
An Artificial Immune System as a Recommender for Web Sites

Proceedings of the 1st International Conference on ARtificial Immune Systems (ICARIS-2002), pp 161-169., Canterbury, UK.

Tom Morrison

University of the West of England

Frenchay Campus Bristol

BS16 1QY

tom.morrison@uwe.ac.uk

Uwe Aickelin

School of Computer Science

University of Nottingham

NG8 1BB UK

uxa@cs.nott.ac.uk

Abstract

Artificial Immune Systems have been used
successfully to build recommender systems
for film databases. In this research, an
attempt is made to extend this idea to web
site recommendation. A collection of more
than 1000 individuals’ web profiles
(alternatively called preferences / favourites /
bookmarks file) will be used. URLs will be
classified using the DMOZ (Directory
Mozilla) database of the Open Directory
Project as our ontology. This will then be
used as the data for the Artificial Immune
Systems rather than the actual addresses. The
first attempt will involve using a simple
classification code number coupled with the
number of pages within that classification
code. However, this implementation does not
make use of the hierarchical tree-like
structure of DMOZ. Consideration will then
be given to the construction of a similarity
measure for web profiles that makes use of
this hierarchical information to build a
better-informed Artificial Immune System.

1 INTRODUCTION
This research is concerned with using Artificial
Immune Systems as a recommender of web sites for
new database members. Thus, a new member of the
database system would be able to export their
bookmark / favourites file and receive a small number
of recommendations of web site addresses (URLs or
Uniform Resource Locators). Unlike a search engine
that will only return specific items a user searches for,
our recommender system should be capable of
providing the user with surprising items of interest.

Artificial Immune Systems are adaptive search
algorithms based on the biological immune system
with the central task of pattern matching between
antigens and antibodies. Thus in our opinion, they are
particularly well suited to data-mining tasks that
involve sifting through large databases and finding
matches to other items. This has been confirmed in
recent research by Cayzer and Aickelin [5] who used

Artificial Immune Systems to recommend films to
new members of a database based on their rating of at
least five films.

As in the research by Cayzer and Aickelin, the type of
Artificial Immune System developed here will be
based on Jerne’s idiotypic network ideas [13]. Hence,
we will build an Artificial Immune System that will
find a group of users in the database who are similar
to the target user in their web site preferences. At the
same time, the idiotypic effects will ensure that this
group is as diverse as possible. Thus, we will have
created an ideal base for predicting and
recommending web sites. To do this successfully two
steps are necessary: building a database that models
individuals’ web profiles using a suitable ontology,
and constructing a suitable measure of how similar
two web profiles are.

The remainder of this paper is organised as follows:
In the next section, a very brief overview of the
immune system is given with particular emphasis on
those features that we intend to exploit here. Section 3
will summarise the research into film prediction and
explain differences and similarities to this piece of
research. The following section describes the data and
ontology used and gives further details about the task
of web site recommendation. Section 5 presents a
description of the intended Artificial Immune System
with an emphasis on the discussion of a suitable
similarity measure. The paper is concluded with a
summary.

2 THE IMMUNE SYSTEM
The human body is protected against foreign invaders
by a multi-layered immune system. The immune
system is composed of physical barriers such as the
skin and respiratory system; physiological barriers
such as destructive enzymes and stomach acids; and
the immune system, which has two complementary
parts, the innate and adaptive immune systems. The
innate immune system is an unchanging mechanism
that detects and destroys certain invading organisms,
whilst the adaptive immune system responds to
previously unmet foreign cells and builds a response
to them that can remain in the body over time.

The immune system is composed of a number of
different agents performing different functions at a
number of different locations in the body. The precise
interaction of these agents is still a topic for debate
[10]. In order to present the important aspects of the
system from a mathematical viewpoint it is necessary
to simplify and present a selective description.

The immune system’s job is to detect antigens, which
are foreign molecules from a bacterium or similar
invader. The innate immune system helps in the
detection process but the main response is through the
adaptive immune system. Two of the most important
cells in this process are white blood cells, called T
cells, and B cells. Both of these originate in the bone
marrow but T cells pass on to the thymus to develop
before, as with B cells, they circulate the body in the
blood and lymphatic vessels.

B cells are responsible for the production and
secretion of antibodies, which are specific proteins
that bind to the antigen. Each B cell can only produce
one particular antibody. The antigen is found on the
surface of the invading organism and the binding of
an antibody to the antigen is a signal to destroy the

invading cell. A diagram from de Castro and Von
Zuben [4] of this process is shown in Figure 1.

Figure 1: Some of the processes involved in the
adaptive immune system.

