Non-Symbolic Al: Computing Exercise
Cart pole control

Thomas Pitschel

May 30, 2003

CONTENTS 1

Contents
1 Introduction 2
2 Methods used 2
2.1 Q-learned agent 2
2.2 Introduction to Q-learning L. 2
2.2.1 My strategieso 3
23 GAonlook-uptable 4
3 Results 4
4 Implementation details 6
5 References 8
A Printouts 9
Al zufalle. o 9
B Code 11
B.l zufallc. 11
B.2 cartpoleh. 11

B3 cartpolec. 12

1 INTRODUCTION 2

1 Introduction

This coursework deals with the control of a cart-pole system. In our case
this is a pole fixed at a cart through a joint. The cart may move only on a
line perpendicular to the joint axis. The pole is supposed to be kept upright
for as long as possible by moving the cart in the appropriate direction. To
this end, the controller decides the sign of the force to be applied at the
cart based on the current state of the cart-pole system (cart position and
velocity, pole angle and angle velocity). The cart position is restricted to a
prespecified interval on the line of movement.
Different controller implementations are possible, among which are:

e a neural network that has its weights updated by a GA
e a QQ-learned agent
e a look-up table whose entries

In this coursework I have implemented the agent and the look-up table,
since both are computationally similiar in that they work on a discrete
version of the cart state space.

Some results...

2 Methods used

For both methods the cart state space was discretized by partitioning into
intervals as recommended in the coursework sheet, i.e. z: +—0.8, +—2.4m,
it +—05ms L 0:0,+—1,+—6,+ —12° and 0 : 50°s L.

The simulation was started with the cart placed at = 1.0 and pole
angle and angle velocity and cart velocity set to zero. It was stopped when
the pole fell down (|@] > 50°) or the cart moved out of its allowed interval
(|z| > 2.4) or the number of steps reached 20000. For the GA method the
number of steps run was recorded as fitness.

To better explore the state space the decision made by the controller was
made noisy by interverting it with probability 0.0001.

2.1 Q-learned agent
2.2 Introduction to Q-learning

One way of controlling the cart is using an agent that learns appropriate
behaviour by trying various actions and receiving a reinforcement signal to
adapt its decisions. The area concerned with the construction of those agents
is called reinforcement learning (RL). In the RL framework the environment
in which the agents behaves is modelled as an automat that changes its state
(non-deterministically) under influence of the agent’s actions. Every time

2 METHODS USED 3

step t the agent receives a reward r; that depends (non-deterministically)
on the current state of the environment and the action taken. The problem
faced by the agent is how to choose its actions at every time step such that
it maximizes the accumulated rewards.

Our controlling task is solved in this framework as follows: reward every
action that makes the simulation stop with —1.0 and every other action with
0.0. Then, choosing an infinite-horizon discounted model for accumulating
the rewards, i.e.

maximizeE(Z re)

t
with discounting factor v, the agent will adapt to run the cart-pole sys-
tem for as long as possible. The RL framework solves the adaption task
by introducing a function V*(s) that contains the expected accumulated
reward when starting in state s and choosing the optimal actions in future
time steps. If this function is known the agent can choose always the ac-
tion that leads to the state with the highest V* value. According to [1] the

following equation holds for every state s:

V*(s) = max, (R(s, a) +y ZT(S, a, s')V*(s'))
5’
where T'(s, a, s') is the probability of the environment changing state to
s’ when the agents chooses action ¢ in state s, and R(s,a) the expected
reward. This can be expressed equivalently by

Q*(s,a) =r(s,a) + WZ T(s,a,s)ymazyQ*(s',a’)

Sl

for all s and a. To approximate the Q* function one uses an array @)
which is updated according to

Q(s,a) := Q(s,a) - (1 —a)+ (r(s,a) +v-mazyQ(s',ad')) -

while the agent experiences the state change s — s’ using action a and
receiving r(s,a). That is the Q-learning algorithm.

