number of 
‘steps’ apart any two addresses are. For example, 1.1 
and 1.1.2.2.1 have an edge distance of three, as do 
1.2.2.2 and 1.2.1. This equates the relationship 
between grandparent and grandchild as the same 
strength as that between siblings. 

 

Figure 10: Sample Tree diagram. 

 
By staged truncation of the longer category address 
(CA) until they are the same we obtain a match at CA 
1.3 with two numbers (edge distances) discarded (but 
counted). This match would have a strength 
determined by the category level (level 2) of the 
matching CA, and by the edge distance (ED). 

How should the edge distance affect the value of the 
overall match? One possibility would be to use 1 / ED 
as this would be a smaller value as the ED increases. 
However, this would not work when the CA match 
perfectly as we would be dividing by zero. Therefore 
using 1 / (ED + 1) is  better. 

How should the depth of the matching level affect the 
value of the overall match? It seems useful to make 
the level number the same as the number of integers 
in the CA. In the example above, there are six levels. 
However, the tree is not of uniform depth. In 
principle, matches at lower levels should score higher 
since they show a more precise agreement in the topic 
matter. However, does this mean that a perfect match 
at the bottom of one set of branches (e.g. 1.1.2.2.2) 
should score less highly than a perfect match at the 
bottom of another lower set, say 1.3.2.2.1.1? The 
DMOZ database is a human classification of human 
knowledge. To some extent, the classifications are 
arbitrary because they are the result of pragmatic as 
well as epistemological considerations. Therefore, it 
seems incorrect to allow only a perfect match score 
when it occurs at the lowest level. 

In the example above it might be advisable to allow 
perfect matches to contribute fully at levels 4,5 and 6. 
Remembering that a match at the top level should 
count as zero then a formula to give the level effect 
factor would be (L - 1) / (4 - 1) i.e. level 4 would have 
a value of 1, level 3 a value of (2/3), level 2 (1/3), 
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NB  All the categories roughly on a line are at the same
level but are shown this way in order to fit in their labels
i.e. 1.1.2.3 is on the same level as 1.2.1.1



whilst the top level would have a value of zero. 
However, this would not work for values of L greater 
than 4. To solve this we could use a value of 1 in 
those cases . Thus, the general matching formula 
becomes min{1, (L-1) / (ML-1)} where ML stands for 
the level at which the maximum contribution starts. In 
the case of DMOZ, a reasonable choice for the cut-off 
point might be level 8 based on the structure in Figure 
7. 

A disadvantage of the measure just described is the 
inherent simplifications of using a cut-off point after 
which all matches are equally ‘perfect’. The smaller 
the cut-off value, the more inaccurate result will 
become. However, if set too large then some branches 
of the tree might be too shallow to ever achieve a 
perfect match. It is furthermore questionable whether 
a linear measure is appropriate. Hence, we propose 
the following alternative. The matching scores 
monotonically increasing from level 1 to 16 (in 
DMOZ’s case) but get close to 1 relatively quickly, 
say at level 8, and then approaches  1 asymptotically 
as shown in the figure 11. 

 
Figure 11: Shape of proposed matching function. 

 

The following equation describes such a function. Let 

 
webprofile1 contain cai (i = 1...n ) category addresses  

webprofile2 contain caj (j = 1…m) category addresses 

edi,j be the edge distance from cai to caj 

li,j be the matching level for cai and caj 

 

Proposed matching function: 
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This measure still agrees with the principle that 
matches at lower levels should score higher but does 
not unduly penalise the branches that do not go down 
to the full 16 levels. Assuming we sum the 
contributions of all the potential matches the total 
would have to be divided by the total number of 
matches to transform the metric to a 0 - 1 scale. 
Hence, the similarity measure s becomes: 
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One further factor should be considered when 
calculating the match between two web profiles. It is 
the validity of the match if the web profiles have very 
different numbers of URLs within them (which we 
will call the disparity correction factor). 

