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Abstract

This paper describes two alternative approaches
to the automatic inference of a fuzzy
classification system applied to computerised
sleep staging. Both approaches use genetic
algorithms to evolve a fuzzy classifier per seep
stage. In the first case, each stage classifier is
independently evolved while in the second case,
the classifiers are evolved simultaneously.
Satisfactory results where obtained for the
individual stage classifiers (76% to 97%), but the
global performance of the classification system
decreased  dignificantly. No  significant
differences between the two evolution methods
were observed. Possible improvements are
suggested.

1 INTRODUCTION

According to the most widely used sleep classification
criteria, proposed in 1968 by Rechtschaffen and Kales[1],
deep is a dynamic process which can be divided into 7
stages. wake, NREM1, NREM2, NREM3, NREM4 and
paradoxical sleep or REM.

In the clinical context, sleep staging is a routine process
that involves the analysis of about 2000 pages of
poligraphic recordings. In this light, the demand for an
automatic classification tool becomes a necessity.

Since the seventies, severa efforts have been taken to
automate the sleep staging process. The agreement rates
attained between manua and automatic classification
ranged from 75% to 89% [8]. These results are quite
satisfactory taking into account the inherent subjectivity
of the classification criteria. This subjectivity is patent in
the inter-individual and inter-laboratorial agreement rates,
which range between 67% and 88% [8].
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In[7] and [9], two automatic sleep staging systems based
in fuzzy logic are described. Although these systems can
be helpful tools in the clinic environment, their
configuration is a complex process involving the fine-
tuning of severa interdependent variables. In this article
we propose the use of genetic algorithms for the
automatic configuration of a fuzzy logic classification
system. The classification system is composed by four
independent classifiers - one per sleep stage or group of
sleep stages - and a module responsible for integrating
their outputs.

Two aternative evolution techniques are explored. In the
first approach each classifier is evolved independently.
Since the global performance of the integrated classifiers
is significantly lower than the individual performances of
the stage classifiers, a second approach is tried where all
classifiers are inferred simultaneously.

The results obtained for the two techniques are discussed
and their performance is compared.

2 SYSTEM DESIGN

The classification system architecture is depicted in
Figure 1.
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Figure 1: Automatic Classification System



It is composed by 4 fuzzy classifiers (C=4), each one
being responsible for the following stages:

Classifier; - Wake;

Classifier, - NREM1 and REM;
Classifiers - NREM2;

Classifier, - NREM3 and NREM4;

The input for the classification system is the feature
vector X, ... , Xy (V=12) extracted from a segment of
EEG recording. The feature vector is presented to each
classifier, each one returning a certainty rate. Thisvalueis
assumed to reflect the classifier's confidence on the
recognition of an instance of the represented class.

A set of certainty rates is thus obtained and the end result
of the classification system will be the maximum value in
this set and an index identifying the classifier which
produced it.

If more than one stage classifier outputs the same
maximum value, the global result is|abelled asindecision

21 CLASSIFIER STRUCTURE
Each classifier is structured as depicted in Figure 2.
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Figure 2: Classifier Structure

The input variables (one per feature) and the output
variable (the certainty rate) are characterised by, at most,
3 membership functions. Each variable ranges between 0
and 1 and has the pre-defined shapes depicted in Figure 3.

The following constraints where imposed to the centre
and width of each member function, where MF is the
number of membership functions per variable;

» the width of each membership function ranges in
the following interval :

[O;max-min] =[0;1]

e Thecentrec (i=1,...,MF) rangesin theinterval:
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Figure 3: Membership Functions

A ruleis structured as follows:
IF <expression> THEN <expression>
where <expression> is

¢ A litera with the structure variable IS
member ship-function, possibly modified by the
negation operator NOT.

¢ A sequence of literals connected by the operator
AND.

A variable appears only once in a rule. The following
rule, for example, is not well formed:

IF (v11Smg) AND (v11S mp) THEN (Voupu 1S My)

The product and sum methods were used in the inference
and composition steps; defuzzification used the “average
of the maximum” to calculate the crisp value.

It was established that the rule set would contain, at most,
10 rules.

3 FEATURE EXTRACTION

To test the classification system, EEG recording for
several individual where obtained from the C4-Al
electrode placement, according to the 10-20 international
system.