Whilst there is more than one mechanism at work (see
[8], [10] or [15] for more details), the essential
process for the sake of this research is the matching of
antigen and antibody leading to increased
concentrations of more closely matched antibodies. In
particular, two processes, known as the ‘clonal
selection theory’ by Burnet [3] and the ‘idiotypic
network theory’ by Jerne [13] and [14], are important
to us.

The former can be explained as follows: When an
antibody strongly matches an antigen the
corresponding B cell is stimulated to produce clones

of itself that then produce more antibodies. This
selection of B cells for cloning on the basis of the
antibody match is called the ‘clonal selection
principle’ and will result in increasing concentrations
of that antibody in the body.

However, when the B cells clone themselves they do
not do so exactly, but mutate slightly. Similarly, B
cells may be stimulated when the antibody-antigen
match is not perfect. By allowing mutation, the match
could become better. However, a number of poorer
matches will also be created, and furthermore, some
of the newly produced antibodies could even be
harmful to our own cells. Such cells will die out under
what is known as the ‘negative selection principle’
[10].

The mutation, mentioned above, is quite rapid, often
as much as de Castro and Von Zuben state in [4] “one
mutation per cell division”. This allows a very quick
response to the antigens. This rapid mutation, known
as ‘somatic hypermutation’ [10], may be linked to the
‘fitness’ of the antibody. Hence, those B cells
producing antibodies that are a good match would be
subject to less mutation and vice versa for those that
are not such a good match.

The idiotypic network theory, introduced by Jerne in
[13] and [14], maintains that interactions in the
immune system do not just occur between antibodies
and antigens, but that antibodies may interact with
each other. Hence, an antibody may be matched by
other antibodies, which in turn may be matched by yet
other antibodies. This activation can continue to
spread through the population. However, this
interaction can have positive or negative effects on a
particular antibody-producing cell. The idiotypic
network has been formalised by a number of
theoretical immunologists in [15]. This theory could
help explain how the memory of past infections is
maintained. Furthermore, it could result in the
suppression of similar antibodies thus encouraging
diversity in the antibody pool.

This last possibility was used in the research by
Cayzer and Aickelin [5] in order to preserve diversity.
The Artificial Immune System in their research
produced a pool of users who were similar to the new
entrant to the database, but dissimilar to each other.
Whilst this method produced similar performance in
predicting film ratings to a k-nearest neighbour
approach, the diversity in the pool of recommenders
was found to yield statistically significantly improved
recommendations. Given the sparseness of the web
site search space it may be that suppression of
antibodies on similarity grounds might be
unnecessary. This will be investigated.

There are a number of successful Artificial Immune
System implementations. However, even in the most
complex artificial systems only a fraction of the
functionality of the biological immune system is
exploited. Typically, the antibody-antigen interaction
coupled with somatic hypermutation, form the basis
for many Artificial Immune System applications.
Examples are Timmis et al [18], who used an
Artificial Immune System for clustering multivariate

data, and Hajela and Yoo [11], who combined a
genetic algorithm and an Artificial Immune System to
optimise the design of a 10 bar truss. The research by
Timmis et al also applied the idiotypic network theory
and were successful in both classifying data and
“generalising to cover a larger region of the input
space”. However, the article does not comment on the
effect of modelling a suppression factor between
antibodies. Some of the most promising research to
date has been conducted in the area of computer
security, for instance by Hofmeyr and Forrest in
computer network security [12] and by Kim and
Bentley for fraud detection [15] and [16].

3 ARTIFICIAL IMMUNE SYSTEMS
AS RECOMMENDERS
Whilst most of the applications described above
involve somatic hypermutation, Cayzer and Aickelin
[5] had only identical cloning, not mutation, in their
algorithm. This was because the potential antibodies
were actual users of the film database (EachMovie
database provided by the Compaq Research Centre
[6]). There the task was to find users that were similar
to new entrants to the database. Somatic
hypermutation was not used, since it is not
immediately obvious how to mutate users sensibly
such that these artificial entities still represent
plausible profiles.

For the same reasons, cloning in our intended
Artificial Immune System will make exact copies,
too. Future work might include making inexact copies
to create novel profiles once appropriate rules for
doing so have been established. This could be
particularly beneficial when data gathering is
expensive or data is otherwise sparse, perhaps due to
its sensitive nature, leading to few users being willing
to share their information with others.

The main loop of the recommender algorithm is
shown in Figure 2 below and is the core of our
Artificial Immune System. The aim of this algorithm
is to increase the concentrations of those antibodies
(database users) that are similar to the antigen (target
user). This process is subject to the suppression of
similar antibodies following Jerne’s idiotypic ideas
mentioned above. Thus, over time the Artificial
Immune System contains high concentrations of a
diverse set of users who have similar film preferences
to the target user.