If one web profile has only 10 items whilst the other 
has 100, then a match from these two people would 
seem to be less valid than one based on web profiles 
containing 50 and 60 items . This is because in the 
first case the 10 entries from the first profile have 
been used proportionately more in calculating the 
match. Assuming that web profile 1 (n entries) is 
smaller than web profile 2 (m entries) then finding the 
fraction n / m would give a higher result to those pairs 
of profiles which have similar numbers of entries (see 
column 3 in Figure 12). 

However, it would also give a perfect score to two 
profiles with a very small number of URLs, say 2 
URLs each. Clearly, the measure should ‘reward’ web 
profiles that have a larger number of entries. One way 
to do this would be to include the sum of the number 
of entries. However, some profiles contain a very 
large number of entries. Analysis of the data shows 
that users with more than 100 bookmarks are likely to 
be outliers. Hence, in order to produce a measure in a 
range from 0 to 1, profiles with more than 100 entries 
are counted as  though they have 100 entries. Column 
4 in Figure 12 shows the calculation of such a 
measure under the assumptions above. 

The fifth column in Figure 12 contains the proposed 
disparity factor. However, if the raw values in column 
5 were used the correction effect would probably be 
stronger than the original matching score. Therefore a 
scaling parameter a is introduced to reduce the range 
of the disparity factor. This  parameter determines the 
lowest value in the range (a, 1) which the disparity 
factor can take. 

 
n m n/m (n+m)/200n/m*(n+m)/200a+(1-a)*n/m*(n+m)/200

100 1001.00 1.00 1.00 1.00 
80 1000.80 0.90 0.72 0.89 
60 1000.60 0.80 0.48 0.79 
40 1000.40 0.70 0.28 0.71 
20 1000.20 0.60 0.12 0.65 
80 80 1.00 0.80 0.80 0.92 
60 80 0.75 0.70 0.53 0.81 
40 80 0.50 0.60 0.30 0.72 
20 80 0.25 0.50 0.13 0.65 
60 60 1.00 0.60 0.60 0.84 
40 60 0.67 0.50 0.33 0.73 
20 60 0.33 0.40 0.13 0.65 
40 40 1.00 0.40 0.40 0.76 
20 40 0.50 0.30 0.15 0.66 
20 20 1.00 0.20 0.20 0.68 
10 20 0.50 0.15 0.08 0.63 
10 10 1.00 0.10 0.10 0.64 
5 1000.05 0.53 0.03 0.61 
1 1000.01 0.51 0.01 0.60 



Figure 12: Disparity correction using a disparity 
scaling factor of a = 0.6 . 

Using the same notation as before, with a being the 
scaling parameter for the disparity correction factor 
the final similarity measure becomes: 
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7 CONCLUSIONS 
There are a number of steps in the process of 
preparing the database for use in the Artificial 
Immune System. These may have an effect on the 
performance of the system. It will not be possible to 
tell how critical these issues are until the project is 
near completion. Having constructed the web profile 
database the choice of encoding must be made. Again, 
this could have a critical effect on the success of the 
Artificial Immune System. It is clear that the 
construction of a similarity measure that will allow 
the use of the tree structure is not a trivial task. It may 
be that this is not necessary and exploration of the 
potential of the first encoding will be undertaken first 
since there is already a successful precedent in this 
case. However, the sparseness of the data set may 
prevent this, and the creation of a tree comparison 
similarity measure is an interesting challenge. 

To conclude, we believe that with the correct 
matching metric an idiotypic network based Artificial 
Immune System should be well suited to supplying 
interesting yet surprising URLs based on a user’s 
bookmarks. Preliminary results show that with the aid 
of DMOZ we can map between 60% and 80% of 
users’ bookmarks to votes for suitable categories. We 
feel confident that this gives us a strong basis for an 
Artificial Immune System recommender and 
subsequent result will be published in due course. 
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