The selection of relevant features for this work was based
on the visua classification criteria proposed by
Rechtschaffen and Kales [1]. For simplicity, only the
tonic activity was considered: a total of 12 features are
extracted to characterise the activity in the frequency
bands normally used in the clinical context:

Delta [OHz 4HZ
Teta [4Hz 8HZ
Alfa  [8Hz, 13 HZ]
Beta [13 Hz 30HZ

Sigma [12 Hz, 16 HZ]



The  frequency band  of relevant  activity
([0OHz, 30HZz]), enclosing all the above specified bands, is
also considered.

The spectral analysis is based on the power spectra
density estimation by the Welch Periodogram a gorithm.

Each band is characterised by the following features:
¢ Medium band power - the medium power in the band

¢ Band bias - the power bias in the band, computed as
for the total bias. It characterises the power
distribution in the band

Accordingly, the band of relevant activity is characterised
by the following features:

¢ Tota power - the estimated power in the band [0 Hz,
30HZ]

¢ Total bias - characterises the power distribution. It is
the medium frequency in the band [0 Hz, 30 HZz]
scaled to the interval [0, 1]

To minimise inter-individua variations, the medium band
power is normalised by the individual’s medium power
obtained in the REM stage.

This normalisation implies the existence of a manua
classification of the EEG recording or the implementation
of a REM dsage detector (possibly using EOG
recordings). Since the goal of this work is to validate the
classification system according to manually classified
data, the implementation of a REM detector was not
attempted.

4 INDEPENDENT EVOLUTION

In this approach the parameters of each classifier are
inferred independently. This means that in a certain
population there are only individuals responsible for the
identification of a certain stage. From the evolution of
each stage is chosen the best individual, using as criterion
the success rate for a test set with all patterns different
from the training set. These individuals will parameterise
the global classification system.

4.1 CODING
Eachindividual isformed by two genomes.

411 Genomerepresenting the parameters of

member ship functions

Defines the centre and width of each membership
function for each fuzzy variable.

Supposing there are V+1 variables (V input variables and
one output variable) and MF membership functions, this
genome has a length equal to Ly

L = (V+ 1) * (2* MF)

and it is represented by the following schema:

Variable ; Variabley Variable gupu
" W | Voutput
Cvr | Wur (}-4] Cva | WA
MF MF a

C; represents the centre of membership function j of
variablei;

w; represents the width of membership function j of
variablei.

If the width of any membership function is O this
membership function will be removed from the set of
membership functions of the variable to which it refers.

Each centre or width is represented by an 8-bit word,
creating a set of 28 = 256 possible values. Therefore, this
genome can represent T,¢ different membership functions:

L
T =256 f
mf

41.2

Defines the rule set of the classifier. Each rule is
composed by V+1 genes that represent each variable: the
first V genes form the antecedent; the last one forms the
conseguent. Each gene has 2*MF+1 possible alleles that
correspond to MF membership functions, plus MF
negated membership functions plus one additional value
that controls the presence or absence of the correspondent
variablein therule.

Genome representing therules

Supposing that the maximum number of rules is R then
the size of thisgenome isLyes

Lrul&s = (V+ 1) *R

and is represented by the following schema:

Rule ; Rule r
rh e I'r
VR1 Vrv I]I VRoutput
Antecedent r Conseguent r

If the membership function (negated or not) in gene v;; has
a width equal to 0, the variable associated with it will no



longer be considered in the antecedent. If the same
happens with the membership function associated with
the variable of the conseguent the correspondent rule will
no longer belong to the rule set of the classifier.

This genome can represent T, possible rules:

L
T = (2* MF + 1) Trues

rules

4.2 GENETIC OPERATORS

421
The population isinitialised randomly.

Initialisation

422

The individuals for reproduction are chosen by the
roulette wheel method that uses the fithess function
described in section 4.2.4.

Reproduction

4.2.3

Given two individuals the crossover is done by applying
the uniform crossover operator to each genome that
composes the individuals (see Figure 4).

Crossover

Variables Rules
VIAVAVAVA [mmm[m
Parents
VIAVIAVIAIV]IA] [B[E]o]O]
_ VA[VIAIVIAIVA] [m][m]m[C]
Children
VIAIVIAIVIAIV]A] [O]o[o][m

\V/ centre /A width O variable

Figure 4: Crossover between two classifiers

The crossover points are defined randomly for each
crossover. However the crossover points of the variables
do not separate a centre of a membership function from its
width.

424

The mutation of the genome describing the variables
consists of choosing randomly a centre or a width in the
neighbourhood of the current value (Figure 5).

M utation

Within the genome that describes the rules the normal
operator is applied (Figure 5).