Initialise AIS
Encode user for whom to make predictions as antigen Ag
WHILE (AIS not stabilised) & (More data available) DO

Add next user as an antibody Ab
Calculate matching score between Ab and Ag
Calculate matching scores between Ab and antibodies
WHILE (AIS at full size) & (AIS not stable) DO

Iterate AIS
OD

OD

Figure 2: Main loop of the Artificial Immune
System’s (AIS) algorithm for recommendation.

The diagrams in Figure 3 show the idiotypic effect. In
the top diagram, antibodies Ab1 and Ab3 are very
similar and they would have their concentrations
reduced in the ’Iterate AIS’ stage of the algorithm
above. However, in the lower diagram, the four
antibodies are well separated from each other as well
as being close to the antigen and so would have their
concentrations increased.

Figure 3: Illustration of the idiotypic effect.

At each iteration of the film recommendation
Artificial Immune System the concentration of the
antibodies changes according to the formula given
below. This will increase the concentration of
antibodies that are similar to the antigen and can
allow either the stimulation, suppression, or both, of
antibody-antibody interactions to have an effect on
the antibody concentration. More detailed discussion
of these effects on recommendation problems are
contained within Cayzer and Aickelin’s paper [5].

The following is a formal equation for the idiotypic
effect adapted from Equation 3 in Farmer [8]:

Ab2

Ab3

Ab1

Ag

Ab4

Ab1

Ab3

Ab2

Ag

i

N

j
iji

N

j

N

j
jiijjiji

i

xkyxmkxxmkxxmkc

rate
death

recognised
antigens

recognised
amI

recognised
antibodies

c
dt
dx

3
1

2
1 1

10 −







+−=









−
















+








−








=

∑∑ ∑
== =

Where:

N is the number of antibodies
xi is the concentration of antibody i
mi is the antibody i and the antigen correlation
mij is the correlation between antibodies i and j
y is the concentration of the antigen
k1 is suppression, k2 stimulation and k3 death rate
k0 is set to zero in our system, i.e. we do not reward
antibody - antibody recognition.

The algorithm is terminated, when the Artificial
Immune System is said to have stabilised, i.e. if it has
not changed in consistency for more than ten
iterations. The concentrations and correlations of the
users in the final neighbourhood, i.e. final immune
system iteration, are then used to calculate a weighted
sum of the ratings of web sites. This would be either a
specific unseen web site by the target user in order to
predict its ratings, or general top 10 recommendations
of new web sites that the target user might enjoy.

4 THE CHALLENGE OF WEB SITE
RECOMMENDATION
There are a number of algorithms that recommend
items to users. One of the best-known examples is
Amazon.com’s [1] book recommender based on
similar items bought. Generally, these recommenders
use what is termed “collaborative filtering“ or “social
filtering” by Billsus and Pazzani [2]. With the
exponential growth of available information on the
internet, the need for automated techniques to winnow
down the possibilities has also grown but “only a few
different algorithms have been proposed in the
literature thus far” [2].

Many of the current collaborative filtering techniques
use the Pearson correlation coefficient to compare the
item ratings of different users. This suffers from
several limitations. For example, due to the extremely
large amount of information to be rated, two users
may only have a very small number of items in
common causing the correlation measure to be unduly
influenced by those items. Further, there is potentially
no difference between the correlation between two
users with three items in common and the measure for
two users with 30 items in common, in terms of their
“influence on the final prediction” [2].

The sparseness of the information space also implies
that two users might have no items in common. Can
we therefore conclude that they have completely
dissimilar tastes, or does the fact that they have not
rated particular items imply a similar view of the
importance of those items? For these reasons,
alternative approaches to both current collaborative
filtering algorithms and to the use of the Pearson
correlation coefficient should be investigated. More
information about traditional and enhanced
collaborative filtering is provided by Gokhale [9]. The
Artificial Immune System presented here is another
example.

In our problem of web site recommendation, the
original data consists of sets of web site addresses or
URLs taken from bookmark collections such as
http://www.cs.ucl.ac.uk/staff/Kim/ComputerImmune.
It is extremely unlikely that many people will have
many exact addresses in common within their web
profiles. Because of this, it is necessary to transform
or translate the addresses into a different form. To do
this a number of steps are necessary and a widely
used web site classification tree ontology will be used
called DMOZ [7].

Let us look at the issues involved in the classification
of URLs systematically. Typically, an individual web
profile in raw form might consist of a list of
bookmarks as shown in Figure 4 (in this case taken
from the Opera browser – only a small section is
shown).