2.2.1 My strategies

For exploring the state space I used a Boltzmann similar strategy. Action 0
was chosen when a [0, 1]-uniformly distributed random variable was smaller
than (Q(s,0) —Q(s, 1)) -k, Action 1 otherwise. (k is a parameter which was
initially set to 25 to increase the exploration of the state space and after
2000 steps increased enough to make the decision deterministic.)

3 RESULTS 4

2.3 GA on look-up table

As a second method I used the same Q array as before but evolved the
entries by a GA instead of Q-learning them. The decision rule stayed the
same. (Choose action with higher Q value.)

I used a Steady State GA with Tournament Selection for implementation
simplicity. (Two pairs of individuals are picked, the fitter one in each pair
becomes a parent.)

The recombination was just the average of the parent Q arrays. This
makes sense since it makes the decision of the child on a state less evolu-
tionary stable when the decisions of the two parents are conflicting on that
state.

Mutation was applied to the child by adding a real value uniformly dis-
tributed in [—0.01, 0.01].

3 Results

Various values for « and were tried. Best values in the end were o = 0.1
and v = 0.99. The Q-learned agent adapted to run the cart-pole in most of
the cases for longer than 20000 steps.

20000 "
) - steps
- ° # of end states visited
15000 .
10000 |t ot .
L et - ‘_ - - -
: : ;
5000 [vz i T 3 ST >
:2,. ,;' .
P TR .
Ja Dod iRl P
oo D e A N P H
XE e t DoGEe o2 . SR
F T I AN I R IR wid |
3000 4000 5000 6000 7000 8000

Run

Figure 1: The duration of each run and the accumulated number of end
states explored for Q-learning

3 RESULTS 5

20000 - ey T ;
. L. steps .- -
of end statgs visited ——

15000

10000

5000

0 1000 2000 3000 4000 5000 6000 7000 8000
Run

Figure 2: The duration of each run and the accumulated number of end
states explored for the GA omitting decision noise

20000 T T T
steps
of end states visited ——

15000
10000

5000

0 PR - M R L ‘. 2 r
1000 2000 3000 4000 5000 6000
Run

Figure 3: The duration of each run and the accumulated number of end
states explored for the GA

4 IMPLEMENTATION DETAILS 6

Interesting is that the state space is better covered by the Q-learned
agent. I recorded the index of the state when the simulation was stopped
due to step bigger than 20000:

400 T T T
stop state
of end states visited
i kA T T * ot Bl T Ee L T L3
350 [REE.E Tt ; i : :
A T T i EIEEE TR SE

AL Pt R o
Lt L e Lt wls g A .
0 1000 2000 3000 4000 5000 6000 7000 8000
Run

Figure 4: The index of the stopState for every run for Q-learning

This shows that the performance results of GAs may rely on only a small
number of stop states. One definitely has to introduce some randomness in
the initial conditions of the cart-pole system.

4 Implementation details

The boxes array (= Q array) was implemented as one linear array, with
the following index mapping

Q(CartState, Action) = Q[Action + 2*getState(CartState)], (1)

where Action is 0 (force -1) or 1 (force 1). getState() implements the
partition of the cart state space into boxes and returns a integer unique to
each box. The following formula is used:

stateNo = index(z) - 3 x 8 x 3 + index(z) - 8 * 3 + index () - 3 + index(0)

where index(z) is 0,1, 2, 3, 4; index(z) is 0,1, 2; index(0) is 0,1,2,3,4,5,6, 7;

index(0) is 0, 1,2 according to which interval the state variables occupy.

4 IMPLEMENTATION DETAILS 7

400 ; .

T
stop state
of end states visited

sme i Eon P o
O L e o .