VA[VIAVIAVA [wmm0)

Random selection of an
alelein neighbourhood

Random selection
of oneof the

of the current one; pODSSiSI eD aIlDel :S.
AN AAAA ?
4
VAVIAIVIAIVIA] [m[C[m[0]

Figure 5: Mutation of aclassifier

43 FITNESSFUNCTION

Supposing that a classifier is responsible for the
identification of a stage s then its fitness f is given by the
following expression:

Where,

=]
- i§1D(O|(><i) - 0(x))
Df"—-—"-"-————
P

D((x) - o(x)) = |d(x) - o(x)

1,C(x) =s
d(x) =
0,C(x) #s

D represents the average distance to the goal.

C(x) is the correct classification of pattern x; , o(x) the
output of the classifier which reflects the certainty rate
and P the total number of patternsin the training set.

Constant k defines the limits for the fitness value. The
results presented below were obtained with k=0.001.

5 SIMULTANEOUSEVOLUTION

In simultaneous evolution each individual represents a
classification system formed by several fuzzy classifiers,
one for each stage.

51 CODING

In this approach the individual is formed by C genomes
coded as described in the previous section (see 4.1),
meaning that each classifier is parameterised,



independently from the others, by avariable set and arule

set (Figure 6).
Classifier | Classifier ¢
S &
A Viv  |Vioutput lc1 fcr
Variablesg Ruless

Figure 6: Coding of aclassification system

52 GENETIC OPERATORS

521

Initialisation

The population isinitialised randomly.
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Figure 7: Crossover between two classification systems

522

The individuals for reproduction are chosen by the
roulette wheel method that uses the fitness function
described in section 5.3.

Reproduction

523

Each classifier in a system is crossed with the
correspondent classifier in the other system. This means
that the crossover is done applying the crossover operator
described in section 4.2 using the classifiers responsible
for the identification of the same stage as parents
(seeFigure 7).

Each colour corresponds to a different type of classifier;
the circle corresponds to a different system. So the
crossover is done between genomes that have the same
colour but one has the circle and other does not.

Crossover

524

This mutation consists of applying the mutation operator
described above in section 4.2 to each classifier.

M utation

53 FITNESSFUNCTION

Two fitness functions were implemented: f; is similar to
the one described in section 4.2.4 but considers the
Euclidean distance between two patterns; f; is based upon
the success rate of the system.

1 1
f1=— 2=—p
D +k Zdj
1_|=1 +k
P

Where,

P
- i§10(<1(><i ) —0o(x))
D = e —
=]

D(d(x) = 0(x ) = [d(x) = o)

d(x) is a binary vector that has only one of the positions
set to 1 (this position identifies the classifier that must
produce the highest certainty rate), o(x) is a vector
formed by the certainty values produced by each classifier
and d; is the value of the position j of the vector d(x),
where j is the index of the classifier that produced the
highest certainty rate. When more than one classifier
produces the highest certainty rate d=0 (it counts as a
fault).



6 RESULTS

Several preliminary tests were performed to determine the
evolution parameters that best fitted this particular
problem. Unless stated otherwise, all the results presented
in this paper were obtained with the parameters found
with these tests, which are detailed in Table 1.

Table 1: Evolution Parameters

Independent Simultaneous
Evolution Evolution
Population 50 50
Elitism Yes (1 individual) Yes (1 individual)
Crossover 90% 90%
Mutation 0,5% 0,3%
Generations 500 500

Elitism was implemented by maintaining the best
individual from one generation to another.

The experiments were made using each patient recording
in particular (R1, R2 and R3) and all recordings mixed
together (R4).

In individua evolutions the training and test sets are
formed by equaly distributed positive and negative
examples: the number of positive examples, of the stage
to identify, is equal to the number of negative ones.

The patterns for simultaneous evolutions are classified in
four stages (one for each classifier).

The training and test sets are digointed.

In the graphics, we used the following notation:
 Fitness Evolution: the grey dashed line represents
the fitness of the best individual, the black line
represents the average fitness of the population and
the grey solid line represents the fitness of the
worst individual;

« Error Evolution: the grey solid line represents the
average distance to the goal, the black line
represents the success rate and the grey dashed line
represents the indecision rate for the best
individual.

6.1 INDIVIDUAL EVOLUTION

Asit may be verified in Figure 8, in individual evolutions
the fitness of the worst individua suffers great
oscillations and does not increase significantly along
evolution.