#URL
 NAME=ODP - Open Directory Project
 URL=http://dmoz.org/
 CREATED=1017158736
 VISITED=1023875733
#URL
 NAME=Open Directory RDF Dump
 URL=http://dmoz.org/rdf.html
 CREATED=1017159133
 VISITED=1023875759

Figure 4: Part of a raw web profile taken from the
Opera browser.

This data has to be pre-processed in order to remove
unwanted information and superfluous characters.
This also includes removing any categories the user
might have assigned to some of the bookmarks.
Unfortunately, such categorisation of information
cannot be kept, as it is arbitrary and individual to the
person that owns the bookmarks. For instance,
www.bbc.co.uk could be classified under ‘media’ by
one person and under ‘news’ by another. In addition,
misclassifications and duplications might be present
in the raw data. Hence, this filtering typically yields a
file such as the one partially shown in Figure 5.

www.bbc.co.uk/weather/
www.bbc.co.uk/
www.bbc.co.uk/sport /english/football/default.stm
www.guardian.co.uk/
football.guardian.co.uk/

Figure 5: Part processed data with superfluous
information deleted.

As can be seen from the third line in Figure 5, some
of the URLs will have long addresses. Another web
profile might contain a very similar address such as
www.bbc.co.uk/sport/english/football/en/default.stm.
If we were to use the raw addresses within the
Artificial Immune System, these two would be

considered different. However, it is clear that the two
users have bookmarked different pages within the
same part of the same site, i.e. ‘BBC online -
football’, and thus have very similar interests.

Therefore, it is still necessary to process the data
before it can be used. This presents considerable
problems. A program will need to be devised which
will truncate the URLs in such a way so that the two
addresses discussed above would be considered the
same. However, looking again at Figure 4, a simple
truncation of the addresses would lead to the first
three items occupying the same category. At the same
time, it might not lead to the last two being picked
together despite the fact that both the addresses refer
to pages from the same site. Furthermore, it might not
put items 3 and 5 together despite the fact that they
are both concerned with football.

To overcome these difficulties, two strategies are used
within the DMOZ ontology: Normalisation and
reverse partial look-up. First, all URLs undergo a kind
of normalisation when pre-formatting the data, as well
as when doing look-ups. The protocol and host part
are mapped to lowercase characters and host only
URLs are always terminated with a “/”. During the
actual look-up, the category information is gained
from DMOZ by employing a reverse truncation
search. That is, at first, we try to match the full URL,
and then we try to match up to the last “/”, then to the
last but one “/” etc.

For instance, we would first try to match item three
from above by looking for the full URL in DMOZ. If
we cannot find that, we would look for
www.bbc.co.uk/sport/english/football/; if this fails,
we would search for www.bbc.co.uk/sport/english/
etc. Alternatively, we could try to find the closest
match in DMOZ defined by the number of
consecutive characters that are identical counted from
the beginning of the URL.

These normalisation and intelligent matching together
should overcome the first problem mentioned above.
To overcome problems of misclassification and to
have a common standard we decided to use the
DMOZ open directory ontology as a classification
system [7]. Figure 6 shows part of the structure of this
directory.

<Topic r:ID="Top/Arts">
<tag catid="2"/>
<d:Title>Arts</d:Title>
<narrow r:resource="Top/Arts/Books"/>
<narrow r:resource="Top/Arts/Music"/>
<narrow r:resource="Top/Arts/Television"/>
[…]
<Topic r:ID="Top/Kids_and_Teens/Pre-School">
<catid>468769</catid>
<link r:resource="http://www.coolplays.com/"/>
<link r:resource="http://kayleigh.tierranet.com/"/>
<link r:resource="http://www.megafile.com.br/"/>
<ExternalPage about="http://www.coolplays.com/">
<d:Title>Coolplay's Cool for Kids</d:Title>
<d:Description>Includes animated nursery rhymes, crafts,
alphabet and spelling games, and colouring book.

Figure 6: Part of the DMOZ open directory structure.

The first half of Figure 6 shows part of the ‘Arts’
category, which is located immediately below the root
of the tree (called Top). Each category has a unique
identifier number (2 in this case). This category has a
number of sub categories that in turn have several sub
categories of their own. In total, there are some 5
million URLs in 428,590 categories spread over 16
levels in the directory. Categories can also be referred
to using an address showing the parent categories in a
way that preserves the tree structure information. For
example, a category address might read ‘1.3.9’
meaning that it is the ninth sub category of category
3, which is the third sub category of category 1.