- S i PR
T T R PR R I I T
= ettt g

250 B :
- — Ty mE e v e, T e s ek v Mt

200

R et A = W L s]
el [EE PRI S [

100 [r/_/

{-‘vmwv--w-:-r- BARE g, vt ,ﬁ.‘éﬂ‘.“'?"-.-_ AT P T TR Y TR I AT A e]
0 1000 2000 3000 4000 5000 6000 7000 8000
Run

Figure 5: The index of the stopState for every run for the GA

Both the Q-learning and the genetic algorithm method were integrated
into one piece of code. By setting the opt.method variable in main()
accordingly (0=Q-lng, 1=GA), different parts of the code are switched into
the execution line.

The essential part of the code specific to the GA can be found in main().

The essential part of the Q-learning can be found in runSim(). Here is a
reduced version:

int runSim(Options opt, double *Q, int *endStateHistory, int *endStateCntr)
{
SimulatorInit();
for (step = 0; !outOfRange(CART); step++) {
oldState = getState(CART);
action = getAction(opt, Q, oldState);
CART.force_sign = action*2.0 - 1.0;

SimulatorStep();
if (outOfRange(CART)) reward = -1.0;
else reward = 0.0;
updateQarray(opt, Q, oldState, action, reward, getState(CART));
}
}

getAction() chooses the currently optimal action according to the Q array,
with updateQarray() the Q array gets updated using the oldState, the
action just taken and the new state (=getState(CART)).

5 REFERENCES 8

The opt variable carries all parameter values into the functions.

20000

Lo steps
.# of end states visited

. B

15000 ety S

10000

5000

- N LR - . "
LI [Y 1 i RO

0 1000 2000 3000 4000 5000 6000
Run

Figure 6: sdf

5 References

References

[1] "Reinforcement Learning: A Survey”, Leslie Pack Kaelbing, Michael L.
Littman, Journal of Artificial Intelligence Research 4 (1996) 237-285

A PRINTOUTS

A Printouts

A.1 zufall.c

maximum number of endstates was 120

genetic algo on boxes, uniform mutation with +-0.01, recombination:
average, deterministic action choice according to higher Q value

endStateCounter: 109
(8.139319e-01,-2.161562e+00,8.747072e-01,2.831451e+00)
(0000001011010101010101000000101011110000000000000)

run 4793 yields 8355.00 steps
endStateCounter: 109
(2.400212e+00,1.967726e-02,-2.820280e-02,-1.435892e-02)
(0000111111000000111111000000111111000000111111000)

run 4794 yields 2466.00 steps
endStateCounter: 109
(-2.444576e+00,-2.615103e+00,-2.279840e-01,1.230613e+00)
(1110010000011101010100001111010111110000000011010)

run 4795 yields 1724.00 steps
endStateCounter: 109
(2.410446e+00,4.105576e-01,-6.566863e-02,-6.254499e-01)
(1111110000001111110000001111110000001011111101100)

run 4796 yields 5864.00 steps
endStateCounter: 109
(1.321441e+00,6.397054e-01,8.876525e-01,7.877892e-01)
(1111111111100000000010101010100110101010101010101)

run 4797 yields 7082.00 steps
endStateCounter: 109
(2.402195e+00,4.681344e-01,-1.850296e-02,-6.263562e-01)
(1011111101000000101111110000001111110000001111110)

run 4798 yields 11629.00 steps
endStateCounter: 109
(2.407808e+00,2.886144e-01,-1.651710e-02,-4.100874e-01)
(1000000111111010000001011111101000000011111110100)

run 4799 yields 10280.00 steps

with the same GA:
a Q array was evolved that presumably runs the cartpole forever
in the deterministic case:

endStateCounter: 99

(7.874134e-01,1.804515e-02,5.012005e-02,-9.786761e-02)

(1011111101000000101111110100000011111100000010111)
run 4772 yields 20000001.00 steps

//state record code (wrap around buffer)
stateHistory[pointer] = oldState; pointer = (pointer + 1) % 80;

//update code

A PRINTOUTS

if (opt.method == 2) {
//updateQarray along the state history
factor = -opt.gamma;
for (i=pointer+80-1; i>=pointer; i--) {

printf (" %d (4.2f)", stateHistory[i)i80], Q[stateHistory[i%801]);

if (stateHistory[i%80] == -1) break;
Q[stateHistory[i/80]11 *= (1-opt.alpha);
Q[stateHistory[i%80]] += opt.alpha * factor;
if (stateHistory[i%80] != stateHistory[(i-1)%80])
factor *= opt.gamma;
}
printf ("\n");
}

Q-learning, alpha 0.2, gamma 0.95, permanent chance 0.0001

0.000/0.000 -0.012/-0.112 -0.004/-0.045 -0.001/-0.027 O.