It may also be observed that after the first 50 generations,
although the average distance decreases, the success rate
does not increase significantly (see Figure 9)
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Figure 8: Fitness Evolution of an NRem1/Rem classifier
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Figure 9: Error Evolution of an NRem1/Rem classifier

As table Table 2 demonstrates, each classifier has
excellent results with the training set, but these results
decrease significantly with the test.

Table 2: Successrates, in %, for classifiers
trained individually with R3/R4

Training Test Simultaneous Test

Wake 92/86 84/79 88/68
NRem1 97/88 91/84 74175
Rem
NRem2 90/81 88/76 56/65
NRem3 95/90 91/88 92/45
NRem4

77/63

This decrease is more significant in the simultaneous test
(when the classifiers are combined in the classification
system) where the global success rate has very low values
- 63% for R1, R2 and R4 and 77% for R3. For al
simultaneous tests the indecision rate was below 3,5%.



The system aso displays difficulty in identifying the
Wake and NRem2 stages. This behaviour further damages
the performance of the classification system.

The output value of each classifier is normally restricted
to two values only - 0 and a value in the neighbourhood of
1 — thus the interpretation of this value as a certainty
value is inappropriate. The decision by the highest output
value is favourable to the classifiers that systematically
produce the highest output values, which may not
necessarily correspond to the classifiers with best
performance.

6.2 SIMULTANEOUSEVOLUTION

The most dtriking difference introduced by the
simultaneous evolution is the fact that the worst
individual’s fitness improved with time (Figure 10 and
Figure 11).
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Figure 11: Fitnessevolution using f,

It was observed that athough the population fitness
continues rising above the 400" generation, the success
rate does not improve significantly (Figure 10 and

Figure 11). Typically, after 500 more generations, the
success rate did not improve more than 6%.

The indecision rates are typically higher when using f;
than when using f,. Besides, the success rate evolves
slower with f; than with f,.

As for performance with the test sets, the success rates
decreased about 5% to 9% relative to the training sets.
The difference between the classifiers evolved with f; and
f,increases (Table 3): classifiers based in f, display lower

indecision rates than f; based classifiers, which present
indecision values ranging form 8% to 44%.

Table 3: Successrates, in %, for R1, R2 and R3

f1 fa
Training Test Training Test
R1 61,6 56,7 71,2 66,7
R2 62,7 54,3 70,6 61,6
R3 76,0 67,3 79,6 69,6

Although the evolutions performed with data from 3
individuals presented lower training success rates, the
observed decrease from training to test sets was not so
evident.

The results obtained for the R4 sets are similar to those
obtained for the independent evolution of stage classifiers.

Similarly to what was observed for the independent
evolution, the stage classifiers present dissimilar
performances and this is reflected by the global system
performance (Table 4).

Table 4: Error matrix for the classifier trained
with R4 (training and test)

Training/ | Wake NRem1 NRem2 NRem3
Test Rem NRem4
Wake 76/ 80 18/11 4/5 1/ 3
NRem1 14/19 78168 5/10 2/2
Rem
NRem2 417 13/20 68/43 15/30
NRem3 4/5 2/0 10/15 83/81
NRem4

7 FUTURE WORK

The uneven performance of the stage classifiers, together
with the fact that the classifiers frequently output the
values 0 and 1, instead of a continuous spectrum of
values, suggest an integration strategy other than the one
based in the maximum output value. A possible
aternative would be to rank the classifiers according to
their test performance. A pattern rejected by a classified
(output lower than a given threshold) would be presented
to alower rank classifier and so forth. A pattern accepted
by a classifier (output above the threshold) would be
affected with the respective stage and not presented to the



lower rank classifiers. Indecision would occur if the
lowest rank classifier rejected a pattern.

Another methodology to be explored is to combine the
two evolution techniques. First the individua classifiers
would be independently evolved and then the best
individuals in each population would be combined to
generate a new population of global classifiers that would
be further evolved.

8 CONCLUSIONS

Although the performance of the global classification
system, either evolved independently or simultaneously,
is not very encouraging, the individual performance of the
stage classifiersis satisfactory.

Relatively to the simultaneous classifier evolution, it was
concluded that a higher system performance is obtained
(better test success rates and lower indecision rates) when
the evolution is carried with the fitness function based in
the success rate (f,).

It was observed that some of the stage classifiers
performed better than others. This indicates that further
investigation should be carried concerning the selection of
relevant features. Besides, it is possible that some of the
used features are not relevant for this classification
problem, and the excessive number of features can
degrade the performance of the evolution algorithm.
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