The second half of Figure 6 shows how URLs are
represented in DMOZ and gives an example of a
more detailed description of one URL as provided by
an anonymous referee. The complete DMOZ database
is roughly one GB in size and updated regularly. All
specifications in this paper refer to DMOZ as of 1
June 2002. Overall, the version of DMOZ that we use
has the following tree structure with deepest branch
being 16 levels below the top:

 1
 18 /
 621 //
 6675 ///
 30754 ////
 61042 /////
 68901 //////
 101567 ///////
 82802 ////////
 51454 /////////
 20592 //////////
 3467 ///////////
 616 ////////////
 69 /////////////
 8 //////////////
 2 ///////////////
 1 ////////////////

Figure 7: Full DMOZ structural tree.

The final stage of processing the data is to turn each
of the URLs, shown in Figure 7, into a file containing
either the category identification numbers or the
category addresses, coupled with the number of items
in each category. The choice about which version to
use will be discussed in the next section.

There are a number of possible pitfalls with this
process. For example, many profiles will contain a set
of URLs, which are created by the browser program
that they use. Few users are likely to delete all of
these links, reasoning that they may be useful at some
stage. This may create a situation of artificial
similarity between users, which would prevent the
Artificial Immune System from functioning
effectively.

Secondly, the process of placing URLs into categories
is likely to involve some truncation if at first there is

no clear category involved. This could lead to several
subtly different addresses being classified into the
same category due to the truncation look-up.
Depending on whether the truncated sites are from
genuinely different URLs or not this could be good or
bad. In the first case, the category may appear to be
more popular than it should be whereas in the second
case the number in the category is a clear indication
of interest in that category. Until the data is fully
assembled and individual examp les are checked, it
will not be possible to judge how critical some of
these problems will be.

5 BUILDING THE ARTIFICIAL
IMMUNE SYSTEM RECOMMENDER
In the film recommender research described in Cayzer
and Aickelin [5], each user was coded as a user
identification number followed by pairs of film
identification numbers with the corresponding rating
of the film. The target user became the antigen, whilst
the current database members were potential
antibodies. In each iteration, antibodies were added to
the Artificial Immune System. Those judged to be
more similar to the antigen in their film ratings had
their concentration increased.

A unique feature of that particular approach was the
application of the idiotypic network theory by Jerne
[13]. This was implemented such that antibodies that
were very similar to each other had their
concentration reduced. This has the effect of creating
a set of users who are similar to the new user but quite
different to each other and thus enhancing the
recommendation accuracy of the system. We intend to
use the same mechanism for our web site
recommender to build an Artificial Immune System
as described in section 3.

In order to do this, we also have to decide on the
encoding of a user’s web profile for which there are
two possibilities. In both cases, a user is encoded as a
list of category IDs and the number of bookmarks
within each category. The difference is in the
category IDs; they can be either an integer or a
reference to the tree structure. To illustrate the
difference, Figure 8 shows the same user’s bookmarks
for both encodings. The figures in bold indicate how
many bookmarks fall into a particular category:

Encoding with the Tree structure:
1.13.12.1.5:5;
1.13.12.1.6:3;
1.16.3.2.11.5:1;
1.18.1.2:1;

Encoding with integer category IDs:
22343:5;
495771:3;
334921:1;
3409:1;

Figure 8: Integer versus Tree Encoding.

If the second encoding is used together with the
number of sites within each category as a rating of the
popularity of that category then the problem becomes
similar to the film recommendation problem.

However, here we have a considerably sparser search
space. In the film database, there were approximately
20,000 entries whereas in the DMOZ directory there
are over 400,000 categories. This sparseness may
prevent the system from working since many users
might have nothing in common, or, at best some
categories that are common to the vast majority of the
data. Furthermore, many users will have only one
entry in a number of categories, leading to increased
similarity since the ‘rating’ of that category will be
the same. These problems may prevent an Artificial
Immune System based on this encoding being
successful in identifying a group of similar users.

There is another problem with using integer category
IDs. Because DMOZ is an evolving classification
system, new categories are added and removed
regularly. This can have the effect that two very
similar categories end up with very different integer
IDs as these are handed out consecutively. For
instance, Star Wars part four might have ID 20,004
when it was classified years ago, but Star Wars part
two might end up with ID 420,012 because it has only
recently entered the DMOZ system. A similar effect
can be seen in Figure 8 for the first two bookmarks.
Figure 8 also shows how the tree structure IDs might
prevent some of these problems as similar categories
still end up near each other in the tree.

The alternative to the integer encoding is to use an
encoding that includes the tree structure in the form of
a category address. What is required then is a
similarity measure that carefully recognises categories
that are ‘close’ within the structure of the tree. For
example, it would need to judge the parent / child or
the sibling relationship as being more similar than a
first cousin or grandparent type relationship.
However, constructing such a measure is far from
simple. Consider the two trees in Figure 9.