-0.024/-0.003 -0.004/-0.045 -0.001/-0.003
endStateCounter: 114
(-1.165029e+00,-6.363285e¢-01,8.910501e-01,1.368765e+00)
(0101010111011110110111010001000110000010101001010)

run 4793 yields 5721.00 steps

0.000/0.000 -0.012/-0.112 -0.004/-0.045 -0.002/-0.027 O.

-0.024/-0.003 -0.004/-0.045 -0.001/-0.002
endStateCounter: 114
(-9.252440e-01,-4.216000e-01,8.795991e-01,1.728508e+00)
(1100000000000000111111100100001010010101010010101)

run 4794 yields 744.00 steps

0.000/0.000 -0.012/-0.112 -0.003/-0.045 -0.001/-0.027 O.

-0.024/-0.003 -0.003/-0.045 -0.001/-0.002
endStateCounter: 114
(-1.923540e+00,-6.163899e-01,8.761684e-01,1.877854e+00)
(1101010101011111101101011001010001100000101001010)

run 4795 yields 1635.00 steps

0.000/0.000 -0.012/-0.112 -0.003/-0.045 -0.001/-0.027 O.

-0.024/-0.003 -0.003/-0.045 -0.001/-0.002
endStateCounter: 114
(-1.686039e+00,-4.123638e-01,8.928660e-01,8.427104e-01)
(1010101110111101101011001010001100000101001010101)

run 4796 yields 2704.00 steps

0.000/0.000 -0.011/-0.112 -0.004/-0.045 -0.001/-0.027 O.

-0.024/-0.005 -0.004/-0.045 -0.001/-0.004
endStateCounter: 114
(-3.636303e-01,1.115760e+00,-8.966037e-01,-1.917699e+00)
(1000001110000010101010111111111111110111100000000)

run 4797 yields 3374.00 steps

0.000/0.000 -0.010/-0.112 -0.004/-0.045 -0.001/-0.027 O.

-0.024/-0.003 -0.004/-0.045 -0.001/-0.004
endStateCounter: 114
(-3.914335e-01,3.678531e-01,-8.813149e-01,-2.889163e-01)
(0000011100001010101011111111111110111100000000000)

run 4798 yields 424.00 steps

000/0.

000/0.

000/0.

000/0.

000/0.

000/0.

000

000

000

000

000

000

10

B CODE

0.000/0.000 =-0.010/-0.112 -0.003/-0.045 -0.001/-0.027
-0.024/-0.003 -0.003/-0.045 -0.001/-0.003
endStateCounter: 114
(8.885771e-01,1.234802e+00,8.788767e-01,8.502718e-01)
(0111110100111111110000000000000000000001111111111)
run 4799 yields 1473.00 steps

B Code

B.1 zufall.c

#include <stdlib.h>
#include <math.h>

int rndInt(int m)
{
return rand()%m;

}

double rndRealO1()
{

return (rand()+0.0)/RAND_MAX;
}

double rndReal (double min, double width)
{

return (rand()+0.0)/RAND_MAX*width+min;
}

char dice(double p)
{
if (rndRealO1() < p)
return (1==1);
else
return (1==0);

B.2 cart_pole.h

typedef struct STATES {

float theta;

float theta_dot;

float x;

float x_dot;

int force_sign; /* +/- 1 x/
} STATES;

static STATES CART;

0.000/0.000

11

B CODE

B.3 cart_pole.c

/* needs to be linked using -1lm */

#include <math.h>
#include <stdlib.h>
#include <stdio.h>

#include "cart_pole.h"
#include "zufall.c"

#define GRAV -9.