C

D E F

G H I J K L

User 1:

C

D E F

G H I J K L

User 2:

Figure 9: Simple tree structure showing two web
profiles.

User 1 has entries at categories G, E, J and L, whilst
user 2 has entries at D, I, J and F. Clearly, matches
should be scored more highly the lower down the tree
they are because this indicates a more precise match.
Additionally, ‘close’ relationships within the tree
structure should count more towards the match than
ones separated by several ‘generations’ (to continue
the family tree metaphor).

Whilst it is easy to see that these users should have
their similarity measure increased, since both have an
entry in category J, a question remains what to do
with J afterwards. Should this match be discarded
once it has been counted by the measure or should the
entries at I and J for user 2 be counted as two entries
at the parent branch (E) for comparison with user 1?
The danger with discarding matches once counted is
that two users might have ‘perfect’ matches for all of
the 10 categories that the first user has in their profile,
whilst the second user has another 100 entries.

However, if one does not discard categories that have
already been matched with another category then it is
possible that one quite high level category might be
‘matched’ with all the different entries at sub-
categories for another user. This might not matter
since the ‘strength’ of the match would have been
reduced by the generational distance and the
weakness of the high-level category’s contribution.

6 SIMILARITY MEASURES
Let us now construct a suitable similarity measure for
the Artificial Immune System that will produce a
value on a 0–1 scale with answers closer to 1
indicating a closer match. Following the discussion in
the previous section, the measure will be built
according to the following five principles.

1. Matching at categories lower down the tree
structure should contribute more to the measure
than matching higher up.

2. Matches at the top level of the tree (i.e. the
‘Top’ category in the DMOZ database should
have a contribution of zero.

3. Matching contribution should be reduced for
‘imperfect matches’ i.e. those not in exactly the
same category. The reduction in contribution
should be proportional to the generational
distance (i.e. a grandparent child relationship has
a generational distance of two.)

4. The matching metric should be scaled
(averaged) so that it ranges from 0 to 1.

5. The matching metric should take into account all
possible matches between the entries in each
web profile, i.e. if there are 10 entries in 1 and
20 in the other then all 10 × 20 = 200 potential
matches should contribute to the measure.

Suppose that we wish to calculate the matching
coefficient for the category addresses 1.3.1.1 and 1.3
in the sample tree diagram in Figure 10 below. We
need to define an ‘edge distance’ as the number of
‘steps’ apart any two addresses are. For example, 1.1
and 1.1.2.2.1 have an edge distance of three, as do
1.2.2.2 and 1.2.1. This equates the relationship
between grandparent and grandchild as the same
strength as that between siblings.

Figure 10: Sample Tree diagram.

By staged truncation of the longer category address
(CA) until they are the same we obtain a match at CA
1.3 with two numbers (edge distances) discarded (but
counted). This match would have a strength
determined by the category level (level 2) of the
matching CA, and by the edge distance (ED).

How should the edge distance affect the value of the
overall match? One possibility would be to use 1 / ED
as this would be a smaller value as the ED increases.
However, this would not work when the CA match
perfectly as we would be dividing by zero. Therefore
using 1 / (ED + 1) is better.

How should the depth of the matching level affect the
value of the overall match? It seems useful to make
the level number the same as the number of integers
in the CA. In the example above, there are six levels.
However, the tree is not of uniform depth. In
principle, matches at lower levels should score higher
since they show a more precise agreement in the topic
matter. However, does this mean that a perfect match
at the bottom of one set of branches (e.g. 1.1.2.2.2)
should score less highly than a perfect match at the
bottom of another lower set, say 1.3.2.2.1.1? The
DMOZ database is a human classification of human
knowledge. To some extent, the classifications are
arbitrary because they are the result of pragmatic as
well as epistemological considerations. Therefore, it
seems incorrect to allow only a perfect match score
when it occurs at the lowest level.

In the example above it might be advisable to allow
perfect matches to contribute fully at levels 4,5 and 6.
Remembering that a match at the top level should
count as zero then a formula to give the level effect
factor would be (L - 1) / (4 - 1) i.e. level 4 would have
a value of 1, level 3 a value of (2/3), level 2 (1/3),