#define MASS_C

#define MASS_P

#define LENGTH

#define SAMPLE_INTERVAL

#define PI

#define MU_C .0005 /* coeff fric, cart on track */

#define MU_P .000002 /* coeff frict, pole on cart */

#define FORCE 10 /* magnitude of force applied at every
time step (either plus or minus) */

8 /*x g */

.0 /* mass cart */

1 /* mass pole */

5 /* half length of pole */
.02 /* delta t */

.1415927

O O WO O O -

void calc_new_state (STATES*);
int sgn(float);

[k sk sk sk ks sk ks sk sk ok sk ok sk ok sk sk sk ok sk o ko sk o ko sk o ko sk ok sk ok sk ok sk ok ok sk ok /
/* cart pole simulation, updates 4 states of system according to

equations of motion of system, approximately integrated using
simple Euler integration */

void calc_new_state(STATES *cs)

{
float th, th_dot, top, bottom,th_dotdot;
float x_dot, x_dotdot,f;

th=cs->theta;
th_dot=cs->theta_dot;

f=FORCE*cs->force_sign;

top= GRAV*sin(th) + (cos(th)*(-f - (MASS_P*LENGTH*th_dot*th_dot*sin(th))
MU_C*sgn(th_dot))/(MASS_C + MASS_P)) - ((MU_P * th_dot)/(MASS_P*LENGTH))

bottom= LENGTH*((4.0/3.0) - (MASS_P#*cos(th)*cos(th))/(MASS_C + MASS_P));
th_dotdot = top/bottom;

x_dotdot = (f + MASS_P*LENGTH*(th_dot*th_dot*sin(th)-th_dotdot*cos(th))
MU_C*sgn(x_dot))/(MASS_C +MASS_P);

cs->theta = cs->theta + SAMPLE_INTERVAL*cs->theta_dot;

12

+

3

B CODE

cs->theta_dot = cs->theta_dot + SAMPLE_INTERVAL*th_dotdot;

cs=>x = cs->x + SAMPLE_INTERVAL*cs->x_dot;
cs=>x_dot = cs->x_dot + SAMPLE_INTERVAL*x_dotdot;
}

/%K Kk ok Kok ok ok ok ok ok ok ok ok ok ok Kk sk ok ok Kok sk ok ok K ok ok /

int sgn(float x)

{
if(x < 0) return(-1);
else return 1;

/%K kK ok kK ok ok ok ok ok Kk ok ok ok ok ok sk ok ok Kok sk ok ok K sk ok ok ok /
void SimulatorInit()
{

CART.x = 1;

CART.x_dot 0.0;

CART.theta = 0;

CART.theta_dot = 0;

CART.force_sign = 1;

void SimulatorStep()

{
calc_new_state (&CART) ;
}

/!

/!

//==== here is my code

#define ToRad(x) (x/180.0%PI)

#define nmbBoxes 360 /* adjust this if you use other box
intervals */

#tdefine nmbActions 2

#define Qsize (nmbActions*nmbBoxes)

// action is 0 (force_sign -1) or 1 (force_sign 1)
#define MAX(a,b) ((a)>(b) ? a : b)
#define MIN(a,b) ((a)<(b) ? a : b)

#include <strings.h>

struct optionsStr {
double method;
double alpha;
double gamma;
int popSize;
double k;

I

typedef struct optionsStr Options;