1

1.1 1.2 1.3

1.2.1 1.2.2
1.1.2

1.1.1 1.3.1 1.3.2

1.2.1.1
1.2.2.1

1.2.2.2

1.3.1.1 1.3.1.2
1.3.2.1 1.3.2.2

1.3.2.3
1.1.2.3

1.1.2.21.1.2.1
1.1.1.3

1.1.1.21.1.1.1

1.1.2.2.1 1.1.2.2.2 1.2.2.2.1
1.2.2.2.2

1.2.2.2.2.1 1.2.2.2.2.2

1.3.2.2.1

1.3.2.2.1.1

NB All the categories roughly on a line are at the same
level but are shown this way in order to fit in their labels
i.e. 1.1.2.3 is on the same level as 1.2.1.1

whilst the top level would have a value of zero.
However, this would not work for values of L greater
than 4. To solve this we could use a value of 1 in
those cases . Thus, the general matching formula
becomes min{1, (L-1) / (ML-1)} where ML stands for
the level at which the maximum contribution starts. In
the case of DMOZ, a reasonable choice for the cut-off
point might be level 8 based on the structure in Figure
7.

A disadvantage of the measure just described is the
inherent simplifications of using a cut-off point after
which all matches are equally ‘perfect’. The smaller
the cut-off value, the more inaccurate result will
become. However, if set too large then some branches
of the tree might be too shallow to ever achieve a
perfect match. It is furthermore questionable whether
a linear measure is appropriate. Hence, we propose
the following alternative. The matching scores
monotonically increasing from level 1 to 16 (in
DMOZ’s case) but get close to 1 relatively quickly,
say at level 8, and then approaches 1 asymptotically
as shown in the figure 11.

Figure 11: Shape of proposed matching function.

The following equation describes such a function. Let

webprofile1 contain cai (i = 1...n) category addresses

webprofile2 contain caj (j = 1…m) category addresses

edi,j be the edge distance from cai to caj

li,j be the matching level for cai and caj

Proposed matching function:
240

3233 +−
− ji,

2
ji, ll

This measure still agrees with the principle that
matches at lower levels should score higher but does
not unduly penalise the branches that do not go down
to the full 16 levels. Assuming we sum the
contributions of all the potential matches the total
would have to be divided by the total number of
matches to transform the metric to a 0 - 1 scale.
Hence, the similarity measure s becomes:

mn

240

ll
-

ed
s

n

1i 1j

ji,
2

ji,

ji,

×




















 +−
×

=
∑∑

= =

m 32331

One further factor should be considered when
calculating the match between two web profiles. It is
the validity of the match if the web profiles have very
different numbers of URLs within them (which we
will call the disparity correction factor).

If one web profile has only 10 items whilst the other
has 100, then a match from these two people would
seem to be less valid than one based on web profiles
containing 50 and 60 items . This is because in the
first case the 10 entries from the first profile have
been used proportionately more in calculating the
match. Assuming that web profile 1 (n entries) is
smaller than web profile 2 (m entries) then finding the
fraction n / m would give a higher result to those pairs
of profiles which have similar numbers of entries (see
column 3 in Figure 12).

However, it would also give a perfect score to two
profiles with a very small number of URLs, say 2
URLs each. Clearly, the measure should ‘reward’ web
profiles that have a larger number of entries. One way
to do this would be to include the sum of the number
of entries. However, some profiles contain a very
large number of entries. Analysis of the data shows
that users with more than 100 bookmarks are likely to
be outliers. Hence, in order to produce a measure in a
range from 0 to 1, profiles with more than 100 entries
are counted as though they have 100 entries. Column
4 in Figure 12 shows the calculation of such a
measure under the assumptions above.

The fifth column in Figure 12 contains the proposed
disparity factor. However, if the raw values in column
5 were used the correction effect would probably be
stronger than the original matching score. Therefore a
scaling parameter a is introduced to reduce the range
of the disparity factor. This parameter determines the
lowest value in the range (a, 1) which the disparity
factor can take.

n m n/m (n+m)/200n/m*(n+m)/200a+(1-a)*n/m*(n+m)/200

100 1001.00 1.00 1.00 1.00
80 1000.80 0.90 0.72 0.89
60 1000.60 0.80 0.48 0.79
40 1000.40 0.70 0.28 0.71
20 1000.20 0.60 0.12 0.65
80 80 1.00 0.80 0.80 0.92
60 80 0.75 0.70 0.53 0.81
40 80 0.50 0.60 0.30 0.72
20 80 0.25 0.50 0.13 0.65
60 60 1.00 0.60 0.60 0.84
40 60 0.67 0.50 0.33 0.73
20 60 0.33 0.40 0.13 0.65
40 40 1.00 0.40 0.40 0.76
20 40 0.50 0.30 0.15 0.66
20 20 1.00 0.20 0.20 0.68
10 20 0.50 0.15 0.08 0.63
10 10 1.00 0.10 0.10 0.64
5 1000.05 0.53 0.03 0.61
1 1000.01 0.51 0.01 0.60

Figure 12: Disparity correction using a disparity
scaling factor of a = 0.6 .

Using the same notation as before, with a being the
scaling parameter for the disparity correction factor
the final similarity measure becomes:

()
() 






 ++×









+














+×









 +−
×

=

∑ ∑

∑∑

= =

= =

m
m)n(na-1a

j vote i vote

j vote i vote
240

ll
-

ed
s

m

1j

n

1i 1j

ji,
2

ji,

ji,

200

32331

1

n

i

m

7 CONCLUSIONS
There are a number of steps in the process of
preparing the database for use in the Artificial
Immune System. These may have an effect on the
performance of the system. It will not be possible to
tell how critical these issues are until the project is
near completion. Having constructed the web profile
database the choice of encoding must be made. Again,
this could have a critical effect on the success of the
Artificial Immune System. It is clear that the
construction of a similarity measure that will allow
the use of the tree structure is not a trivial task. It may
be that this is not necessary and exploration of the
potential of the first encoding will be undertaken first
since there is already a successful precedent in this
case. However, the sparseness of the data set may
prevent this, and the creation of a tree comparison
similarity measure is an interesting challenge.

To conclude, we believe that with the correct
matching metric an idiotypic network based Artificial
Immune System should be well suited to supplying
interesting yet surprising URLs based on a user’s
bookmarks. Preliminary results show that with the aid
of DMOZ we can map between 60% and 80% of
users’ bookmarks to votes for suitable categories. We
feel confident that this gives us a strong basis for an
Artificial Immune System recommender and
subsequent result will be published in due course.

Acknowledgements

The authors would like to thank the many volunteers
donating their bookmarks and David Banks for his
help with the DMOZ system.

References

[1] Amazon.com, http://www.amazon.com.

[2] Billsus, D. and Pazzani, M. (1998). "Learning
Collaborative Information Filters" In Shavlik, J.,
ed., Machine Learning: Proceedings of the
Fifteenth International Conference, Morgan
Kaufmann Publishers, San Francisco, CA.

[3] Burnet, F. M. (1959) The Clonal Selection
Theory of Acquired Immunity. Cambridge
University Press, Cambridge.

[4] De Castro, L. N. & Von Zuben, F. J. (1999),
Artificial Immune Systems: Part I – Basic
Theory and Applications, Technical Report – RT
DCA 01/99, FEEC/UNICAMP, Brazil.

[5] Cayzer, S. & Aickelin, U. (2001). A
recommender system based on the immune
network. Proceedings of CEC 2002.

[6] Compaq Systems Research Centre. EachMovie
collaborative filtering data set, http://
www.research.compaq.com/SRC/eachmovie/.

[7] DMOZ ontology, http://dmoz.org/.

[8] Farmer JD, Packard NH and Perelson AS, The
immune system, adaptation, and machine
learning Physica D, vol. 22, pp. 187-204, 1986.

[9] Gokhale A, Improvements to Collaborative
Filtering Algorithms (1999). Worcester
Polytechnic Institute. http://www.cs.wpi.edu/
~claypool/ms /cf-improve/.

[10] Goldsby R, Kindt T, Osborne B (2000), Kuby
Immunology, Fourth Edition, W H Freeman.

[11] P. Hajela and J. Yoo (1999), Immune Network
Modelling in Design Optimization, New
Methods in Optimisation, Editors: (book-
chapter) D. Corne, M. Dorigo and F. Glover,
McGraw-Hill, pp. 203-216.

[12] Hofmeyr, SA and Forrest, S. (2000).
Architecture for an Artificial Immune System.
Evolutionary Computation 7, pp 45-68.

[13] Jerne NK (1973), Towards a network theory of
the immune system Annals of Immunology, vol.
125, no. C, pp. 373-389.

[14] Jerne, N.K. (1973). The immune system.
Scientific American. 229 pp 52-60.

[15] Kim, J. and Bentley, P. J. (2001), Towards an
Artificial Immune System for Network Intrusion
Detection: An Investigation of Clonal Selection
with a Negative Selection Operator, the
Congress on Evolutionary Computation (CEC-
2001). pp. 1244-1252, 2001.

[16] Kim, J and Bentley, P.J. (2001). An Evaluation
of Negative Selection in an Artificial Immune
System for Network Intrusion Detection.
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2001). pp
1330-1337.

[17] Perelson AS and Weisbuch G (1997),
Immunology for physicists Reviews of Modern
Physics, vol. 69, pp. 1219-1267.

[18] Timmis, J., Neal, M. and Hunt, J. (2000), An
Artificial Immune System for Data Analysis.
Biosystems 55 pp 143-150.