13

B CODE

int getState(STATES cart)
// maps cart state to an integer value that corresponds
// to the according box
// (by this the states get countable, use this then for the Q learning)

int res=0;
//number of boxes is 5*3*8%3 = 360

if (cart.x < -2.4)

res += 0;

else

if (cart.x < -0.8)
res += 1;

else

if (cart.x < 0.8)
res += 2;

else

if (cart.x < 2.4)
res += 3;

else
res += 4;

res *= 3;

if (cart.x_dot < -0.5)
res += 0;

else

if (cart.x_dot < 0.5)
res += 1;

else
res += 2;

res *= 8;

if (cart.theta < ToRad(-12.0))
res += 0;

else

if (cart.theta < ToRad(- 6.0))
res += 1;

else

if (cart.theta < ToRad(- 1.0))
res += 2;

else

if (cart.theta < ToRad(0.0))
res += 3;

else

if (cart.theta < ToRad(1.0))
res += 4;

else

if (cart.theta < ToRad(6.0))
res += b;

else

if (cart.theta < ToRad(12.0))
res += 6;

else

res += 7;

B CODE 15

res *= 3;

if (cart.theta_dot < ToRad(-50.0))
res += 0;

else

if (cart.theta_dot < ToRad(50.0))
res += 1;

else
res += 2;

return res;

char outOfRange (STATES cart)
// returns true if pole has fallen too far or cart has run away
{
if ((cart.x < -2.4) || (cart.x > 2.4))
return (0==0);
if ((cart.theta < ToRad(-50.0)) || (cart.theta > ToRad(50.0)))
return (0==0);
return (1==0);

}

int getAction(Options opt, double *Q, int oldState)
{

int action;

if (opt.method == 0) {
// dice(x) is true with probability x
action = (dice((Q[0 + nmbActions*oldState]
- Q[1 + nmbActions*oldState])*opt.k + 0.5)

?0:1);
if ((0==0)
//&&% (MIN(Q[O + nmbActions*oldState], Q[1 + nmbActions*oldState]) > -0.3)
&& dice(0.0001)) // <- permanent action choice randomness
action = 1-action;

} else
if (opt.method == 1) {
action = (Q[0 + nmbActions*oldState] > Q[1 + nmbActions*oldState] ?
0 : 1);
if (dice(0.0001)) // <- permanent action choice randomness
action = l1-action;

return action;

}

void updateQarray(Options opt, double *Q, int oldState, int action,
double r, int newState)
// updates Q after experiencing the tuple (os, a, r, ns)
// where os = oldState, ns = newState, a = action, r = reward

if (opt.method == 0) { // Q-learning

B CODE

double Q_os_a, Q_ns_a;

Q_os_a = Q[action + nmbActions*oldState];

Q_ns_a

MAX(Q[O + nmbActions*newState], Q[1 + nmbActions*newState]);
Qlaction + nmbActions*oldState] #*= 1l-opt.alpha;

16

Qlaction + nmbActions*oldState] += opt.alpha * (r + opt.gamma * Q_ns_a);

} else

if (opt.method == 1) { // genetic algorithm on boxes

} else

void printQ(double *Q)

{

}

// prints Q values along special axises

double x;
STATES cart;
cart.x = 0.0;
cart.x_dot = 0.
cart.theta = 0.
cart.theta_dot 0.0;
for (x=-3.2; x < 4.0; x+=1.6) {
cart.x = X;

3

>

N o o

printf ("%.3£/%.3f ", QL0 + 2xgetState(cart)], Q[1 + 2xgetState(cart)]);

}

printf ("\n");

cart.x = 0.0;

for (x=-1.0; x < 1.5; x+=1.0) {
cart.x_dot = x;

printf ("%.3£/%.3f ", QL0 + 2xgetState(cart)], Q[1 + 2xgetState(cart)]);

}
printf ("\n");

void recordAction(char *buff, int action)

{

void addEndState(int endState, int *endStateHistory, int *endStateCounter)

{

// records the history of recent actions

char buff2[50];
strncpy (buff2, &(buffl[1]), 49);
strcpy (buff, buff2);
if (action == 0)
strcat (buff, "0");
else
strcat (buff, "1");

int i;
for (i=0; i<(*endStateCounter); i++)

if (endState == endStateHistory[il) return;
endStateHistory[(*endStateCounter)] = endState;
(*endStateCounter) ++;

B CODE

17

int runSim(Options opt, double *Q, int *endStateHistory, int *endStateCntr,
int *stopState)

{

int step;

int action, reward;
int oldState;

char actionBuff[50];

SimulatorInit();
printQ(Q);

strepy(actionBuff, " kskkkskskkkskkskokkokkokkokkokkokokkkkkokokkokokkkokkkokokkokdk ok kkokk ")

for (step = 0; !'outOfRange(CART); step++) {
oldState = getState(CART);

action = getAction(opt, Q, oldState);

recordAction(actionBuff, action);
CART.force_sign = action*2.0 - 1.0;

SimulatorStep();

if (outOfRange(CART)) reward = -1.0;

else

updateQarray(opt, Q, oldState, action, reward, getState(CART));

if (step > 20000) {
break;
¥
}
if (outOfRange (CART))

addEndState (getState (CART), endStateHistory, endStateCntr);

reward = 0.0;

*stopState = getState(CART);

// here would have been the code for the Q-learning variant that

// updates the array after the run has finished

printf (" (%e,%e,%e,%e)\n" ,CART.x,CART.x_dot,CART.theta,CART.theta_dot);

printf (" (%s)\n", actionBuff);

return step;

int main(void)

{

int i,j;

int run;

double **Q;
double *fitness;
int stopState;
Options opt;

int pickA, pickB, mum, dad;

// there are 5*3%8x3

// 2%3%8%3

// + B5*3%2x3

// - 2%3*2%3 = 144 + 90 - 36 = 198 are end states

// (at least this is an upper bound, value maybe

// smaller since some states may not reachable by physics)

360 boxes, of which

int endStateHistory[198];

int endStateCntr=0;

B CODE 18

opt.alpha = 0.1;
opt.gamma = 0.99;
opt.method = 0;
opt.popSize = 100;
opt.k = 25;

if (opt.method == 0) // Q-learning
opt.popSize = 1;

else

if (opt.method == 1) // genetic algo on boxes
opt.popSize = 100;

else

Q = (double**)malloc(opt.popSize*sizeof (doublex));
fitness = (doublex)malloc(opt.popSize*sizeof (double));
for (i=0; i<opt.popSize; i++) {

Q[i] = (double*)malloc(Qsize*sizeof (double));
}

//initialize Q array,
for (i=0; i<opt.popSize; i++)
for (j=0; j<Qsize; j++)
Q[il[j1 = 0.0;

pickA = 0;
endStateCntr = 0;
for (run=0; run<8000; run++) {
fitness[pickA] = runSim(opt, Q[pickA], endStateHistory, &endStateCntr,
&stopState) ;
printf("simlkey run %d steps %.0f endstatecntr ’d stopState %d\n", run,
fitness[pickA], endStateCntr, stopState);
if (run == 2000) opt.k = 100000;
if (opt.method == 1) { // genetic algo on boxes
// selection, breeding and mutation (using Steady State and
// Tournament selection)
pickA = rndInt(opt.popSize);
pickB = rndInt (opt.popSize);
mum = (fitness[pickA] > fitness[pickB] 7 pickA : pickB);
pickA = rndInt(opt.popSize);
pickB = rndInt (opt.popSize);
dad = (fitness[pickA] > fitness[pickB] ? pickA : pickB);
pickA = rndInt(opt.popSize); // the one that gets overwritten
// and is evaluated next time
for (j=0; j<Qsize; j++)
QlpickAl[j1 = (Q[mum] [j1 + Q[dadl[j1)/2.0 + rndReal(-0.01, 0.02);
for (j=0; j<nmbBoxes; j++) {
double min = MIN(Q[pickA][0 + 2%j], QlpickAl[1 + 2%j1);
QlpickA]I [0 + 2%j] -= min;
QlpickAl[1 + 2*%j] -= min;
}
}
}

B CODE

for (i=0; i<opt.popSize; i++) {
free(Q[il);

}

free(Q);

return O;

19

